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Abstract
Conditions for the existence of solutions bounded on R are obtained for a
weakly nonlinear ordinary di�erential system in assumption that the opera-
tor L de�ned by linear (" = 0) homogeneous system is a Fredholm operator
and the corresponding inhomogeneous linear system has an r� parametric
set of solutions bounded on R. If L is a Fredholm operator with index zero
and in case r = 1 we obtain the well-known result of K.Palmer.

1 Introduction

Linear systems.Let us denote by BC(J) the Banach space of continu-
ous vector functions x : J ! Rn bounded on an interval J with norm
kxk = supt2J jx(t)j; and by BC1(J) the Banach space of vector functions
x : J ! Rn, continuously di�erentiable on J and bounded together with
their derivative and with norm kxk = supt2J jx(t)j+ supt2J j _x(t)j. Let us
consider the system

_x = A(t)x (1)

with an n�n - matrixA(t), whose components are real functions, continuous
and bounded on the whole line R = (�1;+1): A(�) 2 BC(R): It is known
[1, 2] that the system (1) is an exponential-dichotomy (e-dichotomy) on an
interval J if there exists a projector P (P 2 = P ) and constants K � 1; � > 0
such that

kX(t)PX�1(s)k � Ke��(t�s); t � s

kX(t)(I � P )X�1(s)k � Ke��(s�t); s � t

for all t; s 2 J ; X(t) is the normal (X(0) = I) fundamental matrix of
system (1).
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Let's consider the problem about solutions x : R ! Rn; x(�) 2 BC1(R)
bounded on R of the inhomogeneous system

_x = A(t)x+ f(t); f(�) 2 BC(R) (2)

In the case where the homogeneous system (1) is an e-dichotomy on R; and
so system (1) has only trivial solution bounded on R the inhomogeneous
system (2) has a unique solution bounded on R for each f(�) 2 BC(R): The
resonance case where system (1) has nontrivial solutions bounded on R is
considerably less investigated. The well-known result of K.Palmer [2, p.245],
giving suÆcient conditions for the Fredholm property of the considered prob-
lem is formulated as follows:

Lemma 1. Let system (1) be an e-dichotomy on both half-lines R+ =
[0;+1) and R� = (�1; 0]. Then an operator L : BC1(R) ! BC(R)
de�ned by

(Lx)(t) = _x(t)�A(t)x(t) (3)

is a Fredholm operator and f 2 Im(L) if and only if

Z
1

�1

 �(t)f(t)dt = 0; (4)

for all solutions  (t) bounded on R of the system

_x = �A�(t)x; (5)

adjoint to (1). The index of L is indL = dimV + dimW � n; where V and
W are the stable and unstable subspaces for system (1) [3, p.389].

2 Actual contents

Let us de�ne more exactly some results of this Palmer's lemma, which will
be used below for the investigation of weakly nonlinear systems. The general
solution of (2), bounded on both half-lines R+ and R� is given by
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x(t; �) =

8>>>>>><
>>>>>>:

X(t)P� +
R t
0 X(t)PX�1(s)f(s)ds�R

1

t X(t)(I � P )X�1(s)f(s)ds; t � 0;

X(t)(I �Q)� +
R t
�1X(t)QX�1(s)f(s)ds�R 0

t X(t)(I �Q)X�1(s)f(s)ds; t � 0:

(6)

Solution (6) will be bounded on R only if the vector constant � 2 Rn satis�es
the condition

P� �
Z
1

0
(I � P )X�1(s)f(s)ds = (I �Q)� +

Z 0

�1

QX�1(s)f(s)ds

so that the constant � 2 Rn is determined from the algebraic system

[P � (I �Q)]� =
Z 0

�1

QX�1(s)f(s)ds+
Z
1

0
(I � P )X�1(s)f(s)ds (7)

Let D = P � (I �Q) be an (n�n)� dimensional matrix, and let D+ be an
(n�n)� dimensional matrix which is a pseudoinverse on Moore-Penrose toD
[4, 5]. By PN(D) (PN(D�)) we shall denote an (n�n)� dimensional matrix
- orthoprojector: P 2

N(D) = PN(D) = P �N(D), (P 2
N(D�) = PN(D�) = P �N(D�));

projecting Rn onto the null - space N(D) = kerD of the matrix D, ( onto
the null-space N(D�) = kerD� of the matrix D� transpose to D ).
The system (2) has solutions bounded on R only if the algebraic system
(7) is solvable over � 2 Rn . For this it is necessary and suÆcient, that
the right-hand side of the system (7) belong to the orthogonal complement
N?(D�) = R(D) to subspace N(D�). It follows that

PN(D�)f
Z 0

�1

QX�1(s)f(s)ds +
Z
1

0
(I � P )X�1(s)f(s)dsg = 0: (8)

