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Abstract

This paper presents the primary resonance of single mode of forced and undamped bending vibrations of
nonuniform beam with rectangular cross-section, constant width and convex parabolic thickness
variation. The case of nonlinear curvature is considered. We apply the method of multiple scales directly
to the nonlinear partial-differential equation of motion and boundary conditions. The frequency-response
is analytically determined.

1 Introduction

Nayfeh and Nayfeh [5] constructed the nonlinear mode shapes and natural frequencies for a class of
one-dimensional continuous systems with weak cubic geometric and inertia nonlinearities. The methode
of multiple scales is applied directly to the partial-differential equation and boundary conditions of
nonlinear uniform beam.

Nayfeh and Nayfeh [6] used two approaches, the method of multiple scales to treat directly the
governing partial-differential equation, respectively a Galerkin procedure and the method of multiple
scales, to determine the nonlinear modes and natural frequencies of simply supported uniform
Euler-Bernoulli beam resting on an elastic foundation with distributed quadratic and cubic
nonlinearities.

Caruntu [3] considered the case of nonlinear free vibrations of nonuniform beam with
rectangular cross-section, constant width, parabolic thickness variation and a sharp end. This beam is &
good approximation of a cylindrical gear tooth. This cantilever beam was studied in the case of
geometrical nonlinerities. In the absence of internal resonance the nonlinear modes are taken to be
perturbed versions of the linear modes. Therefore the nonlinear planar mode shapes and natural
frequencies of a gear tooth with a sharp end are analytically determined.

Caruntu [4] has presented numerical determinations in the linear case of free bending vibrations
of this beam using the factorization method.

2 Thenonlinear partial-differential equation of forced motion of nonuniform beam

We consider the case of nonlinear forced vibrations of nonuniform beam, the case of nonlinear curvature
k ( geometrical nonlinearities)
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where y is considered the transverse displacement. Caruntu [3] have presented the partial-differential
equation of nonlinear free bending vibrations in this case
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where the cross-sectional arBathe mass densitio, the cross-sectional area of beam, theings
modulusk and the moment of inertlaare considered.

This paper deals with the undamped forced vibrations. For simplicity is considered only the case
of a single frequency excitati@a’
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We introduce the nondimensional quantities defined by:
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where W is the characteristic transverse displacement, usually takertlzes reference length). The
partial-differential equation (3) becomes
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Considering the linear and the nonlinear operators
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the nonlinear partial-differential equation of single-mode forced motion of the presented nonlinear beam,
becomes
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3 The problem formulation

The nonuniform beam with constant width, parabolic thickness variation and a sharp end case is
considered (see Fig.1), for the reason that we have already determined [4] the natural frequencies anc
the mode shapes:
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The cross-sectional area and the moment of inerka@f and the dimensionless forms of them, are
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Fig.1 Nonuniform beam of rectangular cross-section with a sharp end

We examine the primary resonance (the case of nonlinear curvature of a cantilever beam, Fig.1) of the
problem
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4 Primary Resonance

We apply the method of multiple scales directly to the governing partial-differential system (12), (13).
Introducing a small dimensionless parametas a bookkeeping device we obtain the problem:
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The scheme for ordering the terms is consistent with our notions of primary resonance (we
anticipate that a small-amplitude excitation produces large-amplitude response). A first-order uniform
expansion is considered as
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wherelo =t is a fast scale and = €t is a slow scale. The time derivative becomes:
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Using the equation (16), and equating coefficients of like powees, &fom (14), we obtain:
Order €0

Dow, + Lz[Wo]: 0, (18)
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We write the solution of equation (18)
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whereA is undetermined at this moment of approximation. The linear free vibrations case is presented
by Caruntu [3] with numerical determinations in [4].

Instead of using the frequency of the excitation W as a parameter, we introduce a detuning
parametes, which quantitatively describes the nearness of Wktdccordingly we write

Q=w, +eo (23)
Substituting (22) into (20) we obtain
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Using (10), (7) and (8), we have denoted the nonlinear operators
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This inhomogeneous equation (24) and the condition (21), have a solution only if a solvability
condition is satisfied.

