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Abstrat of the Ph.D. dissertation Wavelet frames and their dualsThis thesis is onerned with omputational and theoretial aspets of wavelet frameanalysis in higher dimensions and, in partiular, with the study of so-alled dual framesof wavelet frames. A frame is a system of �simple� funtions or building bloks whihdeliver ways of analyzing signals. The signals are then represented by linear ombina-tions of the building bloks with oe�ients found by an assoiated frame, alled a dualframe. A wavelet frame is a frame where the building bloks are strethed (dilated) andtranslated versions of a single funtion; suh a frame is said to have wavelet struture.The dilation of the wavelet building bloks in higher dimension is done via a squarematrix whih is usually taken to be integer valued. In this thesis we step away from the�usual� integer, expansive dilation and onsider more general, expansive dilations.In most appliations of wavelet frames it is essential to have a dual frame with thesame struture, but this is not always the ase. We explore the relationship betweendual frames of a wavelet frame. We show the existene of a �nie� wavelet frame forwhih the anonial hoie of a dual frame is not a wavelet system. At the same time,this �nie� wavelet frame has in�nitely many other �nie� dual wavelet frames.To avoid the possible lak of wavelet struture of a dual frame, we develop a on-strution proedure for pairs of dual frames whih both have wavelet struture. Usingthis simple proedure we onstrut pairs of dual, bandlimited wavelet frames with goodtime loalization and other attrative properties. Furthermore, the dual wavelet framesare onstruted in suh a way that we are guaranteed that both frames will have thesame desirable features. The onstrution proedure works for any real, expansive di-lation.A quasi-a�ne system is a variant of the wavelet system that has been used su-essfully in the study of properties of wavelet systems for integer dilations. We extendthe investigation of suh quasi-a�ne systems to the lass of rational, expansive dila-tions and introdue a new family of oversampled quasi-a�ne systems. We show thatthe wavelet system is a frame if, and only if, the orresponding family of oversampledquasi-a�ne systems are frames with uniform frame bounds. We also prove a similarequivalene result between pairs of dual wavelet frames and dual quasi-a�ne frames. Wethen haraterize when the anonial dual frame of an oversampled quasi-a�ne frameis also a quasi-a�ne system. Finally, we unover some fundamental di�erenes betweenthe integer and rational settings by exhibiting an example of a quasi-a�ne frame suhthat its wavelet ounterpart is not a frame.





Resumé af ph.d.-afhandlingen Wavelet frames og deres dualerDenne afhandling omhandler beregningsmæssige og teoretiske aspekter af wavelet-fra-meteori i �ere dimensioner og, i særdeleshed, studiet af såkaldte duale frames. Enframe er et system af simple funktioner eller byggesten, som kan bruges til at analyseresignaler. Signalet bliver repræsenteret ved en linearkombination af byggestenene, hvorkoe�ienter udregnes ved hjælp af en tilknyttet frame kaldet en dual frame. En wavelet-frame er en frame, hvor byggestenene er skalerede (dilaterede) og translaterede versioneraf en enkelt funktion. Vi siger, at framen har waveletstruktur. Dilationen af wavelet-byggestenene i højere dimensioner bliver sædvanligvis udført ved en kvadratisk matrixmed heltalsværdier. I denne afhandling betragtes mere generelle dilationsmatrier.I langt de �este anvendelser af wavelet-frames er det afgørende at være i besiddelseen dual frame med waveletstruktur, men dette er ikke altid tilfældet. Vi undersøgerforholdet mellem dualer af en wavelet-frame. Vi viser, at der eksisterer wavelet-frames,for hvilke det kanoniske valg af dual ikke har waveletstruktur, men hvor der �ndesuendeligt mange alternative waveletdualer.For at undgå problemer med manglende waveletstruktur af en dual frame udviklesen metode til konstruktion af par af duale frames, hvor begge frames har wavelet-struktur. Vi konstruerer par af duale, båndbegrænsede wavelet-frames med attraktiveegenskaber. De duale wavelet-frames konstrueres endvidere således, at begge frames vilhave samme gode egenskaber. Konstruktionsproeduren virker for alle reelle, ekspansivedilationsmatrier.Quasi-a�ne systemer er en variation af det almindelige waveletsystem, der normaltbenyttes i studiet af waveletsystemer for heltalsdilationer. Vi udvider studiet af sådannequasi-a�ne systemer til klassen af rationelle, ekspansive dilationer og introduerer en nyfamilie af oversamplede quasi-a�ne systemer. Vi viser, at et waveletsystem er en frame,hvis og kun hvis den tilsvarende familie af oversamplede quasi-a�ne systemer er framesmed uniforme framegrænser. Vi beviser også lignende ækvivalensresultater for par afduale wavelet-frames og par af duale quasi-a�ne frames. Desuden karakteriserer vi,hvornår den kanoniske dual af en oversamplet quasi-a�n frame også er et quasi-a�ntsystem. Endeligt afdækker vi nogle fundamentale forskelle mellem den rationelle ogden heltallige situation ved at give et eksempel på en quasi-a�n frame, hvis tilhørendewaveletsystem ikke er en frame.
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CHAPTER 1
IntrodutionThe �rst setion, Setion 1, is a brief introdution to wavelet frame analysis and theresearh presented in this thesis. Setion 2 is a review of mathematial de�nitionsentral to the thesis. The last setion of this introdutory hapter is a survey of thenew sienti� results obtained in the four papers [6, 7, 25, 26℄ whih are presented inthe thesis as Papers I, II, III, and IV. The survey is found in Setion 3.1. MotivationThe traditional Fourier analysis yields some of the most versatile methods in engineering,and it is used in almost every branh of engineering. Wavelet analysis is a modernalternative to Fourier methods; it has its origin in mathematis, quantum physis,eletrial engineering, and seismi geology.Wavelet frames are a redundant version of the standard wavelet transform; theredundany implies that we use more data than stritly neessary to desribe the signal;the redundany, or surplus of data, ats as our safety net in ases of orruption or lossof data.The prinipal objetives in signal proessing tehniques enompass ompression andanalysis of signals by representing these in terms of onvenient building bloks. Inpartiular, we want expansions of a signal f of �nite energy, i.e., f ∈ L2(Rn) = {f :

Rn → C :
∫
Rn |f(x)|2dx <∞},

f(x) =
∑

k∈I
ckfk(x) in L2(Rn),where the funtions fk ∈ L2(Rn) are our basi building bloks. The oe�ient ckshould be straightforward to alulate; in most appliations it is also ruial that thereare only few important oe�ients {ck}. In wavelet analysis the building bloks {fk}have a partiular struture: they are strethed (dilated) and translated versions of asingle �osillating� funtion.In the standard approah for expressing signals in terms of wavelet building bloks,one lets the building bloks form an orthonormal basis. However, the basis requirementan be so restritive on the building bloks that we sometimes have to give up ondesirable properties. One way to overome this issue is to replae the basis approahwith the more general approah of frames. Frames generalize the notion of bases in



2 CHAPTER 1. INTRODUCTIONsuh a way that we obtain muh more �exibility in the onstrution of our buildingbloks {fk} and more freedom in the hoie of the oe�ients {ck} and yet still sorestritive that the numerial stability of the bases approah is preserved. For framesthe oe�ients {ck} are found by using a so-alled dual frame, either the anonial dualor an alternate dual frame.One of the motivations of the researh presented in this thesis was to step away fromthe �standard� wavelet systems with integer, expansive dilations and examine ompu-tational and theoretial aspets of wavelet systems with general expansive dilations. Itis not only of theoretial interest to onsider non-integer dilations sine non-integer set-tings in some ases allow for a favourable, dense sampling of the time-frequeny plane.The standard fast wavelet algorithm from multiresolution analysis breaks down for ra-tional dilations, but Selesnik and Bayram [1℄ reently developed a redundant disreteframe wavelet transform based on non-integer, rational dilations, see also [22℄.Frames are a generalization of orthonormal bases, hene the major reason to onsiderwavelet frames in plae of orthonormal wavelet bases is to obtain more �exibility andfreedom. The representation of a funtion or signal in terms of a frame involves eitherthe anonial dual or an alternate dual. But the anonial dual of a wavelet frameneed not have wavelet struture; and even worse, there might not be any (anonial oralternate) dual with wavelet struture. Sine only wavelet frames with wavelet duals areuseful (e.g., from the point of view that the fast wavelet algorithm will not be availablefor either the analysis or synthesis of the signal if there is no wavelet dual), the freedom,in these ases, ends up being deeptive. This, among other things, motivated the jointwork with Marin Bownik in Paper I on the relationship between the anonial dual andalternate duals. In partiular, we show that �nie� wavelet frames an have many �nie�alternate dual wavelet frames and at the same time a anonial dual whih is not evena wavelet system. Hene, when working with the anonial dual one has to pay loseattention to the struture of this dual. In Paper II and III the possible lak of waveletstruture of dual frames is avoided altogether by onstruting pairs of (non-anonial)dual wavelet frames. The generators of this pair of dual frames are given in a veryexpliit way and have attrative properties.To improve results in appliations involving multidimensional data the undeimatedwavelet transform is sometimes preferred to the standard wavelet transform, see forexample [10℄. This approah adds shift invariane and redundany to the algorithm;indeed, the assoiated algorithm is a frame wavelet deomposition algorithm withoutdown sampling. The assoiated theoretial tool is the so-alled quasi-wavelet (alsoalled quasi-a�ne) system whih is a shift invariant ounterpart of the wavelet (alsoalled a�ne) system. In Paper IV with Marin Bownik we initiate the study of suhsystems and their oversampled ounterpart in multiple dimensions for rational, expan-sive dilations. We prove equivalene results between a�ne and quasi-a�ne systems,and we haraterize quasi-a�ne frames whose anonial dual frame takes the form ofa quasi-a�ne system. Equivalent results on a�ne and quasi-a�ne systems are usefulbeause they, in the study of wavelet systems, allow us to replae the dilation invariantwavelet system with the muh simpler shift invariant quasi-a�ne system.



2. Preliminaries and notation 32. Preliminaries and notation2.1. Frames in Hilbert spaesWe are onerned with series expansions in separable Hilbert spaes. So, let H be aseparable Hilbert spaes with inner produt 〈·, ·〉 linear in the �rst entry. Our entralde�nition is that of a frame for H.De�nition 1. A frame is a ountable olletion of vetors {fj}j∈indexsetJ suh that thereare onstants 0 < C1 ≤ C2 <∞ satisfying
C1 ‖f‖2 ≤

∑

j∈J
|〈f, fj〉|2 ≤ C2 ‖f‖2 for all f ∈ H. (2.1)If only the upper bound in the inequality (2.1) holds, then {fj} is said to be a Besselsequene with Bessel onstant C2.For a Bessel sequene {fj}, we de�ne the frame operator of {fj} by

S : H → H, Sf =
∑

j∈J
〈f, fj〉fj.If {fj} is a frame, this operator is bounded, invertible, and positive. A frame {fj} issaid to be tight if we an hoose C1 = C2; this is equivalent to S = C1I, where I is theidentity operator on H. If furthermore C1 = C2 = 1, the sequene {fj} is said to be aParseval frame.Two Bessel sequenes {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj for all f ∈ H.It an be shown that two suh Bessel sequenes indeed are frames, and we shall saythat the frame {gj} is dual to {fj}, and vie versa. At least one dual always exists,it is given by {S−1fj} and alled the anonial dual. A frame that is also a Shauderbasis is alled a Riesz basis. A frame that is not a Shauder basis is alled a redundantframe. Redundant frames have several duals; a dual whih is not the anonial dual isalled an alternate dual.2.2. Wavelet frames in L

2(Rn)Wavelet frames are frames with a dilation and translation struture in H = L2(Rn). Fix
n ∈ N, and let f ∈ L2(Rn). The translation by y ∈ Rn is Tyf(x) = f(x−y); dilation byan n × n non-singular matrix B is DBf(x) = |detB|1/2 f(Bx); modulation by b ∈ Rnis Ebf(x) = e2πi〈b,x〉f(x). For f ∈ L1(Rn), the Fourier transform is de�ned by

F f(ξ) = f̂(ξ) =

∫

Rn
f(x)e−2πi〈ξ,x〉dxwith the usual extension to L2(Rn). These four operations are unitary as operators on

L2(Rn), and they play a key role in wavelet analysis. The ommutator relations belowwill be used repeatedly. For k ∈ Rn, j ∈ Z and B̃ = P−1BP for some P ∈ GLn(R), wehave
TkDB = DBTBk, DB F = F D(Bt)−1 , D

B̃jDP = DPDBj . (2.2)



4 CHAPTER 1. INTRODUCTIONThe loal ommutant of a system of operators U at the point f ∈ L2(Rn) is de�ned as
Cf (U) :=

{
T ∈ B(L2(Rn)) : TUf = UTf ∀U ∈ U

}
.A (full-rank) lattie Γ in Rn is a point set of the form Γ = PZn for some P ∈ GLn(R).The determinant of Γ is d(Γ) = |detP |; note that the generating matrix P is not uniqueand d(Γ) is independent of the partiular hoie of P . We refer to Appendix A.2 formore fats on latties in Rn.Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), let Γ be a lattie in Rn, and let A be a �xed n×nexpansive matrix, i.e., all eigenvalue λ of A satisfy |λ| > 1. The wavelet (or a�ne)system of unitaries A assoiated with the dilation A and translation lattie Γ is de�nedas A = {DAjTγ : j ∈ Z, γ ∈ Γ}. The wavelet system A(Ψ) generated by Ψ is de�ned as

A(Ψ) = {ψj,γ : j ∈ Z, γ ∈ Γ, ψ ∈ Ψ} , (2.3)where
ψj,γ := DAjTγψ = |detA|j/2 ψ(Aj · −γ) for j ∈ Z, γ ∈ Γ.If we need to stress the dependene of the underlying dilation matrix A and translationlattie Γ, we say that the wavelet system A(Ψ) is assoiated with (A,Γ), or we use thenotation A(Ψ, A,Γ) for (2.3).We say that Ψ is a frame wavelet if A(Ψ) is a frame for L2(Rn), and say that Ψ and

Φ is a pair of dual frame wavelets if their wavelet systems are dual frames. We usuallydenote the transpose of the (�xed) dilation matrix A by B = At.A generalized multiresolution analysis (GMRA) is a sequene {DAj (V )}j∈Z of losedsubspaes of L2(Rn) with the following four properties:(a) V ⊆ DA(V ),(b) ∪j∈ZDAj (V ) = L2(Rn),() ∩j∈ZDAj (V ) = {0},(d) TγV ⊆ V for all γ ∈ Γ.Whenever ondition (d) is satis�ed, we say that V is shift invariant with respet to Γ.A frame wavelet Ψ is said to be assoiated with a GMRA if its spae of negative dilates
V (Ψ) := span{ψj,γ : j < 0, γ ∈ Γ} (2.4)satis�es onditions (a)�(d) with V = V (Ψ).Finally, the Gabor system generated by Ψ is de�ned as {EλTγψ : λ ∈ Λ, γ ∈ Γ, ψ ∈ Ψ}for latties Λ and Γ in Rn.A note on the dilation matrix and the translation lattieIn general our only requirement on the dilation matrix A ∈ GLn(R) is that it is expan-sive, in other words, that it has eigenvalues stritly greater than one in absolute value(see Appendix A.1 for a list of equivalent onditions). However, we will sometimes putfurther restritions on A (or Γ). In partiular, we will onsider the following ases:the lattie preserving dilation, i.e., AΓ ⊂ Γ, and the rank preserving dilation, i.e., theintersetion AΓ ∩ Γ is a full-rank lattie. It is obvious that lattie preserving dilationsare rank preserving.



3. Survey of the new results 5Furthermore, it is usually not neessary to onsider arbitrary translation latties Γ,and one is often able to restrit attention to the standard translation lattie Zn. Indeed,for A ∈ GLn(R) expansive and Γ = PZn for some P ∈ GLn(R) onsider the waveletsystem A(Ψ, A,Γ). By the ommutator relations (2.2), we see
A
(
DPΨ, Ã,Zn

)
= DP (A(Ψ, A,Γ)) , (2.5)where the matrix Ã := P−1AP is similar to A. Observe that the set of all matriessimilar to an expansive matrix is preisely the set of all expansive matries. Sine DPis unitary, properties suh as the frame and Bessel property arry over between the twosystems. Hene, in these ases it is possible to redue studies of wavelet systems withgeneral translation lattie to the setting of integer lattie.Therefore, we an without loss of generality usually restrit attention to waveletsystems assoiated with (A,Zn), i.e.,

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ} ,as is the ase in Paper IV. Moreover, whenever we take Γ = Zn, lattie preservingdilations simply mean integer dilations A ∈ GLn(Z) and rank preserving dilationssimply mean rational dilations A ∈ GLn(Q). This is a simple onsequene of thefollowing two fats:1) A ∈ GLn(Z) ⇔ AZn ⊂ Zn2) A ∈ GLn(Q) ⇔ AQn ⊂ Qn ⇔ AZn ∩ Zn has full rank.Of ourse, when we redue our study to the standard translation lattie Zn, we needto reall that, e.g., a result on rational dilations and translation lattie Zn atually is aresult on rank preserving dilations and general translation latties Γ.Nevertheless, in Paper III, we atually do onsider the general ase of wavelet sys-tems assoiated with (A,Γ) for arbitrary Γ. The reason is that we, in this paper, want toonstrut pairs of dual wavelet frames for some given expansive dilation A ∈ GLn(R).Of ourse, we an still apply the redution step in (2.5), but this hanges the dilationmatrix A (to Ã).3. Survey of the new resultsThe following setion is a survey of the new results and their relation to known results.3.1. Canonial and alternate duals of a wavelet frame (Paper I)Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The anonial dual frame of a Gabor frame {EλTγΨ}always takes the form of a Gabor system. In other words, the anonial dual frame isof the form {EλTγΦ} for some Φ = {φ1, . . . , φL} ⊂ L2(Rn). Consequently, in Gaboranalysis, the frame and its anonial dual frame are always systems of funtions withthe same struture. This is not the ase for wavelet frames. Indeed, Daubehies [17℄ andChui and Shi [14℄ proved that the anonial dual of a wavelet Riesz basis need not havewavelet struture. Hene, in partiular, the anonial dual frame of a wavelet frame neednot be a wavelet system. In Paper I with Marin Bownik we explore the relationshipbetween wavelet struture of anonial and alternate dual frames of a wavelet frame.