Thus the general solution of the system (2) bounded on R has a form (6)
with constant � 2 Rn; which is determined from (7) as follows

� = D+f
Z 0

�1

QX�1(s)f(s)ds+
Z
1

0
(I�P )X�1(s)f(s)dsg+PN(D)c; 8c 2 R

n:

(9)
In other words: f(�) 2 Im(L) only if the condition (8) is satis�ed and thus
the general solution of the system (2) bounded on the whole line R has a
form x(t; c) =
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=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

X(t)PPN(D)c+
R t
0 X(t)PX�1(s)f(s)ds�

�
R
1

t X(t)(I � P )X�1(s)f(s)ds+
+X(t)PD+f

R 0
�1

QX�1(s)f(s)ds +
R
1

0 (I � P )X�1(s)f(s)dsg;
t � 0;

X(t)(I �Q)PN(D)c+
R t
�1X(t)QX�1(s)f(s)ds�

�
R 0
t X(t)(I �Q)X�1(s)f(s)ds+

+X(t)(I �Q)D+f
R 0
�1

QX�1(s)f(s)ds +
R
1

0 (I � P )X�1(s)f(s)dsg;
t � 0:

SinceDPN(D) = 0 [5, p.90], then PPN(D) = (I�Q)PN(D). Let dimN(L) =
r; then r = rang[PPN(D)] = rang[(I �Q)PN(D)] and vice versa. Let
[PPN(D)]r = [(I � Q)PN(D)]r be an (n � r)� dimensional matrix, whose
columns are complete set of r linearly - independent columns of the matrix
PPN(D) = (I �Q)PN(D): Then

Xr(t) = X(t)[PPN(D)]r = X(t)[(I �Q)PN(D)]r

is an (n � r) - dimensional matrix, whose columns are complete set of r
linearly - independent solutions of the system (2) bounded on R . Therefore
the general solution of the system (2) bounded on R can be written as

x(t; cr) = Xr(t)cr + (G[f ])(t); 8cr 2 R
r; (10)

where : (G[f ])(t) =

=

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

R t
0 X(t)PX�1(s)f(s)ds�

R
1

t X(t)(I � P )X�1(s)f(s)ds+

+X(t)PD+f
R 0
�1

QX�1(s)f(s)ds +
R
1

0 (I � P )X�1(s)f(s)dsg;
t � 0;

R t
�1X(t)QX�1(s)f(s)ds �

R 0
t X(t)(I �Q)X�1(s)f(s)ds+

+X(t)(I �Q)D+f
R 0
�1QX

�1(s)f(s)ds +
R
1

0 (I � P )X�1(s)f(s)dsg;
t � 0;

is the generalized Green operator for the problem of solutions of the system
(2) bounded on the whole line R .
Since PN(D�)D = 0 [5, p.90], we have PN(D�)Q = PN(D�)(I � P ): Therefore
the condition (8) is equivalent to one of conditions

PN(D�)

Z
1

�1

QX�1(s)f(s)ds = 0; PN(D�)

Z
1

�1

(I�P )X�1(s)f(s)ds = 0: (11)

4



Let d = rang[PN(D�)(I � P )] = rang[PN(D�)Q] = dimN(L�), then each of
conditions (11) consists only from d linearly - independent conditions. Really,
let [Q�PN(D�)]d (d[PN(D�)Q]) be an n� d ( d� n ) - dimensional matrix
whose columns ( rows ) are d - linearly-independent columns (rows) of the
matrix [Q�PN(D�)] ( [PN(D�)Q] ): Note that X��1(t) is the fundamental
matrix of the system (5), which is an e-dichotomy on R+ with a projector
I � P � and on R� with a projector I �Q� [2, p.246]. Then, as above

Hd(t) = X��1(t)[Q�PN(D�)]d = X��1(t)[(I � P �)PN(D�)]d

is an n�d� dimensional matrix whose columns are complete set of d linearly
- independent solutions bounded on R of the system (5), adjoint to (1); hence

H�

d (t) =d [PN(D�)Q]X
�1(t) =d [PN(D�)(I � P )]X�1(t)

is an d� n� dimensional matrix, whose rows are complete set of d linearly -
independent solutions of the system (5) bounded on R . Thus Lemma 1 can
be formulated as follows.
Lemma 2. Let system (1) be an e-dichotomy on R+ and R� with projectors
P and Q; respectively. Then:

a) an operator L is a Fredholm;

b) the homogeneous system (1) has r� parametric set ( r = rang[PPN(D)] =
rang[(I �Q)PN(D)] ) of solutions bounded on R: Xr(t)cr; 8cr 2 R

r;

c) the system (5) adjoint to (1) has d� parametric set ( d = rang[PN(D�)(I�
P )] = rang[PN(D�)Q] ) of solutions bounded on R : Hd(t)cd; 8cd 2 R

d;

d) f 2 Im(L) in only case when:

Z
1

�1

H�

d (s)f(s)ds = 0; (12)

the inhomogeneous system (2) has an r� parametric set of solutions (10)
bounded on R;
e) indL = rang[PN(D�)(I � P )]� rang[PPN(D)] =
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rang[PN(D�)Q]� rang[(I �Q)PN(D)] = d � r:

Nonlinear systems. For weakly nonlinear system

_x = A(t)x+ f(t) + "Z(x; t; "); (13)

let us �nd conditions for the existence of solutions bounded on R

x = x(t; ") : x(�; ") : R! Rn; x(�; ") 2 BC1(R); x(t; �) 2 C[0; "0];

which turns, for " = 0; into one of generating solutions x0(t; cr) (10) of the
system (2). The nonlinear vector function Z(x; t; ") is such that:

Z(�; t; ") 2 C1[ kx� x0k � q ]; Z(x; �; ") 2 BC(R); Z(x; t; �) 2 C[0; "0]:

Theorem 1 (necessary condition).
Assume, that the system (1) is an e-dichotomy on R+ and R� with projec-
tors P and Q, respectively. Let the system (13) have solution bounded on
R x(t; ") : x(�; ") : R ! Rn; x(�; ") 2 BC1(R); x(t; �) 2 C[0; "0], and x(t; ")
turns, for " = 0; into one of generating solutions x0(t; cr)(10) of the system
(2) with the vector constant cr = c�r 2 Rr. Then the vector c�r satis�es the
equation

F (c�r) =
Z
1

�1

H�

d (s)Z(x0(s; c
�

r); s; 0)ds = 0: (14)

Proof. The condition (12) of the existence of generating solutions bounded
on R x0(t; c�r) is assumed to be ful�lled. Considering the nonlinearity in
(13) as nonhomogeneity and applying lemma 2 to (13),we obtain the follow-
ing condition Z

1

�1

H�

d (s)Z(x(s; "); s; ")ds = 0:

Passing to the limit as " ! 0 in an integral we come to required condition
(14).

By analogy to a case of the periodic problem [5, p.184] if is natural to
call the equation (14) the equation for generating amplitudes of the problem
about solutions of the system (13) bounded on the whole line R . If the
equation (14) has a solution, the vector constant c�r 2 Rr determines that
generating solution x0(t; c�r) to which the solution bounded on R x = x(t; ") :
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x(�; ") : R ! Rn; x(�; ") 2 BC1(R); x(t; �) 2 C[0; "0]; x(t; 0) = x0(t; c�r) of the
original problems (13) may correspond. However, if the equation (14) has
no solution, the problem (13) has no solution bounded on R in considered
space. Since here and below all expressions are obtained in the real form, we
speak about real solutions of the equation (14), which may be algebraic or
transcendental.
By changing the variables in (13) according to the relation

x(t; ") = x0(t; c
�

r) + y(t; ");

we arrive at the problem of �nding suÆcient conditions for the existence of so-
lution bounded on R y = y(t; ") : y(�; ") : R! Rn; y(�; ") 2 BC1(R); y(t; �) 2
C[0; "0]; y(t; 0) = 0 for the problem:

_y = A(t)y + "Z(x0(t; c
�

r) + y; t; "): (15)

Taking into account the continuous di�erentiability of a vector function
Z(x; t; ") in x and its continuity in " in a neighborhood of a point x0(t; c�r); " =
0, we can select a term linear in y and terms of zero order in " :

Z(x0(t; c
�

r) + y; t; ") = f0(t; c
�

r) +A1(t)y +R(y(t; "); t; "); (16)

where
f0(t; c

�

r) = Z(x0(t; c
�

r); t; 0); f0(�; c
�

r) 2 BC(R);

A1(t) = A1(t; c
�

r) =
@Z(x; t; 0)

@x
jx=x0(t;c�r); A1(�) 2 BC(R);

R(0; t; 0) = 0;
@R(0; t; 0)

@y
= 0; R(y; �; ") 2 BC(R):

.
Regarding formally the nonlinearity Z(x0 + y; t; ") in the system (15)

as nonhomogeneity and applying lemma 2 to (15), we obtain the following
representation of a solution of the system (15) bounded on R

y(t; ") = Xr(t)c+ y(1)(t; "):
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In this expression the unknown vector of constants c = c(") 2 Rr is deter-
mined from the condition type (12) of the existence of such solution for the
system (15) :

