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Abstract
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An approach for damping structural vibrations using optimization techniques

is presented. There are three different concepts of optimization: local opti-

mization of structural or control parameters, respectively, and global optimiza-

tion including all parameters of the controlled structure. The formulation of

the optimization problem for multibody systems is presented and algorithms

for its solution are briefly described.

As an engineering application a tethered satellite system is investigated

applying the local controller optimization only. Spacecrafts and orbiting sys-

tems are subject to structural vibrations. Moreover, tethered satellite systems

show large displacements and require active or passive damping mechanisms,

respectively, see Beletsky and Levin [3] and Steiner et al. [30]. In this paper

a tethered satellite system is modelled by the method of multibody systems

using symbolic equations of motion undergoing large displacements. Active

damping is provided by an actuator between the main body and the tether.

As performance criteria the energy decay and the displacement of the main

body are applied. First results obtained by Dignath [9] are extended to a

nonlinear analysis. Then, a simple elastic pendulum serves as a benchmark

for comparison of global and local optimization, i.e. structural or controller

optimization, respectively. This benchmark shows clearly the advantages of

the global optimization which will also be transferred to the tethered satellite

system.
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1 Introduction

The paper uses three different optimization concepts for damping of structural vi-

brations: local structural optimization, local control optimization and global opti-

mization. This means that parameters of the passive structure and of the active

parts, such as controller gains or sensor positions, respectively, are simultaneously

adapted for improved overall damping. This is of particular interest for adaptive

structures where active and passive elements cannot clearly be separated as illus-

trated by Hanselka [14]. Furthermore, the technique of global optimization does

not involve any linearizations as many standard methods of control theory and can

therefore be applied to highly nonlinear systems.

The optimization technique is based on the optimization of multibody systems

as described by Bestle [4] and Eberhard [10]. Modeling mechanical structures as

multibody systems is a well established approach, if large motions and small de-

formations appear, see [24]. For optimization purposes the equations of motion

of such models should be derived in symbolical form. Thereby parameters can be

varied without a new derivation of these differential equations. This can be done

automatically by computer codes, for example by NEWEUL [17]. The optimization

process itself requires algorithms for searching of a minimum, for the integration of

the equations of motion and possibly for a sensitivity analysis, which are composed

in the program AIMS [5].

A simple elastic pendulum is considered for the application of global optimiza-

tion in comparance to local structural and control optimization, respectively. As an

engineering application control optimization is applied to a tethered satellite system

in order to damp its structural vibrations.

A tethered satellite system consists of two or more satellites attached to each

other by a long string. Such systems show a high dynamic potential with various

applications as presented by Beletsky and Levin [3]. In this paper the damping

of structural vibrations is considered during the tethered deployment of a reentry

capsule from the international space station as described by Messerschmid et al. [18].

2 Optimization Process

An optimization process consists of two phases. In the first phase the optimization

problem is formulated, consisting of the mathematical description of the dynamic

system, the parameter space and the performance criteria. In the second phase

the mathematically formulated problem is solved. Since the solution can only in

special cases be found analytically, numerical methods are applied in order to find

the optimum.

2.1 Formulation of the Optimization Problem

Before the actual optimization problem can be defined, a mathematical model of

the considered system has to be created. In the present paper, this is done by the

method of multibody systems, see Schiehlen [23] or Shabana [27], which yields the

equations of motion in the standard form
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ẏ = v(t,y, z) , (1)

M(t,y)ż + k(t,y, z) = q(t,y, z) . (2)

where y ∈ IRf is the vector of generalized coordinates, z ∈ IRg the vector of

generalized velocities, M ∈ IRg×g the symmetric, positive definite mass matrix,

k ∈ IRg the vector of generalized centrifugal, Coriolis and gyroscopic forces and

q ∈ IRg the vector of generalized applied forces. For holonomic systems, f ≡ g

and the kinematics function v ∈ IRf is typically v = z . Moreover, if adaptive

structures are considered, additional differential equations for sensors or controllers

have to be added to equation (1) or (2) and additional force terms for the actuators

are introduced.