It means that, the right hand sides of (24) be orthogonal to every solution of the homogeneous
problem
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The inner product betwedh () and 9.(x) is defined by:
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Because the operatbz is self-adjoint with given boundary conditions defined, the eigenfunc‘bi@@
corresponding to different eigenvali8s, are orthogonal. Secular terms will be eliminated if we choose
A to be a solution of
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This equation governs the amplitude and phase evolution. Expréssinte polar form
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where@ andBx (first approximations to the amplitude and phase of the motion) are real, and separating
equation (30) into real and imaginary parts, we obtain for the amplitude and for the phase:
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Equations (33) can be be transformed into an autonomous sykteoe$ not appear explicitly) by
letting

Vi =0T, =By (34)
The result is
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The steady-state motion is obtained considering
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We have the solutions of (37) _
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If the coefficients 9w, Y2«, Y3« are determined for a consideréék (using [4]), then the
frequency-response curve can be ploted$ a function o). Each point of this curve corresponds to a
singular point in a different state plane; there is one state plane for each parfam'éitmr backbone
curve is the parabola
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In the absence of damping, the peak amplitude is infinite, and the frequency-response consists of two
branches having as their asymptote the curve (41). Relation (39) shows that the response is either in
phase 04800 out of phase with the excitation.

5 Conclusion

Using the method of multiple scales, the primary resonances in the case of single-mode forced motion of
a cantilever beam with a constant width, parabolic thickness variation and a sharp end, in the case of
nonlinear curvature, are studied. This method is applied directly to the nonlinear partial differential
equation and boundary conditions. The first four linear mode shapes and natural frequencies are already
determined by Caruntu [4] using the factorization method. This beam is a good approximation of a gear
tooth with a sharp end (the case of a gear with a small number of teeth) . The frequency-response curves
are analytically determined. The significance of this paper is represented by the analytical results; in this
way we can have numerical determinations.

Acknowledgements:

References

[1] D. Caruntu, (1996a) “On bending vibrations of some kinds of beams of variable cross-section
using orthogonal polynomials”, Rev.Roum.Sci.Techn.-Méc.Agp| 265-272 (1996).

[2] D. Caruntu, “Relied studies on factorization of the differential operator in the case of bending
vibration of a class of beams with variable cross-section”, Rev.Roum.Sci.Techn.-Mé&Appl.
389-397 (1996).

[3] D. Caruntu, “On nonlinear vibration of nonuniform beam with rectangular cross-section and
parabolic thickness variation” JUTAM/IFTOMM Symposium on Synthesis of Nonlinear
Dynamical Systems, Kluwer Academic Publishers, 109-118 (1998).

[4] D. Caruntu, “On bending vibration of nonuniform beam of constant breadth and parabolic
thickness variation and with a sharp end”, International Conference on Manufacturing Systems,
Bucharest, Romania, Journal TCMV33, 33-38 (1998).

[5] A.H. Nayfeh and S.A. Nayfeh, “On Nonlinear Modes of Continuous Systems”, Journal of
Vibration and Acoustic416, 129-136 (1994).

[6] A.H. Nayfeh, C. Chin and S.A. Nayfeh, “Nonlinear Normal Modes of Cantilever Beam”,
Journal of Vibration and Acoustidd7, 477-481 (1995).



[7] A.H. Nayfeh and S.A. Nayfeh, “Nonlinear Normal Modes of a Continuous System with
Quadratic Nonlinearities”, Journal of Vibration and Acoustiks/, 199-205 (1995).

Authors

Surname, first name CARUNTU, Dumitru

Department Department of Mechanical Engineering,
“Politehnica” University of Bucharest

Address Spl.Independentei 313, ,

Zip-code and city 77206 Bucharest

Country Romania

E-mail address fcaruntu@fx.ro

WWW-address WWW-address