B0c = �
Z
1

�1

H�

d (� )[A1(� )y
(1)(�; ") +R(y(�; "); �; ")]d�; (17)

where:
B0 =

Z
1

�1

H�

d (� )A1(� )Xr(� )d� =

=d [PN(D�)Q]
Z
1

�1

X�1(� )A1(� )X(� )d� [(I �Q)PN(D)]r

is an (d � r) - dimensional matrix (r = rang[PPN(D)] = rang[(I �
Q)PN(D)]; d = rang[PN(D�)(I � P )] = rang[PN(D�)Q] ):

The unknown vector function y(1)(t; ") is determined by the help of the
generalized Green operator (10) from the relation:

y(1)(t; ") = " (G [Z(x0(t; c
�

r) + y; t; ")]) (t);

Let PN(B0) be an (r � r)� dimensional matrix - orthoprojector: Rr !
N(B0); and let PN(B�

0
) be a (d � d)� dimensional matrix - orthoprojector:

Rd ! N(B�0). The equation (17) is solvable with respect to c 2 Rr if and
only if

PN(B�

0
)

Z
1

�1

H�

d (� )[A1(� )y
(1)(�; ") +R(y(�; "); �; ")]d� = 0: (18)

If PN(B�

0
) d[PN(D�)Q] = 0; then the condition (18) is always hold. If, in

addition, PN(B0) = 0, then the equation (17) is uniquely solvable with respect
to c 2 Rr. For �nding solutions of the problem (15) bounded on R y =
y(t; ") : y(�; ") : R ! Rn; y(�; ") 2 BC1(R); y(t; �) 2 C[0; "0]; y(t; 0) = 0
we arrive at the following operator system, which is equivalent to (15) on
considered space of functions

y(t; ") = Xr(t)c+ y(1)(t; "); (19)

c = �B+
0

Z
1

�1

H�

d (� )[A1(� )y
(1)(�; ") +R(y(�; "); �; ")]d�;
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y(1)(t; ") = " (G [Z(x0(t; c
�

r) + y; t; ")]) (t)

The operator system (19) belongs to the class of systems [5, p.188], for
which solvability is applicable a simple iteration method convergent for " 2
[0; "�] � [0; "0] . Really, the system (19) can be rewritten as:

z = L(1)z + Fz; (20)

where:z = col(y(t; "); c("); y(1)(t; "))� (2n+ r)� dimensional column vector;
L(1) and F are linear and nonlinear operators bounded on R :

L(1) =

0
B@

0 Xr In
0 0 L1

0 0 0

1
CA ;L1� = �B+

0

Z
1

�1

H�

d (� )A1(� ) � d� ;

Fz = col

�
0;
Z
1

�1

H�

d (� )R(y(�; "); �; ")d�; "G [Z(x0(�; c
�

r) + y; �; ")]
�

By virtue of a structure of an operator L(1) with zero blocks at the prin-
cipal diagonal and below, the system (20) may be transformed to the form

z = ~LFz; ~L = (Is � L(1))�1; s = 2n + r; (21)

for the solution of which one of variants of a �xed point principle [6] is ap-
plicable for suÆciently small " 2 [0; "�]: Using a simple iteration method for
�nding a solution of the operator systems (19), and hence for �nding solution
of the original system (13) bounded on R , we arrive at the following result [7].

Theorem 2 (suÆcient condition). Assume that the weakly nonlinear
system (13) satis�es the conditions stated above, and thus the corresponding
generating linear system (2) has an r - parameter set of generating solutions
x0(t; cr) (10) bounded on R. Then, for every value of the vector cr = c�r 2 R

r

that satis�es the equation for generating amplitudes (14), provided that the
condition

PN(B0) = 0; PN(B�

0
) d[PN(D�)Q] = 0; (22)

is satis�ed, there exists a unique solution bounded on R of the system (13).
This solution x(t; ") : x(t; �) 2 C[0; "0] turns, for " = 0; into the generation
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solution x(t; 0) = x0(t; c�r) (10) and can be determined by a simple iteration
method convergent for " 2 [0; "�] � [0; "0] :

y
(1)
k+1(t; ") = " (G [Z(x0(�; c

�

r) + yk; �; ")]) (t)

ck+1 = �B+
0

Z
1

�1

H�

d (� )[A1(� )y
(1)
k+1(�; ") +R(yk(�; "); �; ")]d�;

yk+1(t; ") = Xr(t)ck+1 + y
(1)
k+1(t; ");

xk(t; ") = x0(t; c
�

r) + yk(t; "); k = 0; 1; 2; :::; y0(t; ") = 0:

3 Conclusion

Necessary estimates for "� and for the error of approximation of iteration
process can be obtained in the standard way [6].

The condition (22) means [5] that the constant c�r 2 R
r is a simple root of

the equation (14) for generating amplitudes of the problem about solutions
of the system (13) bounded on the whole line R:

If L is a Fredholm operator with index zero and in case r = 1 from this
theorem we obtain the well-known result of K. Palmer [2, p.248].
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