6 CHAPTER 1. INTRODUCTIONThe anonial dual of a wavelet frame A(Ψ) = {DAjTkψ}j∈Z,k∈Zn,ψ∈Ψ is given as
{
S−1DAjTkψi

}
j∈Z,k∈Zn,i∈{1,...,L}

=
{
DAjS−1Tkψi

}
j∈Z,k∈Zn,i∈{1,...,L}

=
{
DAjηk,i

}
j∈Z,k∈Zn,i∈{1,...,L}

,where S is the frame operator ofA(Ψ), and {ηk,i} is a family of funtions, not neessarilywith translation struture, indexed by {1, . . . , L} × Zn. In the alulations above weused that the frame operator ommutes with dilation; the alulations show that weonly need to worry about the struture of the anonial dual on one sale, e.g., j = 0.The anonial dual takes the form of a wavelet system generated by |Ψ| = L fun-tions, i.e.,
{
S−1DAjTkψi

}
j∈Z,k∈Zn,i∈{1,...,L}

=
{
DAjTk(S

−1ψi)
}
j∈Z,k∈Zn,i∈{1,...,L}

= {DAjTkφi}j∈Z,k∈Zn,i∈{1,...,L} ,preisely when TkS−1ψ = S−1Tkψ for all ψ ∈ Ψ and k ∈ Zn; that is, preisely when
S−1 ∈ Cψ({Tk : k ∈ Zn}) for all ψ ∈ Ψ. Observe that the loal ommutant Cψ({Tk :
k ∈ Zn}) is likely to be a lot bigger than the ommutant {Tk : k ∈ Zn}′.One of the major open problems onerning the anonial dual of a wavelet frame isto give a haraterization of those wavelet frames having a anonial dual with waveletstruture. One result in this diretion is due to Bownik and Weber [8℄ who showed thatif the anonial dual of a wavelet frame has the wavelet struture with the same numberof generators, then the spae of negative dilates is shift invariant:Theorem 3.1 (Theorem 1 in [8℄). Let A ∈ GLn(Z) be expansive and Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn). Suppose that the anonial dual of a wavelet frame {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ}has a wavelet struture, i.e., it is of the form {φj,k : j ∈ Z, k ∈ Zn, φ ∈ Φ} for some framewavelet Φ = {φ1, . . . , φL}. Then, the spae of negative dilates

V (Ψ) = span{ψj,k : j < 0, k ∈ Zn, ψ ∈ Ψ}is shift invariant with respet to Zn.Remark 1. For a Riesz wavelet Ψ the other diretion also holds, i.e., shift invariane of
V (Ψ) implies wavelet struture of the anonial dual.This result gives us a neessary ondition for the anonial dual of a wavelet frameto have wavelet struture, but the haraterization problem is still open, even for dyadidilation in one dimension, i.e., A = 2.Now, let us take a loser look at the example of Daubehies [17℄ and Chui and Shi[14℄ that exhibits a wavelet Riesz basis whose anonial dual is not a wavelet system.Let ψ ∈ L2(R) be the generator of an orthonormal wavelet basis in L2(R) with dyadidilation. De�ne η as a perturbation of ψ

η(x) = ψ(x) + ε21/2ψ(2x) ≡ ψ(x) + εD2ψ(x) for x ∈ R, (3.1)



3. Survey of the new results 7for some �xed 0 < ε < 1. In [14℄ it is shown that the funtion η generates a waveletRiesz basis {D2jTkη}j,k∈Z whose (anonial) dual is not of the form {D2jTkφ} for any
φ ∈ L2(R). This argumentation an be extended to show that the anonial dual
{S−1ηj,k} is not of the form

{D2jTkφ : j, k ∈ Z, φ ∈ Φ}for any �nite set Φ ⊂ L2(R) of generators, see Appendix B.1.For this last statement to make sense, we need to explain preisely what is under-stood by a wavelet frame with a anonial dual frame with more generators than theframe itself. For a pair of dual frames {ψj,k} and {φj,k} in L2(R) we have a represen-tation of elements in L2(R) as
f =

∑

j,k∈Z

〈f, φj,k〉ψj,k for all f ∈ L2(R). (3.2)From this representation we observe that there is a very spei� pairing of elementsbetween the dual frames whih we have to respet: the (z, l)-th element of {φj,k} isused to �nd the oe�ient for the mathing element in {ψj,k} whih obviously is ψz,l.Hene, if we want to speak of a dual frame with more generators than the waveletframe itself, we need to pay lose attention to this pairing (or duality) of elements. Foranonial dual frames, as argued above, we only need to verify the pairing on one of thesales j ∈ Z. Now, to understand what is meant by a anonial dual frame with moregenerators, we lift the pairing to another sale j ≥ 0 or, more generally, to a sparsertranslation lattie. Let ψ ∈ L2(R) be the generator of a frame {ψj,k}j,k∈Z with dyadidilation. Suppose that the anonial dual of {ψj,k} is not a wavelet system generatedby one funtion. The idea is to onsider the wavelet frame {ψj,k} as a wavelet systemof the form
{ψj,k}j,k∈Z =

{
D2jTPkψ̃ : j, k ∈ Z, ψ̃ ∈ {ψ, Tψ, . . . , TP−1ψ}

}for some P ∈ N. Now, it might happen that this system (that is, the right hand sidesystem) has a anonial dual with wavelet struture as systems on the sparser translationlattie PZ with P generators; for further details see also page 23 in Appendix B.Suppose for simpliity that the anonial dual frame is generated by two funtions
{φ1, φ2}. For this to make sense, we need to lift the duality to the translation lattie
2Z, where we math {D2jT2kψ} ∪ {D2jT2k(Tψ)} and {D2jT2kφ1} ∪ {D2jT2kφ2} as dualframes with equal number of generators. Equivalently, we an say that we lift theduality to sale j = 1, where we have the well-known form of dual frames {ψj,k} =
{D2jTk(D2ψ)}∪{D2jTk(D2Tψ)} and {D2jTkD2φ1}∪{D2jTkD2φ2}. These two equivalentlifting shemes are based on the paraphrasing

{ψj,k}j,k∈Z =
{
D2jT2kψ̃ : j, k ∈ Z, ψ̃ ∈ {ψ, Tψ}

}
,and

{ψj,k}j,k∈Z =
{
D2jTkψ̃ : j, k ∈ Z, ψ̃ ∈ {D2ψ,D2Tψ}

}
,



8 CHAPTER 1. INTRODUCTIONrespetively.Let us return to the example on the Riesz wavelet η from (3.1). The anonialdual {S−1ηj,k} is not a wavelet system generated by one funtion, hene we say that
{S−1ηj,k} does not have wavelet struture. Sine we an even say that {ηj,k} is nota wavelet system generated by any �nite number of funtions, we should think of thisanonial dual as being very �far from� having wavelet struture. The notion of theperiod of a wavelet frame in L2(R) is introdued as a measure of how �far from� we are;it tells us something about how lose to or how far from the anonial dual frame is tohaving wavelet struture.De�nition 2. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet assoiatedwith an integer dilation fator a, |a| ≥ 2. The period of Ψ is the smallest integer p ≥ 1suh that for all f ∈ span {Tkψ : k ∈ Z, ψ ∈ Ψ},

TpkS
−1f = S−1Tpkf for all k ∈ Z,where S is the frame operator of the wavelet frame generated by Ψ. If there is no suh

p, we say that the period of Ψ is ∞.We note that there is no dilation operator present in the de�nition above simplybeause dilation ommutes with the (inverse) frame operator. One an show that theanonial dual of A(Ψ) has the wavelet struture generated by |Ψ| funtions if, and onlyif, the period of Ψ is one. Moreover, in Paper I we show the following result on therelationship between the period of a wavelet frame and the number of generators of theanonial dual.Theorem 3.2 (Proposition 2.3 in Paper I). Suppose that Ψ ⊂ L2(R) is a frame waveletwith an integer dilation fator a, |a| ≥ 2. For any nonnegative integer M ∈ N, thefollowing statements are equivalent:(i) P (Ψ) |M , i.e., the period of Ψ, denoted P (Ψ), divides M.(ii) There exist ML funtions Φ = {φ1, . . . , φML} suh that {DajTMkφ}j,k∈Z,φ∈Φ isthe anonial dual of {DajTkψ}j,k∈Z,ψ∈Ψ = {DajTMkψ}j,k∈Z,ψ∈ΨM
, where

ΨM := {Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ} .Hene, if the period P (Ψ) of a frame wavelet Ψ is �nite, then the anonial dualframe is a wavelet system generated by P (Ψ) · |Ψ| funtions, and this is the least numberof generators. From Proposition 3.2 it is also obvious that any tight frame wavelet hasperiod one.Returning to the Riesz wavelet η from (3.1), we know that (ii) is not satis�ed forany M ∈ N, hene P (η) = ∞. The following result is a re�nement of Theorem 3.1 andRemark 1.Proposition 3.3 (Proposition 2 in [8℄). Let M ∈ N. If Ψ is a frame wavelet and theperiod of Ψ divides M , then V (Ψ) is shift invariant by the lattie MZ. In addition,if Ψ is a Riesz wavelet, then the period of Ψ divides M if, and only if, V (Ψ) is shiftinvariant by the lattie MZ.



3. Survey of the new results 9From Remark 1 above we onlude that the spae of negative dilates V (η) is notshift invariant. In [18℄ this is veri�ed by diret alulations. From the re�nement inProposition 3.3 we onlude that V (η) is not even shift invariant with respet to anysublattie of Z. This is veri�ed by diret alulations in Appendix B.2.We return to the main onlusion from the example of Daubehies [17℄ and Chuiand Shi [14℄: the anonial dual frame of a wavelet frame need not be a wavelet system.Sine their example involved a non-biorthogonal Riesz wavelet, it has no alternate dualwavelet frames as well, and one might ask if the existene of an alternate dual framewith wavelet struture would imply wavelet struture of the anonial dual. In general,very little is known about the anonial dual frame of a wavelet frame, and this questiondeals with some fundamental interrelation aspets of the anonial dual and alternateduals. The main result in Paper I is a negative answer to the question:Theorem 3.4 (Theorem 3.1 in Paper I). For all J ∈ N, there exists a frame wavelet
ψ ∈ L2(R) suh that:(i) ψ̂ is C∞ and ompatly supported,(ii) its anonial dual frame is not a wavelet system generated by fewer than 2Jfuntions,(iii) there are in�nitely many ψ̃ suh that ψ and ψ̃ form a pair of dual wavelet frames.
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Figure 1: Sketh of the graph of a funtion ψ̂ = ψ̂0 + εψ̂1 satisfying the three onditions inTheorem 3.4 with J = N − 3 ∈ N.This laim (with J = 1) was asserted by Daubehies and Han [18℄, but the originalargument in [18℄ uses an inorret formula for the frame operator of a wavelet systemowing to a simple hange of sign mistake. This invalidates the original proof to the extentthat an easy remedy appears to be doubtful. Therefore, there was a need to providean alternative proof of Theorem 3.4. This was aomplished by Paper I. Instead oftrying to work diretly with the frame operator as in [18℄, we use a less diret approahusing (the negation of) Proposition 3.3. The onstruted funtion ψ satisfying the threeonditions in Theorem 3.4 is skethed in Figure 1.3.2. Construtions of pairs of dual wavelet frames (Paper II and III)In the previous setion we saw that duals and, in partiular, the anonial dual of awavelet frame need not have wavelet struture. In Paper II and III we therefore relegatethe anonial dual to the bakground and develop onstrution proedures for pairs ofdual (non-anonial) wavelet frames for arbitrary real, expansive dilations. This work



10 CHAPTER 1. INTRODUCTIONwas motivated by the existene of similar onstrution proedures for pairs of dualGabor frames [12℄ whih naturally lead to the question whether orresponding methodsould be developed in the wavelet settings. We onsider the one-dimensional settings
L2(R) in Paper II and the extension to L2(Rn) in Paper III.Christensen [12℄ uses haraterizing equations for dual Gabor frames to onstrutpairs of dual Gabor frames with generators given in a very expliit way. Consequently, inPaper II and III we use haraterizing equations for dual wavelet frames. The existeneof suh equations was originally proved by Frazier, Garrigós, Wang, and Weiss [19℄in the dyadi setting. Later it was extended by Bownik [2℄ to the setting of integer,expansive dilations and by Chui, Czaja, Maggioni, and Weiss [13℄ to the setting of real,expansive dilations. A proof of Theorem 3.5 an be found in Setion 4 of Paper IV.Theorem 3.5 (Theorem 4 in [13℄). Let A ∈ GLn(R) be expansive and Ψ = {ψ1, . . . , ψL},
Φ = {φ1, . . . , φL} ⊂ L2(Rn). Suppose A(Ψ) and A(Φ) are Bessel sequenes in L2(Rn).Then, A(Ψ) and A(Φ) are dual frames if, and only if,

L∑

l=1

∑

j∈Z

ψ̂l(B
−jξ)φ̂l(B−jξ) = 1 for a.e. ξ, (3.3)

L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = 0 for a.e. ξ and all α ∈ Zn \ {0}. (3.4)Charaterizing equations for dual Gabor frames an be expressed in time domainwhile we see that equations (3.3) and (3.4) are onditions in the Fourier domain. Thisindiates that the onstrution of wavelet frames will take plae in the Fourier domainas opposed to the time domain onstrutions in [12℄.The setup will be as follows. We onsider wavelet systems in the general settingwith real, expansive dilation A ∈ GLn(R) and a lattie Γ in Rn, i.e.,

{DAjTγψ}j∈Z,γ∈Γ
,where the Fourier transform of ψ has ompat support. Our aim is, for any given real,expansive dilation matrix A, to onstrut wavelet frames with attrative features andwith a dual frame generator of the form

φ =
b∑

j=a

cjDAjψ (3.5)for some expliitly given oe�ients cj ∈ C and a, b ∈ Z. The idea behind the on-strution is simple: �rst, we make a number of assumptions of a funtion ψ ∈ L2(Rn);then, we introdue φ in suh a way that onditions (3.3) and (3.4) hold and onludeby Theorem 3.5 that ψ and φ generates a pair of dual wavelet frames.Our main �ndings in Paper II an be stated as follows.Theorem 3.6 (Theorem 2.3 in Paper II). Let d ∈ N, a > 1, and ψ ∈ L2(R). Supposethat ψ̂ is a real-valued funtion with supp ψ̂ ⊂
[
−ac,−ac−d

]
∪
[
ac−d, ac

] for some c ∈ Z,and that ∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R. (3.6)



3. Survey of the new results 11Let b ∈ (0, 2−1a−c
]. Then the funtion ψ and the funtion φ de�ned by
φ(x) = bψ(x) + 2b

d−1∑

j=1

a−jψ(a−jx) for x ∈ R, (3.7)generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).The prinipal advantage of having a dual generator of the form (3.7), or more gen-erally of the form (3.5), is that it will inherit properties from ψ preserved by dilationand linearity, e.g., vanishing moments, good time loalization and regularity properties.For a more omplete aount of suh matters we refer to Paper II, but we remark that,as a potential drawbak, the wavelet frame generators will not have ompat supportin the time domain leading to in�nite impulse response �lters.Figure 2 shows an example of a pair of generators ψ and φ in the Fourier domain on-struted by Theorem 3.6. In Paper III we generalize and extend Theorem 3.6 to higherdimensions; we refer to Corollary 2.5 in Paper III for a generalization of Theorem 3.6.
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Figure 2: An example of a pair of dual generators ψ̂ (solid line) and φ̂ (dotted line) in theFourier domain (Figure 2 from Paper II).Next, we extend the one-dimensional result on onstrutions of dual wavelet framesin Theorem 3.6 to higher dimensions. The extension is non-trivial sine it is unlear howto determine the translation lattie Γ and how to ontrol the support of the generatorsin the Fourier domain.In order to outline the onstrution proedure in higher dimensions we need tointrodue some notation. Let | · |∗ = 〈 · , · 〉1/2∗ be a Hermitian norm assoiated with
B = At as in (vi) in Proposition A.1 and let K ∈ GLn(R) be the symmetri, positivede�nite matrix suh that 〈x, y〉∗ = ytKx. Finally, let Λ := diag(λ1, . . . , λn), where {λi}are the eigenvalues of K, and let Q ∈ O(n) be suh that the spetral deomposition of
K is QtKQ = Λ. With this setup we an state the onstrution as follows.



12 CHAPTER 1. INTRODUCTIONTheorem 3.7 (Theorem 3.3 in Paper III). Let A ∈ GLn(R) be expansive, d ∈ N0 and
ψ ∈ L2(Rn). Suppose that ψ̂ is a bounded, real-valued funtion with supp ψ̂ ⊂ Bc(I∗) \
Bc−d−1(I∗) for some c ∈ Z, and that

∑

j∈Z

ψ̂(Bjξ) = 1 for a.e. ξ ∈ Rn. (3.8)holds. Take Γ = (1/2)AcQ
√

ΛZn. Then the funtion ψ and the funtion φ de�ned by
φ(x) = d(Γ)


ψ(x) + 2

d∑

j=0

|detA|−j ψ(A−jx)


 for x ∈ Rn, (3.9)generate dual frames {DAjTkψ}j∈Z,γ∈Γ and {DAjTkφ}j∈Z,γ∈Γ for L2(Rn).The onstrution of redundant wavelet representations in higher dimensions is usu-ally based on extension priniples [29℄. By making use of extension priniples one isrestrited to onsidering expansive dilations A with integer oe�ients. On the otherhand, the methods developed in Paper II and III work for any real, expansive dilation.The two papers ontain several appliations of Theorem 3.6 and 3.7. In Example II.3and III.5 we onstrut pairs of dual wavelet frames generated by one smooth funtionwith good time loalization. For onstrutions of generators of spline type with ompatsupport in the Fourier domain, we refer to Examples II.2, III.1 and III.4 (and Figure 2).3.3. A�ne and quasi-a�ne frames for rational dilations (Paper IV)Quasi-a�ne systems are little known ousins of the well-studied wavelet systems alsoknown as a�ne systems. A�ne systems A(ψ,A,Zn) are dilation invariant, i.e., φ ∈

A(ψ) ⇒ DAjφ ∈ A(ψ) for all j ∈ Z, but not shift invariant. However, if the dilation Ahas integer entries, then one an modify the de�nition of a�ne systems to obtain shiftinvariant systems. This leads to the notion of quasi-a�ne systems
Aq(ψ) =



ψ̃j,k(x) :=

{ |detA|j/2 ψ(Ajx− k) : j ≥ 0, k ∈ Zn

|detA|j ψ(Aj(x− k)) : j < 0, k ∈ Zn



 ,whih was introdued and investigated for integer, expansive dilation matries by Ronand Shen [29℄. Despite that the orthogonality of the a�ne system annot be arriedover to the orresponding quasi-a�ne system due to the oversampling of negative salesof the a�ne system, it turns out that the frame property is preserved. This importantdisovery is due to Ron and Shen [29℄ who proved that, for integer dilations, the a�nesystem A(ψ) is a frame if, and only if, its quasi-a�ne ounterpart Aq(ψ) is a frame(with the same frame bounds).Theorem 3.8 ([29℄). Let A ∈ GLn(Z) be expansive and Ψ ⊂ L2(R). Then, A(Ψ) is aframe with bounds C1, C2 if, and only if, Aq(Ψ) is a frame with bounds C1, C2.Suh equivalene results are useful beause quasi-a�ne systems are shift invariantand thus muh easier to study than a�ne systems whih are dilation invariant. A proofof Theorem 3.8 an be found in Proposition 3.10 in Paper IV.