Together with the initial conditions y(0) and z(0) the differential equations (1)

and (2) define the dynamical system. For the optimization additionally a final

condition is necessary that can be written in implicit form

Hend(tend,yend, zend) = 0 . (3)

Now a set of so–called design variables can be chosen. These parameters are varied

during the optimization process in order to improve the dynamical behaviour of

the system. The design variables are summarized in the vector p ∈ IRh combining

structural or controller parameters or sensor and actuator positions if appropriate.

Usually, the design variables have to fulfill some constraints

h(p) ≥ 0 , (4)

g(p) = 0 . (5)

This can be either inequality constraints h, limiting the parameter space, or equality

constraints g, reducing its dimension, respectively.

Secondly, the n optimization criteria ψi are to be formulated. If the criteria are

continuous, differentiable functions, they can be written in the standard form

ψi = Gi(tend,yend, zend,p) +

∫ tend

t0

Fi(t,y, z, ż,p)dt , i = 1(1)n , (6)

where Gi is a function only depending on design variables and final states, while∫
Fidt evaluates the system states over some time period.

Sometimes, it is of advantage to choose non-differentiable optimization criteria

such as maximum–value or threshold functions in order to describe the optimization

goals, see [11].

If several criteria are considered, a multicriteria problem is given, resulting in

an extended scalar optimization criterion ψres. Usually, the simple consideration

of weighting factors leads not to the best results and more sophisticated methods,

such as hierarchical methods or goal programming, are applied, see Stadler [29] and

Eberhard [10].

The mathematical problem reads as

min ψres(p) , with p ∈ IP ,

IP = {p ∈ IRh | g(p) = 0 ∧ h(p) ≥ 0} . (7)
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2.2 Solving the Optimization Problem

Only in special cases the optimization problem can be solved analytically, therefore

an numerical iteration process is usually applied. A scalar optimization algorithm

chooses new sets of design variables p based on the information about the crite-

rion ψres and possibly its sensitivities dψres/dp
T until convergence is reached. The

required scalar criterion ψres and the corresponding sensitivities are evaluated by

the multicriteria method from the original vector of criteria ψ and the corresponding

matrix of sensitivities.

The iteration process implies large numerical computations. In particular, the

computation of criteria and sensitivities are very time consuming since an repeated

integration of the differential equations (1) and (2) in each iteration step is re-

quired. It is therefore important to address some attention to the choice of the

scalar optimization algorithm.

2.3 Classification of Algorithms

The algorithms can be classified into deterministic algorithms that use gradient

information to find a profitable search direction towards the optimum and stochastic

algorithms that use a random number generator combined with a stochastic strategy

based only on the information about the criterion values.

Deterministic algorithms locate a minimum of the overall criterion within a cer-

tain number of iteration steps by proceeding along a search direction towards the

minimal point. Modern algorithms are based on Quasi–Newton–Methods using gra-

dient information about the first derivatives dψres/dp
T and an approximation for

the Hesse–Matrix, i.e. the second derivatives. If the design variables have to fulfill

some constraints (4) or (5) the process is called constrained optimization and the

algorithm has to consider additional equations. For this constrained optimization

there are, for example, methods of sequential quadratic programming (SQP) avail-

able, see Fletcher [12]. They are well suited for optimization with smooth optimiza-

tion criteria such as presented in this paper, if the first derivatives, i.e. sensitivities

can be provided. For all optimizations presented in this paper the SQP–algorithm

of Schittkowski [25] is used.

Stochastic algorithms minimize the optimization criterion based only on infor-

mation about the criterion ψres itself. They need several hundred function evalua-

tions in order to apply stochastic strategies to the optimization problem. Examples

are Adaptive Simulated Annealing, see Ingber [15], and Evolutionary Algorithms,

see Schwefel [26] and Goldberg [13]. They are well suited for optimization problems

with non–smooth criterion functions where sensitivities cannot always be supplied

to the algorithm or a criterion with many local minima.

2.4 Sensitivity Analysis

When using deterministic optimization algorithms as in this paper, sensitivities

must be supplied to the algorithm. Since, in general,

ψres = ψres(y(p), z(p)) , (8)
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this requires the computation of gradients and poses a great numerical effort. There-

fore, it is important to use an efficient algorithm for the sensitivity analysis. In this

paper the method of Adjoint Variables, see Bestle and Eberhard [6], is used for the

example in the next section. This method provides gradients with high accuracy

and efficiency but has the disadvantage that it needs storage of the trajectories over

the complete time range. For the tethered satellite system presented in section 3

which involves long integration times it is therefore not suited and the method of

Automatic Differentiation (AD) is used instead. Automatic differentiation provides

exact gradients (apart from integration errors) with a computational effort of about

h× tint, where h is the number of design variables and tint is the integration time

for the criteria computation. For more information on automatic differentiation see

Bischof et al. [7] and for the application in combination with an SQP–algorithm

see [11].

3 Tethered Satellite System (TSS)

The idea of using a system of two or more satellites connected by a long thin tether

dates several decades back, see for example Rupp and Laue [21] or Stabekis and

Bainum [28]. The most realistic applications suggested are probably the creation of

artificial gravity by two satellites encircling each other, the gravitational stabiliza-

tion of a two body system, the launching of small satellites and the deorbiting of a

reentry capsule. An overview over the suggested applications for tethered satellite

systems is given in the book by Beletsky and Levin [3] that might be considered the

standard work about Space Tether Systems. This book treats the dynamical effects

of massless and massive elastic tethers in various configurations and missions. The

deorbit maneuver is treated with respect to aeronautical and spacecraft engineering

by Messerschmid et al. [18] and Zimmermann et al. [31].

Concerning the dynamics of tethered satellite systems a great number of papers

were published during the last years. In particular, the investigations of Modi et

al. [19], [20], Bainum and Kumar [2] and Steiner et al. [30] deal with the control of

tether vibrations and the paper of Kim and Vadali [16] presents a suitable mechani-

cal model. Further the dynamical analysis of tethered satellite systems by Buchholz

and Troger [8] has to be mentioned.

3.1 Considered Mission

In this paper, the tethered deorbit of a reentry capsule without a rocket propulsion

system is considered, see Zimmermann [31].

There is either a static or a dynamic release possible as shown in Figure 1. In

the first case, the capsule is slowly lowered radial to the Earth resulting in smaller

orbit velocity. In the second case, the tether is deployed faster which leads to a

lateral offset due to the Coriolis force. When the tether deployment is stopped, the

capsule swings back towards the local vertical, which corresponds to a breaking of

the capsule. The advantage of a dynamical release is that the required tether length

is only about one half of the length necessary for a static release.

In this paper, the back–swing of the capsule during the dynamic release is con-

sidered and the damping of the resulting structural vibrations by active control
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Figure 1: Static and Dynamic Release of a Reentry Capsule

is investigated. For this mission, the tether will typically have a length of 20 km

with a diameter of only 0.5 mm. The mass of the return capsule is 170 kg, which

corresponds to the prototype reentry capsule, see Messerschmid et al. [18]. The

parameters of the station are taken from the International Space Station which is

planned to fly with an overall mass of 415 t at an altitude of 400 km.

3.2 Mechanical Model
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Figure 2: Multibody System Model of the Tethered Satellite System

The tethered satellite system is modelled as a multibody system as shown in

Figure 2. It consists of two rigid bodies in free space, representing the station S

and the return capsule, payload P . These two bodies are connected by a chain of

n particles which are interconnected by spring–damper combinations representing

an elastic tether. This model is similar to the bead model of Kim and Vadali [16]

but differs with respect to the two end bodies, which may move completely free in

space.