3. Survey of the new results 13The goal of the work in Paper IV with Marin Bownik is to extend the study of quasi-a�ne systems to the lass of expansive rational dilations. So, let A be a �xed expansivedilation with rational entries. In [4℄ Bownik generalized the notion of a quasi-a�ne framefor rational, expansive dilations whih oinides with the usual de�nition in the ase ofinteger dilations. The main idea of Ron and Shen [29℄ is to oversample negative salesof the a�ne system at a rate adapted to the sale in order for the resulting system to beshift invariant. In order to de�ne quasi-a�ne systems for rational, expansive dilationsone needs to oversample both negative and positive sales of the a�ne system (at arate proportional to the sale) whih results in a quasi-a�ne system that in generaloinides with the a�ne system only at the sale zero. This an easily be seen in onedimension where the quasi-a�ne system has a relatively simple algebrai form. Supposethat a = p/q ∈ Q is a dilation fator, where |a| > 1, p, q ∈ Z are relatively prime. Then,the quasi-a�ne system assoiated with a is given by
Aq(ψ) =

{
|p|j/2 |q|−j ψ(ajx− q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 ψ(ajx− pjk) : j < 0, k ∈ Z

}
.In the rational ase it is muh less lear than in the ase of integer, expansive dilations(where both systems oinide at all non-negative sales), whether there is any relation-ship between a�ne and quasi-a�ne systems. Nevertheless, Bownik proved in [4℄ thatthe tight frame property is preserved when moving between rationally dilated a�ne andquasi-a�ne systems. This result has initially suggested that there is not muh di�erenebetween integer and rational ases.In Paper IV it is shown that this belief is largely inorret by unovering substan-tial di�erenes between the theory of integer dilated and rationally dilated quasi-a�nesystems. For any rational, non-integer dilation we give an example of an a�ne systemwhih is not a frame, but yet, the orresponding quasi-a�ne system is a frame. Thiskind of example does not exist for integer dilations due to Theorem 3.8.O�hand, the equivalene result in Theorem 3.8 an seem surprising sine we aredealing with two systems of funtions that are quite di�erent (at the negative sales

j < 0). The equivalene result suggests that we have some �exibility in how the lowfrequeny (j < 0) part of the system is hosen. Reall that we oversample both neg-ative and positive sales for rational dilations. Hene, the fat that the equivalene inTheorem 3.8 does not hold for rational dilations suggests that we have less �exibility inhanging high frequeny (j > 0) parts of the system.To understand the broken symmetry between the integer and rational settings weintrodue a new lass of quasi-a�ne systems indexed by the hoie of the oversamplinglattie Λ (see Appendix A.2 for basi fats on latties). In short, the quasi-a�ne system
Aq

Λ
(ψ) is de�ned to be the smallest shift invariant system with respet to a lattie

Λ, whih ontains all elements of the original a�ne system A(ψ). In order to makethis de�nition meaningful we also need to renormalize the elements of Aq
Λ
(ψ) at a rateorresponding to the rate of oversampling as it was done previously.De�nition 3. Let A ∈ GLn(Q) be a rational, expansive matrix, and let Λ be a rationallattie in Rn, i.e., Λ = PZn with P ∈ GLn(Q). Suppose Ψ ⊂ L2(Rn) is a �nite set.



14 CHAPTER 1. INTRODUCTIONDe�ne Aq
Λ
(Ψ) the Λ-oversampled quasi-a�ne system by
Aq

Λ
(Ψ) =

⋃

j∈Z

{
1

|Λ/(Λ ∩A−jZn)|1/2
TωDAjΨ : ω ∈ Λ +A−jZn)

}When Λ = Zn we drop the subsript Λ, and we say that Aq(Ψ) = Aq
Zn(Ψ) is the standardquasi-a�ne system.By de�nition Aq

Λ
(Ψ) is shift invariant with respet to Λ. For illustration, let usdisplay the oversampled quasi-a�ne system in one dimensional ase with generator

Ψ = {ψ} and oversampling lattie Λ = (pq)JZ for some J ∈ N0:
Aq

Λ
(ψ) =





|p|j/2 |q|−j+J/2 ψ(ajx− qJ−jk) : j > J, k ∈ Z

|a|j/2 ψ(ajx− k) : −J ≤ j ≤ J, k ∈ Z

|p|j+J/2 |q|−j/2 ψ(ajx− pj+Jk) : j < −J, k ∈ Z




.Now, our main result an be stated as follows.Theorem 3.9 (Theorem 3.9 in Paper IV). Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn).Then, the a�ne system A(Ψ) is a frame for L2(Rn) with frame bounds C1, C2 if, andonly if, the Λ-oversampled quasi-a�ne system Aq

Λ
(Ψ) is a frame for L2(Rn) with uniformframe bounds C1, C2 for all integer latties Λ.In the ase when the dilation A is integer-valued, the lass of Λ-oversampled quasi-a�ne systems redues to the standard quasi-a�ne system Aq(Ψ) and its dilates. Hene,the original result of Ron and Shen [29℄ follows immediately from Theorem 3.9. Theproof of Theorem 3.9 is in�uened by the work of Hernández, Labate, Weiss, and Wilson[20, 21℄, where the authors obtain reproduibility haraterizations of generalized shiftinvariant (GSI) systems inluding a�ne, wave pakets, and Gabor systems. The keyelement of these tehniques is the use of almost periodi funtions whih was pioneeredby Laugesen [23, 24℄ in his work on translational averaging of the wavelet funtional.Using these methods Laugesen [24, Theorem 7.1℄ gave another proof of the equivaleneof a�ne and quasi-a�ne frames in the integer ase. In this work we show that thesetehniques an be generalized to treat rationally dilated quasi-a�ne systems as well.Moreover, Laugesen [24℄ onsidered equivalene results for time-disrete wavelet systems

A(Ψ) and time-ontinuous wavelet systems {DAjTxΨ}j∈Z,x∈Rn. The Λ-oversampledquasi-a�ne systems represent, in some sense, intermediate stages between these twosystems. If Λ is very sparse, the oversampled quasi-a�ne system Aq
Λ
(Ψ) will resemblethe time-disrete wavelet system. If Λ, on the other hand, is very dense, then Aq

Λ
(Ψ)will be lose to the time-ontinuous wavelet system.In Paper IV we also introdue a partiularly interesting sublass of generators wherethe equivalene between a�ne and quasi-a�ne frames exhibits the largest degree ofsymmetry. This is a lass of diagonal a�ne systems for whih the o�-diagonal funtions

tα de�ned below vanish.De�nition 4. For a given dilation matrix A and Ψ ⊂ L2(Rn) we introdue the familyof funtions {tα}α∈Zn on Rn by:
tα(ξ) =

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) for ξ ∈ Rn. (3.10)



3. Survey of the new results 15We say that the a�ne system A(Ψ) is diagonal if tα(ξ) = 0 a.e. for all α ∈ Zn \ {0}.The lass of diagonal a�ne frames is large enough to ontain all tight a�ne systems,but small enough to be ontained in the lass of a�ne frames having anonial duals witha�ne struture. By Theorem 3.12 below we see that the lass of diagonal a�ne framesonsists preisely of quasi-a�ne frames having a anonial dual quasi-a�ne frame.Now, for diagonal generators Ψ we have �perfet� equivalene between a�ne andquasi-a�ne frames as is seen from the following result. Theorem 3.10 is an extension of[4, Theorem 3.4℄ on tight frames.Theorem 3.10. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn) and let C1, C2 > 0 be on-stants. Suppose that the a�ne system A(Ψ) is diagonal. Then the following assertionsare equivalent:(i) the a�ne system A(Ψ) is a frame for L2(Rn) with bounds C1, C2.(ii) the quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) with bounds C1, C2 for someinteger lattie Λ0 ⊂ Zn.(iii) the quasi-a�ne system Aq
Λ
(Ψ) is a frame for L2(Rn) with bounds C1, C2 for allinteger latties Λ ⊂ Zn.(iv)

C1 ≤
∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ Rn.In Setion 4 of Paper IV, we investigate pairs of dual quasi-a�ne frames thus on-neting to the theme of Paper II and III, ompare Theorem 3.5 and Theorem 3.11. Thetheory of rationally dilated quasi-a�ne frames parallels quite losely that of integer di-lated systems. Hene, we have a perfet equivalene between pairs of dual a�ne framesand pairs of dual quasi-a�ne frames, regardless of the hoie of the oversampling lattie
Λ.Theorem 3.11 (Theorem 4.2 in Paper IV). Let A ∈ GLn(Q) be expansive. Suppose A(Ψ)and A(Φ) are Bessel sequenes in L2(Rn). Then the following assertions are equivalent:(i) A(Ψ) and A(Φ) are dual frames.(ii) Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) are dual frames for some integer oversampling lattie Λ0 ⊂

Zn.(iii) Aq
Λ
(Ψ) and Aq

Λ
(Φ) are dual frames for all integer oversampling latties Λ ⊂ Zn.(iv) Ψ and Φ satisfy the equations (3.3) and (3.4).In the integer ase Theorem 3.11 was �rst shown by Ron and Shen [29, 30℄ withsome deay assumptions on generators Ψ and Φ. Chui, Shi, and Stökler [15℄ provedthe same result without any deay assumptions, see also [2, Theorem 4.1℄. Theorem3.11 generalizes this result to the setting of rational dilations.In Setion 5 in Paper IV we haraterize when the anonial dual frame of a Λ-oversampled quasi-a�ne frame Aq

Λ
(ψ) is also a quasi-a�ne frame. In the ase of integerdilations, suh haraterization is due to Bownik and Weber [8, Theorem 3℄. Theo-rem 3.12 generalizes this result to the ase of rational dilations. It is remarkable thatthe existene of the anonial quasi-a�ne dual frame is independent of the hoie of



16 CHAPTER 1. INTRODUCTIONthe oversampling lattie Λ. Hene, if suh anonial dual frame exists for some Λ-oversampled quasi-a�ne system, then it must exist for all latties Λ ⊂ Zn.Theorem 3.12 (Theorem 5.6 in Paper IV). Let A ∈ GLn(Q) be expansive. Suppose theoversampled quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) for some integer latties
Λ0 ⊂ Zn. Then the anonial dual frame of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ) for some setof funtions Φ ⊂ L2(Rn) with ardinality |Φ| = |Ψ| if, and only if, for all α ∈ Zn \ {0},

tα(ξ) =
∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0 (3.11)Moreover, in the positive ase Aq
Λ
(Ψ) is a frame for all integer latties Λ ⊂ Zn andits anonial dual frame is Aq

Λ
(Φ).This line of researh onnets to the theory on the anonial dual of wavelet frameswhih we onsidered in Setion 3.1 (the survey on results in Paper I). We note that if

Ψ generates a quasi-a�ne frame Aq
Λ0

(Ψ) for some Λ0 ⊂ Zn whose anonial dual framehas the form of a quasi-a�ne system, then Ψ also generates an a�ne frame whoseanonial dual frame has a�ne struture; loosely speaking, this means that it is harderfor a quasi-a�ne frame to have a anonial dual with the same struture than for ana�ne frame. This fat is immediate from Theorem 5.4 in Paper IV. Theorem 3.12 onanonial duals of quasi-a�ne frames, therefore, provides a su�ient ondition for awavelet frame having a anonial dual with wavelet struture:Proposition 3.13. Let A ∈ GLn(Q) be expansive and let Ψ ⊂ L2(Rn). If tα(ξ) = 0 a.e.for all α ∈ Zn \{0}, then the anonial dual frame of A(Ψ) is of the form A(Φ) for someset Φ ⊂ L2(Rn) with |Φ| = |Ψ|.Proposition 3.13 tells us, in other words, that the anonial dual of diagonal a�neframes has a�ne struture.In the last setion of Paper IV we show that, for any non-integer, rational dilation,there exist quasi-a�ne frames Aq
Λ
(ψ) suh that the orresponding a�ne system A(ψ)is not a frame:Theorem 3.14 (Theorem 6.1 in Paper IV). For eah rational non-integer dilation fator

a > 1, there exists a funtion ψ ∈ L2(R) suh that Aq
Λ
(ψ) is a frame for any oversamplinglattie Λ ⊂ Z, but yet, A(ψ) is not a frame.Despite that eah system Aq

Λ
(ψ) is a frame, its lower frame bound drops to zeroas the lattie Λ gets sparser. Hene, this example does not ontradit Theorem 3.9.Moreover, in light of Theorem 3.11, none of the quasi-a�ne frames Aq

Λ
(ψ) an have adual quasi-a�ne frame.We end this the survey of Paper IV by noting that it is not possible, in general,to extend the notion of quasi-a�ne systems beyond rational dilations. Consider, forexample, a wavelet system in L2(R) with dilation fator a = π. The sale j = 0 part

{Tk}k∈Z is Z-SI while the sale j = 1 part {DπTk}k∈Z is πZ-SI. Sine Z+πZ is dense in
R and therefore not a lattie, we annot unite the two sales in a Λ-SI system for anylattie Λ in R.



A. Some linear algebra 17Appendix A. Some linear algebraThe following fats on expansive matries and latties in Rn will be used throughoutthe thesis.A.1. Expansive matriesAn expansive matrix is a real n × n matrix with eigenvalues |λ| > 1. Matries of thistype are used as dilation matries for wavelet systems in higher dimensions in this thesis.If A is an expansive matrix, then so is the transpose B = At. Proposition A.1 isa olletion of equivalent onditions for a (non-singular) matrix being expansive. Allequivalenes an be found in the literature. Sine these equivalenes often are statedwithout proof, we present a proof or a referene to a proof of eah of the equivalenes.Proposition A.1. For B ∈ GLn(R) the following assertions are equivalent:(i) B is expansive, i.e., all eigenvalues λi of B satisfy |λi| > 1.(ii) ρ(B−1) < 1, where ρ denotes the spetral radius.(iii) limj→∞B−j = 0(iv) limj→∞
∥∥B−j∥∥ = 0 for some/all matrix norms ‖·‖.(v) For any norm | · | on Rn there are onstants λ > 1 and c ≥ 1 suh that

|Bjx| ≥ (1/c)λj |x| for all j ∈ N0,for any x ∈ Rn. Equivalently, |B−jx| ≤ cλ−j |x|.(vi) There is a Hermitian norm | · |∗ on Rn and a onstant λ > 1 suh that
|Bjx|∗ ≥ λj |x|∗ for all j ∈ N0,for any x ∈ Rn.(vii) ∣∣Bjx− x

∣∣ → ∞ for j → ∞ for all x ∈ Rn \ {0} for some/all vetor norms | · |.(viii) E ⊂ λE ⊂ BE for some ellipsoid E = {x ∈ Rn : |Px| ≤ 1}, P ∈ GLn(R) and
λ > 1.(ix) E ⊂ BE◦ for some ellipsoid E = {x ∈ Rn : |Px| ≤ 1}, P ∈ GLn(R).Proof. The equivalene (i) ⇔ (ii) follows diretly from the de�nition of ρ(B−1) while(ii) ⇔ (iii) is a standard result. The impliation (iii) ⇒ (iv) follows by ontinuity of thematrix norm and (iv) ⇒ (ii) by ρ(B−1)j ≤

∥∥B−j∥∥ → 0 for j → ∞.The equivalene (i) ⇔ (v) ⇔ (vi) is a result from [27℄; a proof of (i) ⇔ (v) anbe found in [20, Lemma 5.2℄ and an approah to onstrut a Hermitian norm | · |∗ asin (vi) an be found in [3, Lemma 2.2℄ and [28, Lemma 1.5.1℄. We note that the onlydiretion that requires some work is (i) ⇒ (vi) sine (vi) ⇒ (v) follows by equivaleneof norms on Rn with c = C2/C1, where C1 |x| ≤ |x|∗ ≤ C2 |x|, and (v) ⇒ (iv) followsby the estimate ∥∥B−j∥∥ ≤ cλ−j for j ≥ 0 (take y = B−jx in (v)). This shows that thesequene of norms ∥∥B−j∥∥ atually deays exponentially to zero.Assume (v) holds. Then
∣∣∣Bjx− x

∣∣∣ ≥
∣∣∣|Bjx| − |x|

∣∣∣ ≥
∣∣∣(1/c)λj |x| − |x|

∣∣∣ =
∣∣∣(1/c)λj − 1

∣∣∣ |x| for j ≥ 0,



18 CHAPTER 1. INTRODUCTIONfor λ > 1 and c ≥ 1. Sine ∣∣(1/c)λj − 1
∣∣ → ∞ as j → ∞, we have |Bjx − x| → ∞for any x 6= 0 whih in turn is statement (vii). Assume (vii) holds and let (µ, v) be aneigenvalue-eigenvetor pair for B. Then

∣∣∣Bjv − v
∣∣∣ =

∣∣∣µjv − v
∣∣∣ =

∣∣∣µj − 1
∣∣∣ |v| .Sine by hypothesis v 6= 0, we must have ∣∣µj − 1

∣∣→ ∞ as j → ∞ whih implies |µ| > 1.Sine this must be true for any eigenvalue, we onlude that (i) holds.The impliation (i) ⇒ (viii) is Lemma 2.2 in [3℄. Assume (viii) holds. Let P ∈
GLn(R) be suh that E = {x ∈ Rn : |Px| ≤ 1}. Sine E is an ellipsoid,

|Px|2 = xtKx,where K is a symmetri, positive de�nite matrix. De�ne the inner produt by 〈x, y〉∗ =
xtKy, hene |x|∗ = |Px|. Take x ∈ Rn \ {0}, and let y = x/ |x|∗. Thus y ∈ ∂E and
By ∈ ∂B(E). By λE ⊂ B(E), we have λ = λ |y|∗ ≤ |By|∗ and thus λ |x|∗ ≤ |Bx|∗. For
x = 0 this inequality is immediate. This shows that (vi) holds.The last equivalene (viii) ⇔ (ix) is trivial.A.2. Latties in RnA lattie Γ in Rn is a disrete subgroup under addition generated by integral linearombinations of n linearly independent vetors {pi}ni=1 ⊂ Rn, i.e.,