The parameters of the particles and spring damper combinations are chosen such
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that they represent an equivalent element of the tether with length l.

m = ρTAT l , (9)

c =
ETAT

l
, (10)

d =
DT

l
, (11)

where ρT is the density, AT the cross section, ET the Young’s Modulus and DT the

damping constant of the tether material. For a very long thin tether usually Kevlar

or Dyneema are considered as appropriate materials, see Sabath [22]. The length l

of the tether elements depends on the discretization

l =
LT

n
(12)

where LT is the overall length of the tether. For validation purposes n = 50 particles

were used. In the optimization process n = 20 since the trajectories showed no

significant differences.

The equations of motion are comparatively simple if all generalized coordinates

are chosen as absolute coordinates given in the non-rotating Earth fixed coordinate

system.

y =
[
xS yS zS αS βS γS x1 y1 z1 · · · zn xP · · · γP

]
(13)

The equations of motion (1) and (2) then read as

ẏ = z

Mż + k = q (14)

with

M =




∗ · · · ∗
...

. . .
... 0

∗ · · · ∗
m

m
. . .

m

∗ · · · ∗
0

...
. . .

...

∗ · · · ∗




(15)

k =
[
∗ · · · ∗ 0 0 · · · · · · 0 ∗ · · · ∗

]T
(16)

q =
[
∗ · · · ∗ · · · Fxi Fyi Fzi · · · ∗ · · · ∗

]T
(17)

where the symbol * stands for the complex terms of the two rigid bodies. It can be

seen that the motions of the particles are coupled only via the vector q. For the

x–direction these read as

Fxi = FGxi
+ FCxi

+ FDxi
− FCxi−1

− FDxi−1
. (18)
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where FGxi
is the gravitational force on the i-th particle, FCxi

and FDxi
the spring

and damper forces respectively between particle i+ 1 and i and FCxi−1
and FDxi−1

the spring and damper forces between particle i and i − 1. With mE representing

the mass of the Earth, γ the gravitational constant and l0 the unstretched spring

length, one obtains

FGxi
= −mEγm

xi

R3
i

, with Ri =
√
x2
i + y2i + z2i , (19)

FCxi
= c(li − l0)

xi+1 − xi

li
,

with li =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 , (20)

FDxi
= d

l̇
T

i li
l2i

(xi+1 − xi) , with li =


 xi+1 − xi

yi+1 − yi
zi+1 − zi


 and l̇i =

dli
dt

. (21)

It turns out that coupling between the directions occurs only via nonlinear terms.

A linearization about the quasi–static equilibrium position

zi = zi0 + dzi, zi0 = 0, żi0 = 0, z̈i0 = 0 (22)

leads to a decoupling of in–plane and out–of–plane motions, see Steiner et al. [30].

Since the coupling is an important effect when investigating the damping of a teth-

ered satellite system, the complete nonlinear equations are considered in this paper.

To reduce the vibrations by active damping control of the tether winch is ap-

plied. This is represented in the model by a force actuator at the space station S.

Therefore, the actuator force Fact is added to the applied forces to vector q in

equation (17), e.g. the term Fact
xS−x1

lS
is added to Fxi, i = 1, in equation (18).

As control laws for the actuator several linear relations can be found in literature,

see [2]. For the longitudinal control it is recommended

Fact = k1l + k2 l̇ (23)

where l ≡ lS is the distance between the station and the uppermost particle. For

the lateral control the linear law

Fact = k3θ + k4θ̇ (24)

where θ is the in–plane angle of the tether measured at the station, may be applied.

Furthermore, nonlinear relations can be found, see Modi et al. [19]

Fact = k5θ̇
2 . (25)

To reduce the influence of high frequency oscillations on the controller a PT1 filter

is used between the sensor and the controller with a cutoff frequency of ωE = 1 s−1.

This frequency is significantly larger than the vibration frequency.

3.3 Motion of the Tethered Satellite System

The dynamics of the tethered satellite system are investigated by simulations. The

first case describes vibrations in the tether during stationkeeping. The second case
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describes the motion during a three–dimensional transversal swing of the tether

where the effects of the nonlinear coupling terms can be observed, too.