Γ = {z1p1 + · · · + znpn : z1, . . . , zn ∈ Z} .In other words, a lattie is a �nitely generated free abelian group of rank n. Yet, inother words, it is a set of points of the form PZn for a non-singular n × n matrix P .Let Γ be a lattie in Rn. If Γ = PZn, we say that the matrix P ∈ GLn(R) generatesthe lattie Γ. A generating matrix of a given lattie is only unique up to multipliationfrom the right by integer matries with determinant one in absolute value; in partiular,if Γ = PZn for some P ∈ GLn(R), then also Γ = PSZn for any S ∈ SLn(Z).We mainly follow the exposition in [9℄. The determinant of Γ is de�ned to be:
d(Γ) = |detP | , (A.1)where P ∈ GLn(R) is a generating matrix for Γ; note that d(Γ) > 0 and d(Zn) = 1.The determinant d(Γ) is independent of the partiular hoie of generating matrix Pand equals the volume of a fundamental domain IΓ of the lattie Γ, where

IΓ = P ([0, 1)n) = {c1p1 + · · · + cnpn : 0 ≤ ci < 1 for i = 1, . . . , n}with pi denoting the ith olumn of a generating matrix P . Note that Rn = ∪γ∈Γ(γ+IΓ)with the union being disjoint, and that the spei� shape of IΓ depends on the hoieof the generating matrix P .Sine a generating matrix P of a lattie Γ is not unique, it is useful to have aharaterization of latties in whih P does not appear. We have the following result.Theorem A.2 (Theorem III.VI in [9℄). Let Γ be a subset of Rn. Then, Γ is a lattie if,and only if, the following three onditions hold:



A. Some linear algebra 19(i) If x, y ∈ Γ, then x± y ∈ Γ,(ii) Γ ontains n linearly independent vetors,(iii) There is a onstant r > 0 suh that 0 is the only point of Γ in B(0, r) =
{x : |x| < r}.Suppose that Γ ⊂ Λ, in other words, that Γ is a sublattie of some �denser� lattie

Λ. We de�ne the index of Γ in Λ as
D =

d(Γ)

d(Λ)
. (A.2)It is straightforward to verify that the index D is always a positive integer; the index Dis atually the number of opies of parallelotopes IΓ that �ts inside a larger parallelotope

IΛ. If D is the index of Γ in Λ, we have from [9, �I.2.2℄,
DΛ ⊂ Γ ⊂ Λ. (A.3)Lemma A.3 (Lemma I.1 in [9℄). The index of the sublattie Γ of Λ is the order of thequotient group Λ/Γ, i.e.,

|Λ/Γ| = D ≡ d(Γ)/d(Λ), (A.4)where |Λ/Γ| is the order of the quotient group Λ/Γ.Let {pi}ni=1 be generators of a lattie Γ. Sine {pi} is a basis in Rn, there exists aunique (biorthogonal) basis {p∗i }ni=1 suh that 〈pi, p∗j〉 = δi,j for i, j = 1, . . . , n. The duallattie of Γ is de�ned as
Γ
∗ = {z1p∗1 + · · · + znp

∗
n : z1, . . . , zn ∈ Z} ,and the de�nition is independent of the hoie of basis {pi}. Dual latties are sometimesalled polar or reiproal latties.The following result gives a representation of the dual lattie without referene togenerating bases or matries.Lemma A.4 (Lemma I.5 in [9℄). Let Λ = PZn be a lattie in Rn. Then, the dual lattieof Γ is

Γ
∗ = {η ∈ Rn : 〈η, γ〉 ∈ Z for γ ∈ Γ}

= (P t)−1Zn.Furthermore, the determinants satisfy
d(Γ)d(Γ∗) = 1.If Γ ⊂ Λ, then Λ∗ ⊂ Γ∗. We refer to [9℄ for further basi properties of latties.



20 CHAPTER 1. INTRODUCTIONIsomorphism theoremsSine latties are groups, we an apply the isomorphism theorems. The seond isomor-phism theorem reads for latties Γ and Λ in Rn:
Γ/(Γ ∩ Λ) ∼= (Γ + Λ)/Λ. (A.5)Note that Γ + Λ and Γ∩ Λ are not neessarily latties, e.g., πZ + Z is dense in R, henenot a lattie (it does not satisfy (iii) in Theorem A.2). For latties Γ,Λ,Θ satisfying

Γ ⊂ Λ ⊂ Θ the third isomorphism theorem yields
(Θ/Γ) / (Λ/Γ) ∼= Θ/Λ. (A.6)Rational lattiesIn Paper IV we onsider mostly rational latties. By a rational lattie Γ we understand alattie whose points have rational oordinates, or equivalently, a lattie whose generatingmatrix P has rational entries. For a rational lattie Γ we de�ne Γ̃, the integral sublattieof Γ, by Γ̃ = Zn∩Γ, and the extended integral superlattie of Γ by Γ+Zn. By Theorem A.2it is straightforward to verify that Zn∩Γ and Γ+Zn are indeed latties. Sine Γ̃ = Γ∩Znis a sublattie of Zn with index in Zn as
D =

d(Γ̃)

d(Zn)
= d(Γ̃),equation (A.3) implies

d(Γ̃)Zn ⊂ Γ̃ ⊂ Γ. (A.7)This shows that any rational lattie Γ has a integral sublattie of the form cZn, wherethe onstant c ∈ N an be taken to be c = d(Γ̃) = vol (I
Γ̃
) = |Zn/Γ̃|. Sine we also have

|Γ/Γ̃| = d(Γ̃)/d(Γ) by Lemma A.3, the above alulations show that
|Zn/Γ̃| = d(Γ)|Γ/Γ̃|.In a similar way, we have for the extended integral superlattie of Γ

|(Γ + Zn)/Zn| = d(Γ + Zn)−1 = vol (IΓ+Zn)−1 ∈ Nand
|(Γ + Zn)/Zn| (Γ + Zn) ⊂ Zn.For two rational latties Γ and Λ the dual lattie of Γ∩Λ and Γ + Λ are Γ∗ + Λ∗ and

Γ∗ ∩ Λ∗, respetively.Appendix B. The dual of a non-biorthogonal Riesz waveletWe onsider a Riesz wavelets with dyadi dilation A = 2 in L2(R) de�ned as
η = ψ + εD2ψ 0 < ε < 1, (B.1)where ψ is a generator of a wavelet orthonormal basis {ψj,k := D2jTkψ}j,k∈Z. Thisexample was �rst onsidered by Chui and Shi [14℄ and Daubehies [16℄, see also Se-tion 3.1. For any ε < 1 the funtion η will generate a wavelet Riesz basis. This an be



B. The dual of a non-biorthogonal Riesz wavelet 21realized by onsidering the wavelet system generated by the perturbation term D2ψ.Obviously, the sequene {D2jTkD2ψ} = {D2jT2kψ} is a subsequene of the orthonor-mal basis {ψj,k}j,k∈Z, and hene a Bessel sequene with bound C2 ≤ 1. Therefore, by[11, Corollary 15.1.5℄, the sequene {ηj,k} is a Riesz basis for any ε ∈ (0, 1) with bounds
(1 ± ε1/2)2.In the following setion we will show that the (anonial) dual of {ηj,k} is not awavelet system for any �nite number of generators. Observe that the (anonial) dualof the orthonormal basis {ψj,k} is the basis itself, hene it is, in partiular, a waveletsystem generated by one funtion. Thus, by an arbitrarily small perturbation as in(B.1), the struture of the dual hanges ompletely. Likewise, the the spae of negativedilates V (ψ) is shift invariant by Z while V (η) is not shift invariant with respet to anysublattie of Z. This is shown in the last setion.B.1. The struture of the dualIn [14℄ it is shown that the (anonial) dual of {D2jTkη}j,k∈Z is not of the form {D2jTkφ}for any φ ∈ L2(R). In the following we show that, in fat, the anonial dual {S−1ηj,k}is not of the form

{D2jTkφ : j, k ∈ Z, φ ∈ Φ}for any �nite set Φ ⊂ L2(R) of generators.The basis elements of the wavelet Riesz basis is ηj,k = ψj,k + εψj+1,2k for j, k ∈ Z.The dual basis an easily be alulated; in [11℄ it is found using an operator approah.We use a di�erent approah. As usual we let S = Sη denote the frame operator of {ηj,k}.In order to �nd {S−1ηj,k} we evaluate the frame operator on ψj,k for eah j, k ∈ Z:
Sψj,k =

∑

l,z∈Z

〈ψj,k, ηl,z〉ηl,z

=
∑

l,z∈Z

〈ψj,k, ψl,z〉ηl,z +
∑

l,z∈Z

〈ψj,k, εψl+1,2z〉ηl,z

= ηj,k + ε
∑

l∈Z,z∈2Z

〈ψj,k, ψl,z〉ηl−1,z/2.For odd k the above alulations yield Sψj,k = ηj,k. Sine {ηj,k} is a frame, the frameoperator is invertible, hene we �nd
S−1ηj,k = ψj,k ∀j ∈ Z, k ∈ 2Z + 1. (B.2)Let n = supn∈N0

{2n|k} for k ∈ Z. For odd k we have n = 0, and for even, nonzero kwe have n = max{n ∈ N : k/2n ∈ 2Z + 1} ≥ 1. For even k 6= 0 the above alulationsshow that Sψj,k = ηj,k+εηj−1,k/2 and, by appliation of the inverse frame operator anda rearrangement,
S−1ηj,k = ψj,k − εS−1ηj−1,k/2 ∀j ∈ Z, k ∈ 2Z.Repeated usage of this equation gives

S−1ηj,k = ψj,k − εS−1ηj−1,k/2

= ψj,k − ε(ψj−1,k/2 − εS−1ηj−2,k/4)

= ψj,k − εψj−1,k/2 + ε2(ψj−2,k/4 − εS−1ηj−3,k/8).



22 CHAPTER 1. INTRODUCTIONContinuing this way until the odd integer k/2n, a �nal appliation of (B.2) yields
S−1ηj,k = ψj,k − εψj−1,k/2 + ε2ψj−2,k/4 − · · · + (−ε)nψj−n,k/2n ∀j ∈ Z, k ∈ 2Z \ {0},(B.3)where n = supn∈N{2n|k}. For k = 0, we have by alulations similar to the above
S−1ηj,0 = ψj,0 − εψj−1,0 + · · · + (−ε)n−1ψj−n+1,0 + (−ε)nS−1ηj−n,0 ∀j ∈ Z, n ∈ N,whih in the limit n→ ∞ gives

S−1ηj,0 =
∞∑

n=0

(−ε)nψj−n,0 ∀j ∈ Z, (B.4)by the boundedness of the (dual) Riesz basis, i.e., supj,k
∥∥S−1ηj,k

∥∥ <∞. Summarizingour �ndings:
S−1ηj,k =





ψj,k j ∈ Z, k ∈ 2Z + 1,

ψj,k − εψj−1,k/2 + · · · + (−ε)nψj−n,k/2n j ∈ Z, k ∈ 2Z \ {0},
∑∞
m=0(−ε)mψj−m,0 j ∈ Z, k = 0.

(B.5)
=

{
ψj,k − εψj−1,k/2 + · · · + (−ε)nψj−n,k/2n j ∈ Z, k ∈ Z \ {0},
∑∞
m=0(−ε)mψj−m,0 j ∈ Z, k = 0.Remark 2. If ε > 1, we an in general only say that {ηj,k} is a Bessel sequene. If ηin fat is a frame wavelet, then S is invertible and we an alulate the anonial dualframe expliitly as above. Note that the alulations are the same as for ε < 1 exeptwhen k = 0. For k = 0 we have
S−1ηj,0 = 1/εψj+1,0 − 1/εS−1ηj+1,0 ∀j ∈ Z,hene in the limit

S−1ηj,0 = −
∞∑

n=1

(−ε)−nψj+n,0 ∀j ∈ Z.We note that this only holds if S is invertible, that is, if {ηj,k} is a frame; S is well-de�ned sine {ηj,k} is a Bessel sequene.The expressions for the dual basis elements in (B.5) for k = 0 and for k 6= 0 areapparently di�erent from eah other whih implies, as we show below, that the dualRiesz basis annot have wavelet struture. In [14℄ it is shown that there is no φ ∈ L2(R)suh that S−1ηj,k = φj,k for all j, k ∈ Z, and the argumentation is as follows. Assumetowards a ontradition that there exists a φ ∈ L2(R) that generates the dual frame,that is,
φj,k = S−1ηj,k for all j, k ∈ Z.Then, by (B.2) with j = 0 and k = 1,
φ0,1 = ψ0,1 or T1φ = T1ψ,



B. The dual of a non-biorthogonal Riesz wavelet 23and therefore φ = ψ. By (B.4) with j = 0, we have
ψ = φ0,0 =

∞∑

n=0

(−ε)nψ−n,0 = ψ +
∞∑

n=1

(−ε)nψ−n,0,thus ∞∑

n=1

(−ε)nψ−n,0 = 0.This is ontraditing the ω-independene of the orthonormal basis {ψj,k}. Reall that asequene {fk}∞k=1 in a Hilbert spae is said to be ω-independent if whenever ∑∞
k=1 ckfkis onvergent and equal to zero, then neessarily ck = 0 for all k. This is a strong formof linear independene. We onlude that the dual frame of {ηj,k} annot be generatedby a single funtion.We extend this argument to P funtions for P ∈ N, that is, we show that thedual frame of {ηj,k} annot be generated by P funtions for any P ∈ N. Towards aontradition assume that the dual is generated by {φ0, φ1, . . . , φP−1} ⊂ L2(R) with

P < ∞, or by Proposition 3.2, that the period is P . By [8, Corollary 7℄, we then have
P = 2m for some m ∈ N.By our assumption we are lifting the duality to the translationlattie PZ and pairing

{D2jTPk(η),D2jTPk(T1η), . . . ,D2jTPk(TP−1η)}j,k∈Z (B.6)with
{D2jTPk(φ0),D2jTPk(φ1), . . . ,D2jTPk(φP−1)}j,k∈Z, (B.7)or, equivalently (here we use that P = 2m), lifting the duality to sale m and pairing

{D2jTk(D2mη),D2jTk(D2mT1η), . . . ,D2jTk(D2mTP−1η)}j,k∈Z (B.8)with
{D2jTk(φ̃0),D2jTk(φ̃1), . . . ,D2jTk(φ̃P−1)}j,k∈Z, (B.9)where φ̃i = D2mφi for i ∈ {0, 1, . . . , P − 1}. Sine (B.6) and (B.8) are simply para-phrases of {D2jTkη}j,k∈Z, these (three) systems will have the same frame operator S.By our assumption the P funtions satisfy
D2jTPkφi = S−1D2jTPkTiη, ∀j, k ∈ Z, i = 0, . . . , P − 1. (B.10)Sine dilation ommutes with the frame operator, this redues to

TPkφi = S−1TPkTiη, ∀k ∈ Z,whih is relation (B.10) on sale j = 0. In general, for anonial duals, we only need toonsider duality on sale j = 0. We onlude that our assumption is equivalent to theexistene of P = 2m funtions {φ0, . . . , φP−1} satisfying
φi = T−PkS

−1TPk+iη for all k ∈ Z. (B.11)



24 CHAPTER 1. INTRODUCTIONIn partiular, this means that the expression (B.11) of φi should be �independent� of
k ∈ Z, but alulating for i = 0 with k = 0 and k = 1 gives (using P = 2m.)