In both cases the station moves around the Earth as described in section 3.1,

but the orbit is not an ideal circle due to small disturbances in the initial conditions

and the structural vibrations.

3.3.1 Stationkeeping

In the stationkeeping operation the tether is hanging straight down from the station

with the payload pointing towards the centre of the Earth while the complete system

is moving on a nearly circular orbit. The parameters are chosen as by Modi et al. [20]

in order to compare the simulation results,

LT = 100 km, ρT = 5.76
kg

km
, MP = 500 kg, EAT = 2.8 ∗ 105 N . (26)

Additionally a small internal damping of D = 2500 Ns as reported by Sabath [22]

is taken into account. Initially, the system is experiencing a large longitudinal

vibration at no transversal offset.
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Figure 3: Simulation of stationkeeping with a tether of length LT = 100km

The results of the simulation are shown in Figure 3, where rP is the depth of the

payload under the station, always pointing towards the centre of the Earth, and ui

is the transversal in–plane motion of the i–th particle or the payload P , respectively,

perpendicular to r. It can be seen that the longitudinal vibration also leads to a

transversal vibration of the tether and a small librational motion of the payload due
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to the Coriolis force. Obviously, energy initially stored in the longitudinal vibration

is being transferred into the transversal in–plane motions.

Frequencies ω0 Modi et al. Present Study

librational 1.732 1.758

1st longitudinal 54.3 55.7

1st transversal 59.6 57.7

Table 1: Comparance of eigenfrequencies (EF)

The frequencies of the first modes are shown in Table 1 compared to the fre-

quencies that Modi et al. [20] obtained with their linear model. They are shown as

normalized frequencies, i.e.

ω0 =
ω

ωorbit
(27)

The frequencies agree quite well. The small differences may well be explained by

the nonlinear effects. For a simplified and completely linearized model with small

displacements, the librational frequency of
√

3 ∗ ωorbit can be calculated analytically,

see Arnold [1]. The difference of 1.5% between the analytically calculated librational

frequency and the simulation can be explained by the nonlinear librational motion

and the slightly elliptic orbit of the station.

3.3.2 Three-Dimensional Swing

The second case shows a librational swing of the tethered satellite. The tethered

satellite has initially a large transversal offset from the quasistatic equilibrium po-

sition in both the in–plane and out–of–plane direction. The parameters are chosen

for the mission also described in section 3.1, as

LT = 20 km, ρT = 0.3
kg

km
, MP = 170 kg, EAT = 31548.6 N, D = 2500 Ns . (28)

The results of the simulation are shown in Figure 4 where r is again the depth

of the payload under the station, ui the transversal in–plane motion and wi the

transversal out–of–plane motion. The angles of the payload βP and γP about the

y– and z–axis are measured in the body fixed coordinate system. Apart from the

motion of the payload, the transversal motion of the 7th and 14th particle are

shown. The small longitudinal vibration has no considerable influence on the large

scale transversal motion. However, the longitudinal motion of the tether excites a

tumbling motion of the payload via nonlinear coupling. When the librational swing

finishes one half period even an overturn of the payload occurs. This is clearly a

very undesirable effect, especially, when the payload is to be cut off and to enter

the atmosphere on a specified path. Therefore, an additional damping mechanism

in order to control the payload motion is necessary. This simulation shows that the

payload cannot in general be modelled as a pointmass. It is necessary to use the

rigid body model with rotational degrees of freedom.

10



orbits0.0 0.25

0.0 500.0 1000.0 1500.0 2000.0

19000.0

19500.0

20000.0
de

pt
h 

r 
/ m

0.0 500.0 1000.0 1500.0 2000.0
time t / s

–5000.0

–2500.0

2500.0

5000.0

0.0

di
sp

la
ce

m
en

ts
 in

 y
/z

–d
ir.