0 = φ0 − φ0 = S−1η − T−2mS−1T2mη

=
∞∑

n=0

(−ε)nψ−n,0 − T−2m(ψ0,2m − εψ−1,2m−1 + ε2ψ−2,2m−2 − · · · + (−ε)mψ−m,1)

=
∞∑

n=0

(−ε)nψ−n,0 − (ψ0,0 − εψ−1,0 + ε2ψ−2,0 − · · · + (−ε)mψ−m,0)

=
∞∑

n=m+1

(−ε)nψ−n,0. (B.12)Again, this is ontraditing the ω-independene of the orthonormal basis {ψj,k}. Thisproves that the dual Riesz basis of {ηj,k} annot be generated by any �nite number offuntions.So, we now know that the dual Riesz basis of {ηj,k} has no wavelet struture inthe broadest sense possible: the dual is not a wavelet system generated by any �nitenumber of funtions. This leads naturally to the question of how muh of or whihparts of {S−1ηj,k} have wavelet struture. We spei�ally showed that we annot unite
S−1η0,0 and S−1η0,P in a wavelet system. It is obvious that we annot assoiate S−1ηj,0to other parts of {S−1ηj,k} by wavelet struture due to the in�nite series in (B.4). Wereall that for i ∈ {0, 1, . . . , P − 1} we need to satisfy equation (B.11) for the dualgenerator φi to be well-de�ned. For any P = 2m, we laim that we an satisfy equation(B.11) for i = 1, 2, . . . , P − 1, that is, we an satisfy equation (B.11) exept for the ase
i = 0. This implies that for higher values of P a larger part of the dual frame will beassoiated with a wavelet system; note that the onlusion from the previous paragraphis that no value of P gives the entire dual frame wavelet struture. The laim is easilyveri�ed by the following alulations. For odd i = 1, 3, . . . , P − 1 we have

φi = T−2mkS
−1T2mkTiη

= T−2mkS
−1η0,2mk+i = T−2mkψ0,2mk+i = ψ0,i,and for even nonzero i = 2, 4, . . . , P − 2 we have

φi = T−2mk(ψ0,2mk+i − εψ−1,2m−1k+i/2 + ε2ψ−2,2m−2k+i/22 − · · · + (ε)nψ−n,2m−nk+i/2n)

= ψ0,i − εψ−1,i/2 + ε2ψ−2,i/22 − · · · + (−ε)nψ−n,i/2n ,where n = maxn∈N{2n|i} suh that i/2n is odd; note that 2m−nk is even for k ∈ Z sine
n < m. This proves the laim that equation (B.11) is satis�ed for i 6= 0.Let us onsider the ase i = 0. We saw in the alulations in (B.12) above that weannot satisfy (B.11) for k = 0 and k = 1 simultaneously whih, in turn, showed thenon-wavelet struture of {S−1D2jTPkη : j, k ∈ Z}. This non-wavelet struture is notonly due to the terms involving in�nite series, that is k = 0, but also due to �most�



B. The dual of a non-biorthogonal Riesz wavelet 25other k ∈ Z. This is seen by taking k = 1 and k = 2 in (B.11)
0 = φ0 − φ0 = T−2m2S

−1T2m2η − T−2mS−1T2mη

= ψ0,0 − εψ−1,0 + · · · + (−ε)mψ−m,0 + (−ε)m+1ψ−m−1,0

− (ψ0,0 − εψ−1,0 + · · · + (−ε)mψ−m,0)

= (−ε)m+1ψ−m−1,0,showing that we annot satisfy (B.11) for k = 1 and k = 2 with i = 0. We notie thata part of the problemati set {S−1D2jTPkη} atually has wavelet struture in the sensethat for odd k ∈ Z the set {S−1D2jTPkη} takes form of a wavelet system
{
S−1D2jTPkη : j ∈ Z, k ∈ 2Z + 1

}
=
{
S−1D2jT2PkTP η : j ∈ Z, k ∈ Z

}

= {D2jT2Pkθ : j ∈ Z, k ∈ Z} ,for θ = ψ0,2m − εψ−1,2m−1 + · · ·+(−ε)mψ−m,1. On the other hand, for k = ±2n (n ∈ N)the dual element S−1D2jTPkη is a linear ombination of ψj,k with m + n + 1 terms.Sine the number of terms depends on n (hene on k), it is apparent that these elementsannot be united in one wavelet system.Let us make these alulations more expliit and for this assume P = 4. The
i = 1, 3 the dual sets {S−1D2jTPkT1η} and {S−1D2jTPkT3η} are wavelet systemsgenerated by φ1 = ψ0,1 and φ3 = ψ0,3, respetively. Likewise, for i = 2 the set
{S−1D2jTPkT2η} is a wavelet system generated by φ2 = ψ0,2 − εψ−1,1 while (for i = 0)the set {S−1D2jTPkT0η} is not a wavelet system.Remark 3. Consider the partiular ase when ψ is the Lemarie's wavelet, where ψ is a
C∞ funtion with fast deay. Obviously, these properties are inherited by the dual basis
S−1ηj,k for all j ∈ Z, k ∈ Z \ {0}. In [14℄ it is shown that S−1ηj,0 does not belong to
Lp(R) for small p− 1 > 0. This leads to the observation that the non-wavelet strutureof the dual is not only due to the �non-regular� elements of the dual basis.B.2. The spae of negative dilatesThe spae of negative dilates V (η) of a frame wavelet η is de�ned as

V (η) = span{D2jTkη : j < 0, k ∈ Z} = span
(⋃

j<0

Wj(η)
)
,where the subspaes Wj are de�ned by

Wj(η) = span{D2jTkη : k ∈ Z}.Daubehies and Han [18℄ verify by diret alulations that the spae of negativedilates V (η) is not shift invariant. From the previous setion we know that the periodof η is P (η) = ∞ hene, by Proposition 3.3, we an onlude that V (η) is not even shiftinvariant with respet to any sublattie of Z. In the following we verify this by diretalulations.



26 CHAPTER 1. INTRODUCTIONWe �rst show that V0(η) is not Z-SI as is done in [18℄. Let X ⊕ Y denote theorthogonal diret sum of losed subspaes X,Y ⊂ L2(R). We de�ne
Y := span{T2kψ : k ∈ Z}, (B.13)and denote the orthogonal omplement to Y inW0(ψ) by Y c, i.e., W0(ψ) = Y ⊕Y c. Let

Vj(·) = D2jV (·) for j ∈ Z so that V0(·) = V (·). Notie that 〈D2jTkψ,D2nTzψ〉= δj,nδk,zand V0(Ψ) = ⊕j<0Wj(Ψ). Sine T1ψ⊥V0(Ψ) and T1ψ⊥Y we have T1ψ⊥ (V0(ψ) ⊕ Y ).Every wavelet is assoiated with a GMRA, hene V0(ψ) is shift invariant. Therefore,sine obviously D2−1ψ ∈ V0(ψ),
D2−1T1/2ψ = T1D2−1ψ ∈ V0(ψ).By the relation
D2jTkη = D2jTkψ + εD2j+1T2kψ,we see that

V0(η) ⊆ span{D2jTkψ : j < 0, k ∈ Z} ⊕ span{T2kψ : k ∈ Z} = V0(ψ) ⊕ Y. (B.14)By de�nition we have D2−1η ∈ V0(η). Now, let us onsider a translate of thisfuntion:
T1D2−1η = T1D2−1ψ + εT1D2−1D21ψ = T1D2−1ψ︸ ︷︷ ︸

∈V0(Ψ)

+ εT1ψ︸ ︷︷ ︸
∈Y c

/∈ V0(ψ) ⊕ Y.Sine V0(η) is a subspae of V0(ψ)⊕Y , this implies, in partiular, that T1D2−1η /∈ V0(η).This shows non-shift invariane of V0(η).We extend this argumentation to show non MZ-shift invariane of V0(η) for any
M ∈ N.Theorem B.1. V0(η) is not shift invariant with respet to any sublattie of Z.Before providing a diret proof of Theorem B.1, we analyze the argumentation ofDaubehies and Han above. It is obvious that we annot use the relation V0(η) ⊂
V0(ψ)⊕Y from (B.14) to show nonMZ-shift invariane of V0(η) forM > 1 sine V0(ψ)⊕
Y is 2Z-SI. Hene we need a loser estimate of V0(η), but this is not straightforwarddue to the ompliated struture of V0(η). By de�nition we have

V0(η) = span
⋃

j<0

Wj(η).Reall that the basis elements of the wavelet Riesz basis are ηj,k = ψj,k + εψj+1,2k for
j, k ∈ Z. Hene, on a �xed sale subspae Wj′(η) we have orthogonality between theelements, in other words, for �xed j′ ∈ Z the elements in {ηj′,k : k ∈ Z} are orthogonalto eah other. Furthermore, the elements of sale j′ from the Riesz basis are orthogonalto {ηj,k : j ∈ Z \ {j′ − 1, j′ + 1}, k ∈ Z}, that is, to all other sales than the oarser j′−1and �ner j′ + 1 sale. In general, an element ηj′,k′ is orthogonal to all other elements ofthe Riesz basis {ηj,k} exept one element for odd k and two elements for even, nonzero
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k. In spite of these many orthogonalities, the struture of V0(η) is ompliated, and thisis due to the interation between the subspaes Wj(η) and Wj+1(η) on two onseutivesales.For J ∈ N0 de�ne the following losed subspaes of L2(R)

YJ =
J⊕

j=0

span {D2−jT2J−j2kψ : k ∈ Z} , (B.15)and
ZJ =

⊕

k∈Z

span
{
D2−jT2J−j(2k+1)η : j = 1, . . . , J

}
, (B.16)where Z0 := ∅. Further, let Z0

J denote the following subspae of ZJ
Z0
J =

⊕

k∈Z\{0}
span

{
D2−jT2J−j(2k+1)η : j = 1, . . . , J

}
.For J = 0, 1 and 2, the de�nitions read

Y0 = span {T2kψ}k∈Z ,

Y1 = span {D2−1T2kψ}k∈Z ⊕ span {T4kψ}k∈Z ,

Y2 = span {D2−2T2kψ}k∈Z ⊕ span {D2−1T4kψ}k∈Z ⊕ span {T8kψ}k∈Z ,and
Z0 = ∅,
Z1 =

⊕

k∈Z

span {D2−1T2k+1η} ,

Z2 =
⊕

k∈Z

span {D2−1T4k+2η,D2−2T2k+1η} .Notie that Y0 ≡ Y (see (B.13)) and that YJ and ZJ are 2J+1Z-SI.In order to verify Theorem B.1 by diret alulations, we need the following twolemmas.Lemma B.2. For all J ∈ N0 the following hold:
V0(η) ⊂ V−J(ψ) ⊕ YJ ⊕ ZJ . (B.17)Proof. The orthogonality of the three subspaes are obvious from the de�nition and theabove. For J = 0 there is nothing left to show. Let J = 1. We have to show that

V0(η) ⊂ V−1(ψ)⊕(span {D2−1T2kψ}k∈Z ⊕ span {T4kψ}k∈Z

)⊕
(⊕

k∈Z

span {D2−1T2k+1η}
)
,and we note that the spae on the right hand side is 4Z-SI, but not shift invariant under

2mZ for m = 0, 1. Suppose f ∈ V0(η). Then there are oe�ients {c−j,k} ∈ ℓ2(N × Z)suh that
f =

∑

j<0

∑

k∈Z

cj,kηj,k =
∑

k∈Z

c−1,kη−1,k +
∑

k∈Z

c−2,kη−2,k +
∑

j<−2

∑

k∈Z

cj,kηj,k.



28 CHAPTER 1. INTRODUCTIONUsing ηj,k = ψj,k + εψj+1,2k and splitting the �rst sum for even and odd k yields
f =

∑

k∈Z

(c−1,2k + εc−2,k)ψ−1,2k + ε
∑

k∈Z

c−1,2kψ0,4k +
∑

k∈Z

c−1,2k+1η−1,2k+1

+
∑

k∈Z

c−2,kψ−2,k +
∑

j<−2

∑

k∈Z

cj,kψj,k + ε
∑

j<−1

∑

k∈Z

cj−1,kψj,2kwith unonditionally onvergene sine {ψj,k} is an orthonormal basis and the oe�-ients {cj,k} are in ℓ2. The �rst two terms above belong to Y1, the third to Z1, and thethree last terms to V−1(ψ), hene f ∈ V−1(ψ)⊕ Y1 ⊕Z1. Similar alulations prove theresult for J > 1.Remark 4. Note that V0(η) ⊂ Vj(ψ) for j ≥ 1 trivially, but that V0(η) and Vj(ψ) for
j ≤ 0 are unrelated in the sense that neither V0(η) ⊂ Vj(ψ) nor V0(η) ⊃ Vj(ψ) hold forany j ≤ 0. In partiular, Vj(ψ) 6⊂ V0(η) ⊂ V1(ψ) for j ≤ 0.The following fat is trivial.Lemma B.3. V−J(ψ) is 2JZ-shift invariant.Proof. It follows from the shift invariane of V0(ψ) using that f ∈ V−J(ψ) if, and onlyif, D2Jf ∈ V0(ψ) and that TkD2J = D2JT2Jk.Proof of Theorem B.1. By [8, Corollary 7℄ it su�es to show non shift invariane bylatties of the form 2JZ for J ∈ N0. By de�nition D2−J−1η ∈ V0(η). We will show that
T2JD2−J−1η = D2−J−1T1/2η /∈ V0(η). From the de�nition of η we diretly have

T2JD2−J−1η = T2JD2−J−1ψ + εD2−JT1ψ, (B.18)where T2JD2−J−1ψ ∈ V−J(ψ) by Lemma B.3 sine D2−J−1ψ ∈ V−J(ψ).It is obvious that D2−JT1ψ is orthogonal to the subspaes V−J(ψ) and YJ , andthus, in partiular, to T2JD2−J−1ψ, and by ηj,k = ψj,k + εψj+1,2k, to the funtions
η−j,2J−j(2k+1) for j 6= J − 1, J . From η−j,2J−j(2k+1) = ψ−j,2J−j(2k+1) + εψ−j+1,2J−j(4k+2)we see that

D2−JT1ψ⊥η−j,2J−j(2k+1) for j = 1, . . . , J and k 6= 0.We onlude that D2−JT1ψ is orthogonal to the subspae V−J(ψ) ⊕ YJ ⊕ Z0
J . Thusit follows that T2JD2−J−1η is in V−J(ψ) ⊕ YJ ⊕ ZJ if, and only if, D2−JT1ψ is in theorthogonal omplement of V−J(ψ)⊕ YJ ⊕Z0

J in V−J(ψ)⊕ YJ ⊕ZJ , that is, D2−JT1ψ ∈
ZJ ⊖ Z0

J = span {D2−jT2J−jη : j = 1, . . . , J}.Now, assume that D2−JT1ψ ∈ ZJ ⊖ Z0
J . Then there exist {α1, . . . , αJ} ∈ CJ suhthat

D2−JT1ψ =
J∑

j=1

αjD2−jT2J−jη

=
J∑

j=1

αjD2−jT2J−jψ +
J−1∑

j=0

εαj+1D2−jT2J−jψ,



Referenes 29thus,
0 = εα1ψ0,2J +

J−1∑

j=1

(αj + εαj+1)ψ−j,2J−j + (αJ − 1)ψ−J,1and, by linear independene of the orthonormal basis {ψj,k},
εα1 = 0, αj + εαj+1 = 0 for j = 1, . . . , J − 1, αJ = 1.Sine ε > 0, the �rst two equations implies αj = 0 for j = 1, . . . , J ontraditing αJ = 1.We onlude that T2JD2−J−1η is not in V−J(ψ) ⊕ YJ ⊕ ZJ . By Lemma B.2 it followsthat T2JD2−J−1η is neither in V0(η) sine this is a subspae of V−J(ψ)⊕YJ ⊕ZJ , hene

V0(η) is not 2J -SI.Remark 5. We note that the spae of �negative dilates� of the dual frame {S−1ηj,k} isshift invariant sine
span

{
S−1ηj,k : j < 0, k ∈ Z

}
= V0(ψ),and we see that there exists a orthonormal wavelet ψ whih is assoiated with theGMRA given by {D2nspan

{
S−1ηj,k : j < 0, k ∈ Z

}}
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The anonial and alternateduals of a wavelet frame

Marin Bownik1 and Jakob Lemvig
Abstrat. We show that there exists a frame wavelet ψ with fastdeay in the time domain and ompat support in the frequenydomain generating a wavelet system whose anonial dual frameannot be generated by an arbitrary number of generators. Onthe other hand, there exists in�nitely many alternate duals of ψgenerated by a single funtion. Our argument loses a gap in theoriginal proof of this fat by Daubehies and Han [10℄.
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34 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAME1. IntrodutionThis paper explores the relationship between anonial and alternate dual frames of awavelet frame. One of the �rst results in this diretion is due to Daubehies [9℄ andChui and Shi [7℄ who proved that the anonial dual of a wavelet frame need not havea wavelet struture. Sine their example involved a non-biorthogonal Riesz wavelet, ithas no alternate dual wavelet frames as well.In general, if the anonial dual of a frame wavelet has a wavelet struture, thenit is quite likely that this frame wavelet has some other wavelet duals. However, theexistene of dual wavelet frames does not neessarily imply that the anonial dual musthave a wavelet struture. This laim was asserted by Daubehies and Han [10℄.Theorem 1.1. There exists a frame wavelet ψ ∈ L2(R) suh that:(i) ψ̂ is C∞ and ompatly supported,(ii) its anonial dual frame is not a wavelet system generated by a single funtion,(iii) there are in�nitely many ψ̃ suh that ψ and ψ̃ form a pair of dual frame wavelets.Unfortunately, the original argument in [10℄ uses an inorret formula for the frameoperator of a wavelet system owing to a simple hange of sign mistake. This invalidatesthe original proof to the extent that an easy remedy appears to be doubtful. Moredetails about the nature of this problem an be found in Setion 3.Therefore, there is a need to provide an alternative proof of Theorem 1.1. We willuse a ompletely di�erent approah motivated by [5℄. Instead of trying to work diretlywith the frame operator as in [10℄, we will use a less diret approah using the followingresult of Weber and the �rst author [5℄.Theorem 1.2 (Theorem 1 in [5℄). Suppose that the anonial dual of a wavelet frame
{ψj,k(x) := 2j/2ψ(2jx − k) : j, k ∈ Z} has a wavelet struture, i.e., it is of the form
{φj,k : j, k ∈ Z} for some frame wavelet φ. Then, the spae of negative dilates

V (ψ) := span{ψj,k : j < 0, k ∈ Z} (1.1)is shift invariant (SI).The paper is organized as follows. In Setion 2 we reall some basi fats about theperiod of a wavelet frame. In partiular, we explore the relationship between the periodand the number of generators of the anonial dual of a wavelet frame. In Setion 3 wegive an expliit onstrution of a frame wavelet ψ as in Theorem 1.1. We prove that itsorresponding spae of negative dilates V (ψ) laks shift invariane. Consequently, byTheorem 1.2 we onlude that the anonial dual of the wavelet frame {ψj,k}j,k∈Z is nota wavelet system generated by a single funtion. In fat, we prove that our example anbe adjusted in suh a way that the anonial dual an not be generated by arbitrarilymany generators, see Theorem 3.1.Finally, we review basi de�nitions. A frame for a separable Hilbert spae H is aolletion of vetors {fj}j∈J , indexed by a ountable set, suh that there are onstants
0 < C1 ≤ C2 <∞ satisfying

C1 ‖f‖2 ≤
∑

j∈J
|〈f, fj〉|2 ≤ C2 ‖f‖2 for all f ∈ H.



2. The period of a frame wavelet 35If the upper bound holds in the above inequality, then {fj} is said to be a Besselsequene with Bessel onstant C2. The frame operator of {fj} is given by
S : H → H, Sf =

∑

j∈J
〈f, fj〉fj.This operator is bounded, invertible, and positive. A frame {fj} is said to be tight ifwe an hoose C1 = C2; this is equivalent to S = C1I, where I is the identity operator.Two Bessel sequenes {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj for all f ∈ H.It an be shown that two suh Bessel sequenes indeed are frames, and we shall saythat the frame {gj} is dual to {fj}, and vie versa. At least one dual always exists, it isgiven by {S−1fj} and alled the anonial dual. Redundant frames have several duals;a dual whih is not the anonial dual is alled an alternate dual.Let f ∈ L2(R). De�ne dilation operator Daf(x) = |a|1/2 f(ax), translation operator

Tbf(x) = f(x − b), and modulation operator Ecf(x) = e2πicxf(x), where |a| > 1, b,
c ∈ R. The wavelet system generated by Ψ = {ψ1, . . . , ψL}, is de�ned as {ψj,k}j,k∈Z,ψ∈Ψ,where ψj,k = DajTkψ. We say that Ψ and Φ is a pair of dual frame wavelets if theirwavelet systems are dual frames. As stated above the anonial dual of a wavelet framegenerated by Ψ might not be a wavelet system generated by |Ψ| funtions. In this ase,we say that the anonial dual of Ψ does not have the wavelet struture.Given a frame wavelet Ψ, the subspaes Wj(Ψ) are de�ned by

Wj(Ψ) = span {ψj,k : k ∈ Z, ψ ∈ Ψ} , j ∈ Z. (1.2)By this de�nition we an write the spae of negative dilates, introdued in Theorem 1.2,as
V (Ψ) = span

⋃

j<0

Wj(Ψ).If we have only one generator, that is L = 1, we shall write V (ψ) instead of V (Ψ).Suppose thatW ⊂ L2(R) is a losed subspae. We sayW isMZ-SI,MZ shift invariant,or shift invariant under MZ, M ∈ R, if TMzW ⊂ W for all z ∈ Z. In the ase M = 1,we shall say that W is shift invariant, or SI.For f ∈ L1(R), the Fourier transform is de�ned by Ff(ξ) = f̂(ξ) =
∫
R f(x)e−2πiξxdxwith the usual extension to L2(R). Given a measurable subset K ⊂ R, we de�ne thespae Ľ2(K), whih is invariant under all translations, by

Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}.2. The period of a frame waveletDaubehies and Han [10℄ have introdued the notion of the period of a dyadi waveletframe in L2(R). Weber and the �rst author [5℄ extended it to a non-dyadi situation asbelow.