 / 
m

0.125

19250.0

19750.0

0.0 500.0 1000.0 1500.0 2000.0
time t / s

an
gl

es
 o

f p
ay

lo
ad

 / 
ra

d

w
u

time t / s

rP

u7

u14

uP

w7

w14

wP

�P

�P

��2

� ��2

0.0

�

3��2

Figure 4: Simulation of three–dimensional swing with a tether of length LT = 20km

3.4 Optimization

To reduce the vibrations of the tether the active damping by the tether winch is

applied. The controller gains and the structural parameters are adapted to each

other by an optimization process using the described SQP-algorithm in combination

with Automatic Differentiation.

As a reference for evaluating the dynamical behaviour of the tethered satellite

system, the back–swing of the payload as described in section 3.1 is considered using

the above given parameters. The initial conditions for the system of differential

equations (14) follow from a tether that is hanging in a straight line with a large

lateral in–plane offset. Additionally, a small longitudinal offset is assumed, so that

longitudinal and lateral oscillations occur.
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If structural parameters, such as the tether stiffness are varied during the opti-

mization process, it is recommended to define the initial conditions in a way that

the initial energy is independent from these design variables, e.g. that the energy

stored in the stiffness is constant. This is of particular importance, when the energy

of the vibrations is taken as an optimization criterion. Other possible criteria are

displacements of the payload or the tether, i.e. displacements of some particles.

In this paper an optimization with respect to the longitudinal tether vibrations

is considered using above described energy criterion.

3.4.1 Optimization with Respect to Longitudinal Vibrations

To reduce the longitudinal vibrations, the control law (23) for the actuator is simply

chosen as

Fact = k1l + k2 l̇ (29)

where the gains k1 and k2 are design variables. The optimization criterion is the

energy criterion

ψ =

∫ T

0

(
1

2
MP (vP − vref )2 +

1

2
c∆l2P

)
dt (30)

with

vref = ωorbitRP (31)

where ωorbit is the orbit frequency and RP the distance of the payload from the

centre of Earth. Further, ∆lP = ∆lP (t) is the overall stretch of the tether.
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Figure 5: Optimization with respect to longitudinal vibrations
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Parameter initially optimized limits

k1/c1 0.0 -0.275 -0.5;10.0

k2/d1 10.0 101.08 0;1000.0

Table 2: Results of the longitudinal optimization

The results are shown in Figure 5 and Table 2 . The optimized parameters lead

to smaller amplitudes of the longitudinal vibrations while the large scale motion is

not influenced. This is shown in Figure 5 for the depth r around the tether cut–off

point at about 800 s. In this graph, the optimized dynamics are shown with respect

to a low frequency motion without structural vibrations. It can further be seen that

the energy in the stiffness is dissipated faster than with the initial parameters and,

of course, also faster than without active damping. Obviously, the active control

of the tether winch is suited for the purpose of providing additional damping to

the tethered satellite system and stabilizing the motion in this way, if appropriate

parameters are chosen.

4 Pendulum Benchmark

For the optimization of the tethered satellite system in section 3 so far only local

controller optimization was considered. Additionally, local structural optimization

could be applied but better results are expected by the use of global optimization.

As a simple example to demonstrate the potentials of the global optimization an

elastic pendulum is used. By active control of the pendulum suspension its motion

is reduced. It is shown that the simultaneous optimization of structural and control

parameters yields a better performance than separate optimizations.

4.1 System Model

The system model of the pendu-

lum is shown in Figure 6. The

pendulum has two degrees of

freedom with the generalized co-

ordinates,

y =

[
θ

r

]
(32)

while the additional displace-

ment u is controlled by an actu-

ator.

c

d

�����

���������

��������

g

r

u

�

m

Figure 6: Model of the elastic pendulum

With z = ẏ, the equations of motion (2) read as[
mr2 0

0 m

][
θ̈

r̈

]
+

[
2mṙθ̇r

−mθ̇2r

]
=

[
−mgr sin θ + mür sin θ

mg cos θ −mü cos θ − c(r − l0) − dṙ

]
(33)
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where g is the gravitational constant and l0 is the unstretched spring length. To

reduce the vibrations of the pendulum the control law is chosen similar to a sliding

mode controller as

ü = −kθθ̇ . (34)

Then, the moment generated by the displacement of the actuator is always opposite

to the motion of the pendulum. For the solution of the equations (33) and (34) there

are four initial conditions to be specified

θ(0) = θ0, θ̇(0) = θ̇0, r(0) = r0, ṙ(0) = ṙ0 . (35)

4.2 Optimization Problem

The structural parameters of the pendulum, c and d, and the controller gain k are

to be optimized with respect to vibration damping. It is assumed that the initial

energy Wini of the pendulum is constant, i.e. independent from the design variables.