36 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMEDe�nition 1. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet assoiatedwith an integer dilation fator a, |a| ≥ 2. The period of Ψ is the smallest integer p ≥ 1suh that for all f ∈ span {Tkψ : k ∈ Z, ψ ∈ Ψ},
TpkS

−1f = S−1Tpkf for all k ∈ Z,where S is the frame operator of the wavelet frame generated by Ψ. If there is no suh
p, we say that the period of Ψ is ∞.We remark that our onvention di�ers from the de�nitions in [5, 10℄, where the periodis said to be 0 (and not ∞) if no suh p exists. The examples of non-biorthogonal Rieszwavelets by Daubehies [9℄ and Chui and Shi [7℄ mentioned in the introdution haveperiod ∞; while any tight frame wavelet has period 1.Following [15℄, the loal ommutant of a system of operators U at the point f ∈
L2(R) is de�ned as

Cf (U) :=
{
T ∈ B(L2(R)) : TUf = UTf ∀U ∈ U

}
.The wavelet system of unitaries is denoted by A := {DajTk : j ∈ Z, k ∈ Z}. Theanonial dual of a wavelet frame A(Ψ) = {DajTkψ}j,k∈Z,ψ∈Ψ is given as

{
S−1DajTkψi : j, k ∈ Z, i = 1, . . . , L

}
=
{
DajS−1Tkψi : j, k ∈ Z, i = 1, . . . , L

}

=
{
Dajηk,i : j, k ∈ Z, i = 1, . . . , L

}
,where S is the frame operator ofA(Ψ), and {ηk,i} is a family of funtions, not neessarilywith translation struture, indexed by {1, . . . , L}×Z. The anonial dual takes the formof a wavelet system generated by |Ψ| = L funtions, i.e.,

{
S−1DajTkψi : j, k ∈ Z, i = 1, . . . , L

}
=
{
DajTk(S

−1ψi) : j, k ∈ Z, i = 1, . . . , L
}

= {DajTkφi : j, k ∈ Z, i = 1, . . . , L} ,preisely when TkS
−1ψ = S−1Tkψ for all ψ ∈ Ψ and k ∈ Z; that is, preisely when

S−1 ∈ Cψ({Tk : k ∈ Z}) for all ψ ∈ Ψ. Equivalently, the anonial dual of A(Ψ) has thewavelet struture generated by |Ψ| funtions if, and only if, the period of Ψ is one, .f.Proposition 2.3 below.The following results from [5℄ will be used in the proof of Theorem 1.1. We restatethem here sine they were inorretly stated in [5℄. We note that these results an bethought as re�nements of Theorem 1.2.Proposition 2.1 (Proosition 2 in [5℄). LetM ∈ N. If Ψ is a frame wavelet and the periodof Ψ divides M , then V (Ψ) is shift invariant by the lattie MZ. In addition, if Ψ is aRiesz wavelet, then the period of Ψ divides M if, and only if, V (Ψ) is shift invariant bythe lattie MZ.Corollary 2.2 (Corollary 5 in [5℄). If Ψ is a frame wavelet and the period of Ψ divides
|a|J for some J ≥ 0, then DaJ (V (Ψ)) is shift invariant.



2. The period of a frame wavelet 37If the period P (Ψ) of a frame wavelet Ψ is �nite, then the anonial dual frameis a wavelet system generated by P (Ψ) · |Ψ| funtions, and this is the least number ofgenerators. In this ase the wavelet struture of the anonial dual frame is altered sineit is based on the translation lattie P (Ψ) ·Z whih is sparser than the original lattie Z.Moreover, for any nonnegative integer M , the period of Ψ divides M if, and only if, theanonial dual is a wavelet system generated by M · |Ψ| funtions, see the propositionbelow. The �only if� diretion is impliitly ontained in the proof of [5, Proposition 2℄.For the sake of ompleteness we prove both diretions here.Proposition 2.3. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet. For anynonnegative integer M ∈ N, the following statements are equivalent:(i) P (Ψ) |M , i.e., the period of Ψ, denoted P (Ψ), divides M.(ii) There exist ML funtions Φ = {φ1, . . . , φML} suh that {DajTMkφ}j,k∈Z,φ∈Φ isthe anonial dual of {DajTkψ}j,k∈Z,ψ∈Ψ = {DajTMkψ}j,k∈Z,ψ∈ΨM
, where

ΨM := {Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ} .Proof. We note that the frame operator of {DajTkψ}j,k∈Z,ψ∈Ψ equals the frame operatorof {DajTMkψ}j,k∈Z,ψ∈ΨM
sine the two frames are setwise idential; we denote thisoperator by S.We �rst prove (i)⇒ (ii). By assumption the period of Ψ is �nite, hene the de�nitionof the period yields the following equation.

TP (Ψ)kS
−1f = S−1TP (Ψ)kf for all k ∈ Z and f ∈W0(Ψ). (2.1)Sine the period of Ψ divides M , we in partiular have P (Ψ)Z ⊃ MZ, and the aboveequation gives us

TMkS
−1f = S−1TMkf for all k ∈ Z and f ∈W0(Ψ).Consequently, for eah ψ ∈ Ψ,
S−1Tkψ = S−1TMl(Tmψ) = TMlS

−1(Tmψ),where k ∈ Z is written as k = Ml +m for l ∈ Z and m ∈ {0, 1, . . . ,M − 1}. The lastequality in the above equation shows that S−1 ∈ Cf ({TMk : k ∈ Z}) for every f ∈ ΨM ,so we arrive at (ii) by taking Φ = S−1ΨM = {S−1Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ}.To prove the other diretion, (ii) ⇒ (i), we assume that the anonial dual of thesystem {DajTMkψ}j,k∈Z,ψ∈ΨM
is generated byML funtions Φ = {φ1, . . . , φML}. Sine

|ΨM | = ML, it follows that S−1 ∈ Cψ({TMk : k ∈ Z}) for all ψ ∈ ΨM , i.e.,
S−1TMk(Tmψ) = TMkS

−1(Tmψ) for all k ∈ Z, m ∈ {0, . . . ,M − 1} , ψ ∈ Ψ. (2.2)In this equation we replae k ∈ Z by k + l with l ∈ Z, whereby we obtain
S−1TMk(TMl+mψ) = TMkS

−1(TMl+mψ) for all k, l ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ.



38 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMENow sine
W0(Ψ) = span{TMl+mψ : l ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ},we see that

S−1TMkf = TMkS
−1f for all k ∈ Z, f ∈W0(Ψ), (2.3)and onlude that the period of Ψ is at most M .To omplete the proof we need to show that the period of Ψ is a divisor of M .Assume on the ontrary that the period of Ψ is not a divisor of M . Then there are

q, r ∈ N ∪ {0} suh that M = qP (Ψ) + r and 0 < r < P (Ψ). We know that the periodof Ψ is �nite, so equation (2.1) is satis�ed, and by from (2.1) and (2.3) we have
S−1TP (Ψ)k1+Mk2f = TP (Ψ)k1+Mk2S

−1f for k1, k2 ∈ Z, f ∈W0(Ψ).Taking k1 = −qk and k2 = k for eah k ∈ Z gives us rk = P (Ψ)k1 +Mk2. Therefore,
S−1Trkf = TrkS

−1f for all k ∈ Z, f ∈W0(Ψ),whih ontradits the minimality of P (Ψ) sine 0 < r < P (Ψ).Remark 1. In the dyadi ase and when M is a power of two, Proposition 2.3 reduesto [10, Proposition 2.1℄. Indeed, if M = 2J for some J ∈ N, then any dyadi waveletsystem of the form {D2jTMkφ}j,k∈Z,φ∈Φ with translation with respet to the lattieMZ,an be written as a wavelet system {D2jTkφ}j,k∈Z,φ∈Φ′ using the standard translationlattie Z and the same number of generators |Φ| = |Φ′|, see [10℄. Corollary 7 in [5℄states that the period of a dyadi Riesz wavelet is either a power of two or in�nite.Hene, whenever a Riesz wavelet has �nite period the anonial dual takes the form
{D2jTkφ}j,k∈Z,φ∈Φ′ for some family of funtions Φ′, where we note that the translationis with respet to the lattie Z.3. Canonial dual frames without wavelet strutureIn this setion we will prove Theorem 1.1 by giving an example of a wavelet frame in
L2(R) whose anonial dual does not have wavelet struture. To be preise, we willonstrut a family of examples, indexed by J ∈ N, suh that the anonial dual annotbe generated by fewer than 2J funtions. In eah of these examples the wavelet itself isnie in the sense that it has ompat support in the Fourier domain and fast deay inthe time domain, and it has nie alternate dual frame wavelets.Our onstrution is motivated by the proof of [5, Theorem 2(ii)℄, where Weber andthe �rst author give an example of a frame wavelet ψ with ompat support in theFourier domain whose anonial dual annot be generated by one funtion. The Fouriertransform of ψ is not ontinuous yielding poor deay in the time domain. Furthermore,the spae of negative dilates V (ψ) is not Z-SI (this is neessary in order to utilizeTheorem 1.2), but it is in fat 2Z-SI, hene the anonial dual must be generated byat least two funtions, .f. Proposition 2.1. We modify this example so that ψ̂ beomes
C∞ and so that the spae of negative dilates beomes non pZ-SI for p < 2J and p ∈ Nfor a hosen J ∈ N. Hene, we have the following generalization of Theorem 1.1.



3. Canonial dual frames without wavelet struture 39Theorem 3.1. For all J ∈ N, there exists a frame wavelet ψ ∈ L2(R) suh that:(i) ψ̂ is C∞ and ompatly supported,(ii) its anonial dual frame is not a wavelet system generated by fewer than 2Jfuntion,(iii) there are in�nitely many ψ̃ suh that ψ and ψ̃ form a pair of dual wavelet frames.Before providing the proof of Theorem 3.1, we will analyze the original proof ofTheorem 1.1 by Daubehies and Han [10℄. The key role in the argument of [10℄ isplayed by an expliit formula for the frame operator of a wavelet system.Proposition 3.2. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) generates a wavelet systemwhih is a Bessel sequene. Let
D = {f ∈ L2(R) : f̂ ∈ L∞(R) and supp f̂ ⊂ [−R,−1/R] ∪ [1/R,R] for some R > 1}.Then its frame operator S is given by
Ŝf(ξ) = f̂(ξ)

L∑

l=1

∑

j∈Z

|ψ̂l(2jξ)|2 +
∑

p∈Z

∑

q∈2Z+1

f̂(ξ+2−pq)tq(2
pξ) for a.e. ξ ∈ R, (3.1)and for all f ∈ D, where

tq(ξ) =
L∑

l=1

∞∑

j=0

ψ̂l(2
jξ)ψ̂l(2j(ξ + q)) for q ∈ Z.Proposition 3.2 is impliitly ontained in the book of Hernández and Weiss [16,Proposition 7.1.19℄. This result an be extended to higher dimensions and more generaldilations, see [4, 13, 14, 18℄.Initially, the problem with the argument of Daubehies and Han appears to be veryminor sine the formula (2.6) of [10℄ laks a negative sign whih is present in f̂(ξ+2−pq)of (3.1). This mistake an be traed bak to the proof of Lemma 2.3 in [14℄. However,this hange of sign has profound e�ets for the rest of this paper. First, it a�etsLemma 3.1 in [10℄ by wiping out the negative signs in 2−jK1 and 2−jK2 of formula(3.1). Consequently, it invalidates the proof of [10, Theorem 3.3℄. To see this, onsiderthe example borrowed from the paper of Weber and the �rst author [5℄.Example 1. Let ψb ∈ L2(R) be given by

ψ̂b = χ[−1,−b]∪[b,1].In [5℄ it is shown that ψb is a biorthogonal Riesz wavelet whenever 1/3 ≤ b ≤ 1/2. Infat, one an expliitly exhibit its dual biorthogonal wavelet φb as
φ̂b = χ[−1,−1/2]∪[1/2,1] − χ[−2+2b,−1]∪[1,2−2b].We note that this fat is far from being obvious, sine one an also show that ψb isnot a frame wavelet when 1/6 < b < 1/3, see [5, Example 2℄. While ψb is of a slightlydi�erent form than the funtion onsidered in [10, Theorem 3.3℄, one ould arrive at the



40 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMEonlusion that ψb is not a biorthogonal wavelet when b = 1/3 by following the sameargument as in [10℄. This stands in a diret ontradition with the above mentionedfat from [5℄. In fat, this is how the hange of sign mistake in [10℄ was unovered bythe �rst author.In order to prove Theorem 3.1 we need to show two lemmas.Lemma 3.3. For every N ≥ 4 and 0 < δ < 2−N , there exists a frame wavelet ψ suhthat ψ̂ ∈ C∞
0 (R) and

ψ̂(ξ) 6= 0 ⇐⇒ ξ ∈ (−1/2,−1/4) ∪ (1/2, 3/4) (3.2)
∪
(
−2−N+1 − δ,−2−N + δ

)
∪
(
2−N − δ, 2−N+1 + δ

)

ψ̂(ξ) = ψ̂(ξ − 1) 6= 0 for ξ ∈ (1/2, 3/4) . (3.3)Proof. Let ψ0 ∈ L2(R) be a frame wavelet suh that ψ̂0 ∈ C∞
0 (R) and

ψ̂0(ξ) 6= 0 ⇐⇒ ξ ∈
(
−2−N+1 − δ,−2−N + δ

)
∪
(
2−N − δ, 2−N+1 + δ

)
,where N ≥ 4 and 0 < δ < 2−N as in the assumption. Let ψ1 ∈ L2(R) be suh that

ψ̂1 ∈ C∞
0 (R) has support in [−1/2,−1, 4] ∪ [1/2, 3/4] and

ψ̂1(ξ) = ψ̂1(ξ − 1) 6= 0 whenever ξ ∈ (1/2, 3/4) . (3.4)For any suh ψ1 ∈ L2(R) the sequene {D2jTkψ
1} generates a Bessel sequene by [17,Theorem 13.0.1℄ or by the proof of [8, Lemma 3.4℄.De�ne ψ ∈ L2(R) by ψ = ψ0 +εψ1, where εψ1 ats as a perturbation on the waveletframe generated by ψ0 and ensures that ψ satis�es (3.3), see also Figure 1. Denote theframe bounds of {D2jTkψ

0} by C1 and C2, and the Bessel bound of {D2jTkψ
1} by C0.The funtion εψ1 generates a Bessel sequene with bound ε2C0. Hene, for su�ientlysmall ε > 0, we have ε2C0 < C1, and by a perturbation result [6, Corollary 2.7℄ or [12,Theorem 3℄, we onlude that ψ generates a wavelet frame. By our onstrution ψ̂ is in

C∞
0 (R) and satis�es (3.2) and (3.3).Finally, let us illustrate how one an onstrut two suh funtions ψ0 and ψ1. For

N ≥ 4 and 0 < δ < 2−N , de�ne the funtion η by
η̂ = hδ ∗ χ[−2−N+1,−2−N ]∪[2−N ,2−N+1], (3.5)where hδ(x) = δ−1h(x/δ) with h ∈ C∞

0 (R), h ≥ 0, ∫R h(x)dx = 1, and supph ⊂ [−1, 1].This yields η̂ ∈ C∞ with
η̂(ξ) 6= 0 ⇐⇒ ξ ∈

(
−2−N+1 − δ,−2−N + δ

)
∪
(
2−N − δ, 2−N+1 + δ

)
.By ‖η̂‖L∞ ≤ 1 and the above, there exist onstants C1, C2 > 0, suh that

0 < C1 ≤
∑

j∈Z

∣∣∣η̂(2jξ)
∣∣∣
2
≤ C2 < 2 for all ξ ∈ R \ {0}.



3. Canonial dual frames without wavelet struture 41Moreover, for q ∈ 2Z + 1,
tq(ξ) :=

∞∑

j=0

η̂(2jξ)η̂(2j(ξ + q)) = 0 for all ξ ∈ R,sine η̂(2j ·) and η̂(2j(· + q)) have disjoint support for all j ≥ 0. We de�ne ψ0 as anormalization of η by
ψ̂0(ξ) =

η̂(ξ)√∑
j∈Z |η̂(2jξ)|2

for ξ ∈ R \ {0}, (3.6)and ψ̂0(0) = 0. Consequently, we have ∑j∈Z|ψ̂0(2jξ)|2 = 1 and tq(ξ) = 0 for ξ ∈ Rand q ∈ 2Z + 1. By [16, Theorem 7.1.6℄, ψ0 generates a tight wavelet frame withframe bound 1, and it has the desired properties. For the proof of the lemma thelast normalization step ould be omitted sine η itself generates a (non-tight) frame.However, it is inluded sine we later want to use the fat that the ψ0 an be hosen tobe a tight frame wavelet with frame bound 1.
1

ξ
−1
2N

1
2N

2
2N

−2
2N

εψ̂1

−

1
2

−

1
4

ψ̂0

1
2

1
4

3
4

ε

ψ̂0

εψ̂1

Figure 1: Sketh of the graph of ψ̂ = ψ̂0 + εψ̂1.The onstrution of the perturbation term ψ1 is straightforward. Let θλ := hλ ∗
χ[1/2+λ,3/4−λ] for some 0 < λ < 1/8, where hλ is de�ned as above. De�ne ψ1 by
ψ̂1 = θλ+T−1θλ. This makes ψ̂1 a C∞ funtion with ompat support in [−1/2,−1, 4]∪
[1/2, 3/4], satisfying equation (3.4). This ompletes the proof of Lemma 3.3.Lemma 3.4. Suppose that a funtion ψ ∈ L2(R) satis�es (3.2) and (3.3) for some
N ≥ 4 and 0 < δ < 2−N . Then, the spae of negative dilates V (ψ) is not pZ-SI for any
p < 2N−3, p ∈ N.Proof. To prove this laim we will look at the subspaes Wj(ψ) for j ≤ 0, de�ned by

Wj(ψ) = span{D2jTkψ : k ∈ Z}, j ∈ Z.First, onsider a prinipal shift invariant (PSI) subspae W0(ψ) = span{Tkψ}k∈Z. Bya result in [11℄, see also [3℄, this subspae an be desribed as
W0(ψ) = {f ∈ L2(R) : f̂ = ψ̂m for some measurable, 1-periodi m}.



42 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMEHene, by (3.2) and (3.3) we have
W0(ψ) =

{
f ∈ L2(R) : supp f̂ ⊂ [−1/2,−1/4] ∪ [1/2, 3/4] ∪K

f̂(ξ − 1) = f̂(ξ) a.e. ξ ∈ [1/2, 3/4]
}
, (3.7)where K =

[
−2−N+1 − δ,−2−N + δ

]
∪
[
2−N − δ, 2−N+1 + δ

]
.Applying the saling relation Wj(ψ) = D2jW0(ψ) to (3.7) yields

Wj(ψ) =
{
f ∈ L2(R) : supp f̂ ⊂

[
−2j−1,−2j−2

]
∪
[
2j−1, 3/2 · 2j−1

]
∪ 2jK,

f̂(ξ − 2j) = f̂(ξ) a.e. ξ ∈ [2j−1, 3/2 · 2j−1
] }
. (3.8)Therefore, eah spae Wj(ψ), j ∈ Z, an be deomposed as the orthogonal sum

Wj(ψ) = W 0
j ⊕W 1

j , where (3.9)
W 0
j = Ľ2(2jK), (3.10)

W 1
j =

{
f ∈ L2(R) : supp f̂ ⊂

[
−2j−1,−2j−2

]
∪
[
2j−1, 3/2 · 2j−1

]
, (3.11)

f̂(ξ − 2j) = f̂(ξ) a.e. ξ ∈ [2j−1, 3/2 · 2j−1
] }
.Using (3.9), it is possible to desribe the spae of negative dilates

V (ψ) = span
(⋃

j<0

Wj(ψ)
)in the Fourier domain. However, suh a desription would be quite ompliated owingto interations of the spaes W 0

j and W 1
j at various sales j < 0.Instead, we onsider another spae

Ṽ (ψ) = V (ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)).By (3.10) and K ⊂ (−2−N+2, 2−N+2), we have
W 0
j ⊂ Ľ2([−2−N+1, 2−N+2]) for j < 0.Likewise, by (3.11) we have

W 1
j ⊂

{
Ľ2([−2−N+1, 2−N+2]) for j ≤ −N + 2,

Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)) for j ≥ −N + 3.Combining the last four equations with (3.9) yields
Ṽ (ψ) = span

(⋃

j<0

Wj(ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞))
)

= span
( −1⋃

j=−N+3

W 1
j

)
,



3. Canonial dual frames without wavelet struture 43and further, by the orthogonality of the subspaes W 1
−N+3, . . . ,W

1
−1,

Ṽ (ψ) =
−1⊕

j=−N+3

W 1
j .Consequently, by (3.11),

Ṽ (ψ) =
{
f ∈ L2(R) : supp f̂ ⊂

−1⋃

j=−N+3

2j([−1/2,−1/4] ∪ [1/2, 3/4]),

f̂(ξ − 2−1) = f̂(ξ) a.e. ξ ∈ [2−2, 3/2 · 2−2
]
,

f̂(ξ − 2−2) = f̂(ξ) a.e. ξ ∈ [2−3, 3/2 · 2−3
]
,... ...

f̂(ξ − 2−N+3) = f̂(ξ) a.e. ξ ∈ [2−N+2, 3/2 · 2−N+2
] }
. (3.12)Assume, towards a ontradition, that V (ψ) is pZ-SI for some p < 2N−3 with p ∈ N.Then, Ṽ (ψ) is pZ-SI as well. De�ne f ∈ L2(R) by

f̂ = χIN∪(IN−2−N+3), where IN = [2−N+2, 3/2 · 2−N+2].Then f ∈ Ṽ (ψ), and by our hypothesis we have Tpkf ∈ Ṽ (ψ) for all k ∈ Z. Equivalently,using F Tk = E−k F , we have Epkf̂ ∈ F(Ṽ (ψ)) for all k ∈ Z. For k = 1, this impliesthat Epf̂(ξ) = e2πipξχIN∪(IN−2−N+3)(ξ) ∈ F(Ṽ (ψ)). By (3.12),
e2πip(ξ−2−N+3) = e2πipξ for a.e. ξ ∈ IN .This an only be satis�ed if e−2πip2−N+3

= 1, whih ontradits the hypothesis that
1 ≤ p < 2N−3. This ompletes the proof of Lemma 3.4.Remark 2. A more detailed analysis shows that V (ψ) is 2N−2Z-SI, and it is not shiftinvariant by any sublattie of Z stritly larger than 2N−2Z. Sine we do not need suhpreise assertion, we will skip its proof.Finally, we are ready to omplete the proof of Theorem 3.1.Proof of Theorem 3.1. Take any J ∈ N. Suppose that ψ is a frame wavelet as in Lemma3.3 with N = J+3. By Lemma 3.4 and Proposition 2.1, the period of ψ is at least 2N−3.Hene, by Proposition 2.3, we need at least 2J funtions to generate the anonial dualof {D2jTkψ}j,k∈Z.We have only left to show that the wavelet frame generated by ψ has in�nitely manyalternate duals that are generated by one funtion. For this purpose it is onvenient toassume that ψ = ψ0 + εψ1 is of the same form as in the proof of Lemma 3.3, i.e., ψ0generates a tight frame with frame bound 1. Hene, the funtions ψ and ψ0 satisfy theharateristi equations

∑

j∈Z

ψ̂(2jξ)ψ̂0(2jξ) = 1, a.e. ξ ∈ R,

∞∑

j=0

ψ̂(2jξ)ψ̂0(2j(ξ + q)) = 0, a.e. ξ ∈ R for odd q ∈ Z,



44 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMEsine ψ̂ = ψ̂0 on supp ψ̂0 and sine ψ̂(2j ·)ψ̂0(2j(· + q)) = 0 for all j ≥ 0 and all odd
q. We onlude that {ψ0

j,k} is a dual frame of {ψj,k}. Sine {ψ0
j,k} is generated by onefuntion, it is apparent from the above that {ψ0

j,k} must be an alternate dual.Any funtion φ ∈ L2(R) de�ned by φ̂ = ψ̂0 + h, where
h ∈ C∞(R), supph ⊂ [−1/4, 1/2] , supph ∩ supp ψ̂0 = ∅, h(0) = 0,generates a Bessel sequene by [17, Theorem 13.0.1℄. Sine ψ and φ satisfy the hara-teristi equations above, suh a φ is an alternate dual frame wavelet of ψ. This exampledemonstrates that we have in�nitely many alternate duals, and ompletes the proof ofTheorem 3.1.We end by putting our example in a perspetive with other known results.Remark 3. Ausher [1℄ proved that every �regular� orthonormal wavelet ψ ∈ L2(R) is as-soiated with an MRA. �Regular� means that |ψ̂| is ontinuous and ψ̂(ξ) = O(|ξ|−1/2−δ)as |ξ| → ∞ for some δ > 0, see [16, Corollary 7.3.16℄. This fat does not hold for tightframe wavelets. In fat, Baggett et al. [2℄ onstruted a non-MRA Cr tight framewavelet with rapid deay for any r ∈ N. Moreover, their tight frame wavelet is asso-iated with a GMRA having the same dimension/multipliity funtion as the Journéwavelet. One we allow non-tight frame wavelets we might lose even the GMRA prop-erty. Indeed, the frame wavelet from Theorem 3.1 is an example of a non-GMRA C∞frame wavelet with rapid deay.Referenes[1℄ P. Ausher, Solution of two problems on wavelets, J. Geom. Anal. 5 (1995), 181�236.[2℄ L. Baggett, P. Jorgensen, K. Merrill, J. Paker, A non-MRA Cr frame wavelet withrapid deay, Ata Appl. Math. 89 (2005), no. 1-3, 251�270[3℄ M. Bownik, The struture of shift-invariant subspaes of L2(Rn), J. Funt. Anal.177 (2000), 282�309.[4℄ M. Bownik, A haraterization of a�ne dual frames in L2(Rn), Appl. Comput.Harmon. Anal. 8 (2000), 203�221.[5℄ M. Bownik, E. Weber, A�ne frames, GMRA's, and the anonial dual, StudiaMath. 159 (2003), no. 3, 453�479.[6℄ O. Christensen, Moment problems and stability results for frames with appliationsto irregular sampling and Gabor frames, Appl. Comput. Harmon. Anal. 3 (1996),no. 1, 82�86.[7℄ C.K. Chui, X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets,SIAM J. Math. Anal. 24 (1993), 263�277.[8℄ A. Cohen, I. Daubehies, and J.-C. Feauveau, Biorthogonal bases of ompatlysupported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485�560.
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Construting pairs of dualbandlimited framelets withdesired time loalization in L

2(R)

Jakob LemvigAbstrat. For su�iently small translation parameters, we provethat any bandlimited funtion ψ, for whih the dilations of itsFourier transform form a partition of unity, generates a waveletframe with a dual frame also having the wavelet struture. Thisdual frame is generated by a �nite linear ombination of dilationsof ψ with expliitly given oe�ients. The result allows a sim-ple onstrution proedure for pairs of dual wavelet frames whosegenerators have ompat support in the Fourier domain and de-sired time loalization. The onstrution is based on harater-izing equations for dual wavelet frames and relies on a tehnialondition. We exhibit a general lass of funtion satisfying thisondition; in partiular, we onstrut pieewise polynomial fun-tions satisfying the ondition.Keywords. Dual frames · Framelets · Non-tight frames · Partitionof unity · Bandlimited wavelets
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48 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)1. IntrodutionLet ψ ∈ L2(R) be a funtion suh that ψ̂ is ompatly supported and the funtions
ξ 7→ ψ̂(ajξ), j ∈ Z, form a partition of unity for some a > 1. We prove that forsu�iently small translation parameter b the funtion ψ generates a wavelet frame
{aj/2ψ(ajx − bk) : j, k ∈ Z} with a dual wavelet frame generated by a �nite linearombination of dilations of ψ. The result allows a onstrution proedure for pairs ofdual wavelet frames generated by bandlimited funtions with fast deay in the timedomain where both generators are expliitly given.The prinipal idea used in the proof of Theorem 2.3 omes from Christensen's on-strution of dual Gabor frames in [6℄. Our onstrution is similar, but it takes plae inthe Fourier domain. The proof of Theorem 2.3 and the onstrution proedure providedby this theorem are based on the well-known haraterizing equations for dual waveletframes by Chui and Shi [8℄.Our aim is to provide a onstrution of a pair of dual frame generators ψ and φ forwhih the funtions ψ and φ are expliitly given in the sense that the funtions or theirFourier transform are given as �nite linear ombinations of elementary funtions. To bepreise, the onstrution uses ψ as a starting point and de�nes the dual generator φ asa �nite linear ombination of dilations of ψ with expliitly given oe�ients. This givesus ontrol of the properties of both generators as opposed to using anonial duals.The onstrution of redundant wavelet representations is often restrited to tightframes in order to avoid the umbersome inversion of the frame operator. However,in this paper we onsider general non-tight, non-anonial, non-dyadi dual waveletframes. The onstrution of wavelet frames is usually based on the (mixed) unitaryor oblique extension priniple [7, 9, 12, 13℄. These priniples lead to dual or tightframe wavelets with many desirable features: ompat support, high order of vanishingmoments, high smoothness, and symmetry/antisymmetry; in partiular, expliitly givenspline generators are onstruted from B-spline multiresolution analysis in [7, 9℄. Inthese and similar onstrutions one annot do with fewer than two generators (see[7, Theorem 9℄ and [9, Theorem 3.8℄ inluding the sueeding remark); in addition,higher smoothness leads to more generators or larger support of the generators. Ouronstrution leads to frame wavelet with similar properties, the most notable di�ereneis that the generators have ompat support in the Fourier domain, not in the timedomain.Wavelet frames onstruted by the unitary extension priniple from a B-spline mul-tiresolution analysis will always have one generator with only one vanishing momentyielding a wavelet system with approximation order of at most 2; this problem is ir-umvented in the oblique extension priniple. When multiple generators are neededin our onstrution, all of these will share the same properties. In Examples 2 and 3the onstruted wavelet frames are generated by only one funtion, and in these asesthe smoothness of the generator does not a�et the size of the support (that is, in theFourier domain).Our onstrution is expliit, and it works for arbitrary real dilations, but as a draw-bak the wavelet frame generators will not have ompat support in the time domainleading to in�nite impulse response �lters. In the dyadi ase an e�ient algorithman be implemented by using the fast Fourier transform, see for example the frational



1. Introdution 49spline wavelet software for Matlab by Unser and Blu [3℄. The idea is to perform thealulation in the Fourier domain using multipliation and periodization in plae of on-volution and down-sampling. For this to work, we need the frequeny response of the�lter oe�ients (sometimes simply alled �lters or masks and often denoted by τi, mi,or Hi), but we get this almost diretly from our onstrution; the frequeny response ofboth high pass �lters (deomposition and reonstrution) an be obtained from dilationsof ψ̂. Note that this relies ruially on the fat that the dual generator φ is de�ned asa �nite linear ombination of dilations of ψ with expliitly given oe�ients.The paper is organized as follows. In Setion 2 we prove the main result of thisartile, Theorem 2.3. The theorem ontains a tehnial ondition on partition of unity,and we address this problem in Example 1 where we expliitly onstrut funtions thatsatisfy the ondition. A note on the terminology: the funtions in the �partition ofunity� are not assumed to be non-negative, but an take any real value. In Exam-ple 2 we give an example of a pair of smooth, fast deaying, symmetri generatorswith the translation parameter being 1. The onstrution of dual wavelet frames usingTheorem 2.3 often imposes the translation parameter to be small, e.g., smaller than
1. Consequently, we want methods to expand the range of the translation parameter,and this is the topi of Setion 2.2. In Setion 3 we show that the representation offuntions provided by Theorem 2.3 with the expliitly given dual frame is advantageousover similar representations using tight frames or anonial dual frames. In Setion 4we present another appliation of Theorem 2.3 with generators in the Shwartz spae.However, the onstrution in this example is less expliit than in the �rst example. Weend this paper with some remarks on onstrutions of pairs of dual wavelet frames forthe Hardy spae.We end this introdution by reviewing some basi de�nitions and with an observationon the anonial dual frame. A frame for a separable Hilbert spae H is a olletion ofvetors {fj}j∈J with a ountable index set J if there are onstants 0 < C1 ≤ C2 < ∞suh that

C1 ‖f‖2 ≤
∑

j∈J

∣∣〈f, fj〉
∣∣2 ≤ C2 ‖f‖2 for all f ∈ H.If the upper bound holds in the above inequality, then {fj} is said to be a Bessel sequenewith Bessel onstant C2. For a Bessel sequene {fj} we de�ne the frame operator by

S : H → H, Sf =
∑

j∈J
〈f, fj〉fj.This operator is bounded, invertible, and positive. A frame {fj} is said to be tight ifwe an hoose C1 = C2; this is equivalent to S = C1I where I is the identity operator.Two Bessel sequenes {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj ∀f ∈ H.It an be shown that two suh Bessel sequenes are indeed frames. Given a frame {fj},at least one dual always exists; it is alled the anonial dual and is given by {S−1fj}.Only redundant frames have several duals.