Then, only three initial conditions can be chosen,

θ0 = const. , (36)

θ̇0 = 0 , (37)

ṙ0 = 0 . (38)

The fourth initial condition follows from the constant initial energy

req = const. , (39)

Wini = const. , (40)

where req is the pendulum length in the equilibrium position, i.e. the end position

and Wini is the initial energy due to gravity and the initial stretch of the spring. If

the equilibrium position req is given, out of this conditions the unstretched spring

length l0 can be calculated to

l0 = req − mg

c
, (41)

and the initial length of the spring is calculated to

r0 = req − ∆r(Wini, l0, θ0) . (42)

With the initial offset angle θ = 30◦, the equilibrium position of req = 1.5 m,

Wini = 8 Nm, a pendulum mass of m = 1 kg and the original design variables from

Table 3 the system behaves as shown in Figure 7.

Parameter c d k

original 20.0 1.0 1.0

lower bound 10.0 0.1 -4.0

upper bound 40.0 10.0 4.0

Table 3: Parameter space of the pendulum benchmark

While the longitudinal vibration is sufficiently damped, the transversal vibration

is only weakly damped, because the structural damper can act only via nonlinear
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Figure 7: Dynamical behaviour of the non-optimized pendulum

coupling terms. The optimization of the design variables is expected to improve

this damping effect. The optimization criterion is therefore formulated as

ψ =

∫ tend

0

θ2dt (43)

with the final time tend = 100 s. The parameter space in which the optimization

acts is shown in Table 3.

4.3 Optimization Results

The described optimization problem is solved by three different types of optimiza-

tions. Firstly, by controller optimization that only applies to the gain k, secondly

by structural optimization that only applies to c and d and thirdly by global op-

timization that considers simultaneously to the structural parameters c and d and

the control gain k.

The results are presented in Table 4 and Figure 8. Obviously the global op-

timization gives the best damping behaviour and leads to the lowest value of the

optimization criterion. This was to be expected, since the adaptation of struc-

tural to control parameters and vice versa can best be achieved by the variation of

all the design variables. The interesting point however is, that the results of the

global optimization lead to design variables completely different to the separated
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Figure 8: Dynamical behaviour of the optimized pendulum

Parameter c d k

controller optimization (20.0) (1.0) -0.134

structural optimization 25.08 0.387 (1.0)

global optimization 40.0 0.135 4.0

Table 4: Optimization results for the example pendulum

optimizations. This means that by applying both, structural and controller opti-

mization separately, it is not possible to obtain the optimal parameters of the global

optimization.

5 Conclusions

In this paper, a method for the damping of structural vibrations by passive and

active elements was presented. The parameters of these elements were adapted to

each other by optimization techniques using the complete set of nonlinear equations

of motion including active controllers.

As an application a space tether system was optimized with respect to structural

damping by control of the tether winch. The complex dynamic motion of this system

was presented in simulations with different initial conditions including structural
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vibrations. By an optimization process the control parameters could be improved

with respect to the dissipation of energy of longitudinal structural vibrations.

A simple elastic pendulum served as a benchmark for the comparison of three

optimization concepts, i.e. local optimization of structural and control parameters,

respectively, and global optimization using the joint set of parameters. It was

shown that the global optimization clearly results in the best performance with

respect to vibration damping. The method is of particular advantage if adaptive

structures are considered where passive and active functions cannot be separated

or when investigating large, complex motions, where linearization methods cannot

be applied, respectively.
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