50 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)For f ∈ L2(R), we de�ne the dilation operator by Daf(x) = a1/2f(ax) and thetranslation operator by Tbf(x) = f(x − b) where 1 < a < ∞ and b ∈ R. We say that
{DajTbkψ}j,k∈Z is the wavelet system generated by ψ where a > 1 and b > 0. In thefollowing we use the index set (j, k) ∈ Z×Z whenever a sequene is stated without indexset. If {DajTbkψ} is a frame for L2(R), the generator ψ is termed a framelet or framewavelet. For f ∈ L1(R) the Fourier transform is de�ned by f̂(ξ) =

∫
R f(x)e−2πiξxdxwith the usual extension to L2(R). Given a measurable set K ⊂ R we de�ne the Paley-Wiener spae Ľ2(K), whih is invariant under all translations, by Ľ2(K) = {f ∈ L2(R) :

supp f̂ ⊂ K}.2. Constrution of dual wavelet framesOur main result, Theorem 2.3, is obtained from the following result by Chui and Shi [8℄.The result is stated in the last two lines of Setion 4 on page 263 in their artile.Theorem 2.1. Let a > 1, b > 0, and ψ, ψ̃ ∈ L2(R). Suppose the two wavelet sys-tems {DajTbkψ}j,k∈Z and {DajTbkψ̃}j,k∈Z form Bessel families. Then {DajTbkψ} and
{DajTbkψ̃} will be dual frames if the following onditions hold

∑

j∈Z

ψ̂(ajξ)
ˆ̃
ψ(ajξ) = b a.e. ξ ∈ R, (2.1)

ˆ̃ψ(ξ)ψ̂(ξ + q) = 0 a.e. ξ ∈ R for 0 6= q ∈ b−1Z. (2.2)The onditions (2.1) and (2.2) are also neessary when a > 1 is suh that aj isirrational for all positive integers j, see [8, p. 263℄. For this reason the above onditionsare often refereed to as haraterizing equations for suh irrational dilations. The resultin Theorem 2.1 follows from the general result of haraterizing equations for dualwavelet frames [8, Theorem 2℄.The next result, Lemma 2.2, gives a su�ient ondition for a wavelet system to bea Bessel sequene. Its proof an be found in [5, Theorem 11.2.3℄.Lemma 2.2. Let a > 1, b > 0, and f ∈ L2(R). Suppose that
C2 =

1

b
sup

|ξ|∈[1,a]

∑

j,k∈Z

∣∣∣f̂(ajξ)f̂(ajξ + k/b)
∣∣∣ <∞.Then the a�ne system {DajTbkf} is a Bessel sequene with bound C2.Theorem 2.1 and Lemma 2.2 are all we need to prove our main result, Theorem 2.3.The main result ontains the tehnial ondition (2.3) on ψ. In the example followingthe proof of the main result, Example 1, we expliitly onstrut funtions satisfying thisondition.Theorem 2.3. Let n ∈ N, a > 1, and ψ ∈ L2(R). Suppose that ψ̂ ∈ L∞(R) is areal-valued funtion with supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z, and that

∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R. (2.3)



2. Constrution of dual wavelet frames 51Let b ∈ (0, 2−1a−c
]. Then the funtion ψ and the funtion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

a−jψ(a−jx) for x ∈ R, (2.4)generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).Proof. By assumption the funtion ψ̂ is ompatly supported in R\{0}; the same holdsfor φ̂ sine, by the de�nition in (2.4) and the linearity of the Fourier transform,
φ̂(ξ) = bψ̂(ξ) + 2b

n−1∑

j=1

ψ̂(ajξ).An appliation of Lemma 2.2 shows that the funtions ψ and φ generate wavelet Besselsequenes.To onlude that ψ and φ generate dual wavelet frames we will show that ondi-tions (2.1) and (2.2) in Theorem 2.1 hold. By aj-dilation periodiity of the sum inondition (2.1) it is su�ient to verify this ondition on the intervals [−a,−1] and [1, a].On these two intervals, only �nitely many terms in the sum (2.3) are nonzero sine
ψ̂ has ompat support; in partiular, only the terms j = c − n, c − n + 1, . . . , c − 1ontribute whih follows from the support of the dilations of ψ̂:

supp ψ̂(ac−n·) ⊂ [−an,−1] ∪ [1, an] ,

supp ψ̂(ac−n+1·) ⊂ [−an−1,−1/a] ∪ [1/a, an−1],and ontinuing to
supp ψ̂(ac−1·) ⊂ [−a,−a−n+1] ∪ [a−n+1, a].For |ξ| ∈ [1, a], by the assumption, we have

1 =

(∑

j∈Z

ψ̂(ajξ)

)2

=

( c−1∑

j=c−n
ψ̂(ajξ)

)2 (2.5)
=
[
ψ̂(ac−nξ) + ψ̂(ac−n+1ξ) + · · · + ψ̂(ac−1ξ)

]2

= ψ̂(ac−nξ)
[
ψ̂(ac−nξ) + 2ψ̂(ac−n+1ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ ψ̂(ac−n+1ξ)
[
ψ̂(ac−n+1ξ) + 2ψ̂(ac−n+2ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ · · · + ψ̂(ac−1ξ)
[
ψ̂(ac−1ξ)

]

=
1

b

c−1∑

j=c−n
ψ̂(ajξ)φ̂(ajξ) =

1

b

∑

j∈Z

ψ̂(ajξ)φ̂(ajξ),hene ψ and φ satisfy ondition (2.1).To realize that ψ and φ satisfy equation (2.2) as well, we note supp ψ̂(· ± q) ⊂
B̄(∓q, ac) and supp φ̂ ⊂ [−ac,−ac−2n+1

] ∪ [ac−2n+1, ac
] ⊂ B̄(0, ac) where B̄(x, r) =
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[x− r, x + r] denotes the losed ball with enter at x and radius r. The two funtionsabove will have disjoint support modulo null sets whenever |q| ≥ 2ac. Consequently,by hoosing the translation parameter b ≤ 2−1a−c, the two funtions in ondition (2.2)will have disjoint support for all q ∈ b−1Z \{0} sine min
∣∣b−1Z \ {0}

∣∣ = 1/b ≥ 2ac, andthe ondition will be trivially satis�ed.Whenever n = 1 in Theorem 2.3 above, we have φ = bψ by equation (2.4), thus ψgenerates a tight frame with bound b. In this ase, i.e., n = 1, the hoies of ψ are verylimited sine funtions ψ satisfying the onditions in Theorem 2.3 with n = 1 must beof the form ψ̂ = χacS, where S = [−1,−1/a] ∪ [1/a, 1]. As a onsequene, interestingonstrutions using Theorem 2.3 are restrited to n > 1. For n > 1, the dual framesgenerated by ψ and φ will be non-anonial.The important thing to note about the de�nition of φ in (2.4) is that φ will in-herit properties from ψ that are preserved by linearity and dilation, e.g., φ̂ will haveompat support beause ψ̂ has this property. This holds also for properties suh assmoothness, symmetry, fast deay, and vanishing moments up to some order. If ψ (or
ψ̂) an be written in terms of elementary funtions, the same will hold for φ (or φ̂).These observations naturally lead to a review of the properties generally possessed bythe dual generators we onstrut. As mentioned above, all non-trivial appliations ofTheorem 2.3 involve n > 1, n ∈ N. We will furthermore assume that ψ̂ ∈ L2(R) iseven, expliitly given, and, when mentioned, a Cr-funtion for some r ∈ N ∪ {0}. Inthis situation the resulting pair of dual generators has the following properties:

• Expliit and similar form: ψ̂ and φ̂ are of similar form, e.g., pieewise polynomialof the same order (see Example 2) unlike the situation for the anonial dual (seeSetion 3). A similar onstrution proedure for tight frames gives �less� expliitlygiven generators (see Setion 3).
• Compat support in Fourier domain of both ψ and φ.
• Fast deay in time domain. For ψ̂ ∈ Cr0(R) the generating funtion ψ will satisfy

lim|x|→∞ xrψ(x) = 0, that is, ψ(x) = o(x−r) as |x| → ∞. The dual generator φhas the same properties.
• High order of vanishing moments. In general for ψ̂ ∈ Cr0(R) the generator ψ willhave vanishing moments up to order r ∈ N ∪ {0} sine

0 =
dmψ̂

dξm
(0) = (−2πi)m

∫

R
xmψ(x)dx for m = 0, . . . , r.And again, the same holds for the dual generator φ.

• Symmetry: ψ̂ and φ̂ are even and real funtions and so are ψ and φ.
• Frequeny overlap between sales for inreased stability and non-semiorthogonali-ty: For all j, k ∈ Z there is a j′ 6= j and a k′ ∈ Z so that 〈DajTbkψ,Daj′Tbk′ψ〉 6= 0.The same holds for the dual generator φ.
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• Generalized multiresolution struture [1℄ (see also Setion 2.3). The two generatorsan be assoiated with the same GMRA with idential ore subspae, the Paley-Wiener spae Ľ2(K) with K = ∪j<0

(
aj supp ψ̂

) ⊂ [−ac−1, ac−1
], hene bothgenerators an be assoiated with the same saling funtion. These types of dualwavelet frames are alled sibling frames in [7℄. Furthermore, the GMRA providesarbitrarily large approximation order [10℄.To make Theorem 2.3 appliable, we need to show how to onstrut funtions thatsatisfy the tehnial ondition (2.3) in the theorem. It is important that this onstru-tion is expliit beause one of the key features of the theorem is that the dual generator isexpliitly given in terms of dilations of ψ. In Example 1 we onstrut a dyadi partitionof unity, that is, we onstrut a funtion g ∈ L2(R) satisfying

∑

j∈Z

g(2jx) = 1 for a.e. x ∈ R. (2.6)This orresponds to ondition (2.3) for dyadi dilation a = 2; a generalization of theonstrution to arbitrary real dilation parameter a > 1 is straightforward (replae everyourrene of �2� with �a�). As we shall see a very general lass of funtions satisfy theondition (see also Example 3).Example 1. For any m ∈ Z, any δ > 0 smaller than or equal to 2m/3, and a boundedfuntion f on [2m − δ, 2m + δ] satisfying f(2m − δ) = 0 and f(2m + δ) = 1, we de�ne
h1(x) =





f(x) x ∈ B̄(2m, δ),

1 x ∈ (2m + δ, 2m+1 − 2δ
)
,

1 − f(x/2) x ∈ B̄(2m+1, 2δ),

0 otherwise. (2.7)Any suh h1 ∈ L2(R) will be ontinuous if f is ontinuous, and it will satisfy:
∑

j∈Z

h1(2
jx) =

{
1 for x > 0,

0 for x ≤ 0.We use the same approah to onstrut h2 ∈ L2(R) satisfying:
∑

j∈Z

h2(2
jx) =

{
0 for x ≥ 0,

1 for x < 0,and de�ne g = h1 + h2. This gives us the dyadi partition of unity almost everywhere.The funtion f above ould be hosen as any polynomial satisfying f(2m − δ) = 0and f(2m + δ) = 1; this will make g ontinuous. If we also let the polynomial f satisfy
f ′(2m − δ) = f ′(2m + δ) = 0, then g ∈ C1(R). Continuing this way, we an make g assmooth as desired while still keeping g pieewise polynomial.In the next example we apply the ideas from the above example to Theorem 2.3 andonstrut dual wavelet frames with dyadi dilation and translation parameter b = 1;atually, any b ∈ (0, 1] an be used, but we take b = 1 for simpliity.



54 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Example 2. Let f be a ontinuous funtion on the interval [1/4, 1/2] satisfying f(1/4) =
1 and f(1/2) = 0. For example f an be any of the funtions below:

f(x) = 2 − 4x, (2.8a)
f(x) = 8(24x2 − 8x+ 1)(2x − 1)2, (2.8b)
f(x) = −16(320x3 − 192x2 + 42x− 3)(2x − 1)3, (2.8)
f(x) = 32(4480x4 − 3840x3 + 1280x2 − 192x + 11)(2x − 1)4, (2.8d)
f(x) = 1

2 + 1
2 cos π(4x− 1). (2.8e)In de�nitions (2.8b) and (2.8e) the funtion f satisfy f ′(1/4) = f ′(1/2) = 0, in de�nition(2.8) this also holds for the seond derivative, and in (2.8d) even for the third derivative.As in Example 1 de�ne ψ ∈ L2(R) by:

ψ̂(ξ) =





1 − f(2 |ξ|) for |ξ| ∈ [1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise. (2.9)This way ψ̂ beomes a dyadi partition of unity with supp ψ̂ ⊂ [−1/2,−1/8]∪ [1/8, 1/2],so we an apply Theorem 2.3 with c = −1, n = 2, and b = 1. Following Theorem 2.3we de�ne the dual generator φ ∈ L2(R) by:
φ̂(ξ) =





2[1 − f(4 |ξ|)] for |ξ| ∈ [1/16, 1/8] ,

1 + f(2 |ξ|) for |ξ| ∈ (1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise. (2.10)whereby ψ and φ generate dual frames {D2jTkψ}j,k∈Z and {D2jTkφ}j,k∈Z for L2(R).The translation parameter in these wavelet systems is set to b = 1, and eah waveletframe is generated by only one funtion.Suppose we let ψ̂ ∈ L2(R) be pieewise polynomial as de�ned by equations (2.8a)to (2.8d). Then ψ̂ ∈ Cr(R) with r = 0, 1, 2, 3, respetively. Further, the generators
ψ and φ will be real and even, and ψ̂ and φ̂ will be pieewise polynomial and haveompat support with supp ψ̂ ⊂ [−1/2,−1/8]∪ [1/8, 1/2] and supp φ̂ ⊂ [−1/2,−1/16]∪
[1/16, 1/2]. We have a greater number of vanishing moments and faster deay thanindiated by the review of properties above: ψ and φ will have r+1 vanishing momentsand deay as O(x−r−2) as |x| → ∞, e.g., using (2.8b) we have ψ̂, φ̂ ∈ C1(R), and ψand φ with vanishing moments up to order 2, and ψ(x) = O(x−3) and φ(x) = O(x−3),see Figures 1 and 2. The expliit form of ψ and hene φ are easily found; in general,they are �nite linear ombination of sine and osine of the form sin(2παx)/(πx)n and
cos(2παx)/(πx)n for integer n ≥ 2 + r and α ∈ Q.We end the example with some notes on the numerial aspets and the multireso-lution struture. We laim that C1 = 1/2 and C2 = 1 are frame bounds for {D2jTkψ},that C1 = 7/2 and C2 = 5 are frame bounds for the dual frame {D2jTkφ}, and that
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Figure 1: A pair of dual generators ψ (solid line) and φ (dotted line) in the time domain with
f as in (2.8b).this holds for any f from equations (2.8); even more, the frame bounds hold for any fsatisfying 0 ≤ f(x) ≤ 1 for x ∈ [1/4, 1/2]. To prove the laim observe that

∑

k 6=0

∑

j∈Z

∣∣∣ψ̂(2jξ)ψ̂(2jξ + k)
∣∣∣ = 0, for ξ ∈ R,by the support of ψ̂. This redues the frame bound estimates in [5, Theorem 11.2.3℄ to

C1 = inf
|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
, C2 = sup

|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
,where C1 and C2 are a lower and upper frame bound of {D2jTkψ}, respetively. For

|ξ| ∈ [1/4, 1/2] we have, by the de�nition (2.9),
∑

j∈Z

|ψ̂(2jξ)|2 = f(|ξ|)2 + (1 − f(|ξ|))2 = 1 − 2f(|ξ|) + 2f(|ξ|)2,and thus,
C1 = min

x∈[α,β]
1 − 2x+ 2x2 = 1/2, C2 = max

x∈[α,β]
1 − 2x+ 2x2,with α := min1/4≤x≤1/2 f(x) and β := max1/4≤x≤1/2 f(x). Sine 0 ≤ f(x) ≤ 1 for

x ∈ [1/4, 1/2], we have α = 0 and β = 1, hene C2 = 1, and this proves the laim for
{D2jTkψ}; similar alulations will show the laim for the dual frame. In partiular,we see that the ondition number C2/C1 does not depend on the smoothness of thegenerators, and that the ondition number of the dual frame {D2jTkφ} is smaller thanthe ondition number of {D2jTkψ} and the ondition number of the anonial dualframe.
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Figure 2: A pair of dual generators ψ̂ (solid line) and φ̂ (dotted line) in the Fourier domainwith f as in (2.8b).The ore subspae of the GMRA is the Paley-Wiener spae V0 = Ľ2([−1/4, 1/4]).The funtion η ∈ L2(R) de�ned by η̂ = χ[−1/4,1/4] is a generator for V0, that is,
span{Tkη}k∈Z = V0, and {Tkη}k∈Z is a tight frame with frame bound 1 for V0. Wenote that this frame ontains twie as many elements as �neessary� in the sense that
{T2kη}k∈Z and {T2k+1η}k∈Z are orthogonal bases for V0. Obviously, we an take there�nable symbol H0 ∈ L2(T) to be the 1-periodi extension of H0 = χ[−1/8,1/8] so that
η̂(2ξ) = H0(ξ)η̂(ξ) for ξ ∈ R; note that the hoie of H0 is not unique, and by letting
H0 = χ[−3/8,1/4)∪[−1/8,1/8)∪[1/4,3/8) we obtain a quadrature mirror �lter sine H0(0) = 1and |H0(ξ)|2 + |H0(ξ + 1/2)|2 = 1. The re�nable symbol H0 is sometimes alled a lowpass �lter or mask. As wavelet symbol (high pass �lter) for the deomposition Hd andreonstrution Hr we an take Hd = ψ̂(2·) and Hr = φ̂(2·) extending them to 1-periodifuntions; these symbols obviously satisfy ψ̂(2ξ) = Hd(ξ)η̂(ξ) and φ̂(2ξ) = Hr(ξ)η̂(ξ).2.1. An alternative de�nition of the dual generatorThe following result resembles Theorem 2.3, but it gives an alternative way of de�ning
φ; note the hange from ψ(a−jx) in (2.4) to ψ(ajx) in (2.11). The result follows fromthe symmetry of the alulations in (2.5).Proposition 2.4. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 2.3. Let
b ∈ (0, a−c(1 + an−1)−1

]. Then the funtion ψ and the funtion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

ajψ(ajx) for x ∈ R (2.11)generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).Proof. The funtions ψ̂ and φ̂ satisfy ondition (2.1). This follows from alulationssimilar to those in (2.5): We start by fatoring out ψ̂(ac−1ξ) instead of ψ̂(ac−nξ),



2. Constrution of dual wavelet frames 57then ψ(ac−2ξ) and ontinue in a similar way. To see that ondition (2.2) is satis-�ed, we note that supp φ̂ ⊂ [−ac+n−1,−ac−n] ∪ [ac−n, ac+n−1
] sine supp φ̂(a−n+1·) ⊂[−ac+n−1,−ac−1

]∪[ac−1, ac+n−1
]. The two funtions in (2.2) will have disjoint supportmodulo null sets whenever |q| ≥ ac + ac+n−1 = ac(1 + an−1).The hoie of the translation parameter b is more restritive in Proposition 2.4 thanin Theorem 2.3 sine the support of φ̂ de�ned by (2.11) is larger than when de�nedby (2.4). Note that b ∈ (0, a−c(1 + an−1)−1

] an be replaed by the simpler, but morerestritive, b ∈ (0, a−c−n] in the ase a ≥ 2.2.2. Expanding the range of the translation parameterThe onstrution of dual wavelet frames from Theorem 2.3 often imposes the translationparameter b to be small, e.g., b < 1. Hene, it would be interesting to know in whihases we an take b = 1. For the sake of simpliity let a = 2 for a moment, and assumethat ψ satis�es the assumptions of Theorem 2.3. Obviously, we an take b = 1 if thesupport of ψ̂ is ontained in [−1/2, 1/2], that is, if c ≤ −1; this is exatly what we usedin Example 2. If c ≥ 0, we need, in order to ahieve b = 1, to apply Theorem 2.3 to
ψ̂(2c+1·) in plae of ψ̂. This dilated version of ψ will still be a dyadi partition of unityand supp ψ̂(2c+1·) ⊂ [−1/2, 1/2]. Moreover, we have the following result.Corollary 2.5. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 2.3. Let
b ∈ (0, 2−1a−c

]. Then the funtion ψ̃ := Dbψ and the funtion φ̃ := Dbφ, where φ isde�ned as in (2.4), generate dual frames {DajTkψ̃}j,k∈Z and {DajTkφ̃}j,k∈Z for L2(R).Proof. The result basially follows from an appliation of the identity
DbTbk = TkDb, (2.12)and the fat that dilation preserves the frame property and the duality of (wavelet)frames sine it is a unitary operator on L2(R). By assumption {DajTbkψ} and {DajTbkφ}are dual frames for b ∈ (0, 2−1a−c

]. The identity (2.12) yields,
DbDajTbkψ = DajTk(Dbψ),hene {DajTkψ̃} is a frame as a unitary image of a wavelet frame where ψ̃ = Dbψ. Thesame onlusion holds for {DajTkφ̃}. For all f ∈ L2(R), we have

f = Db(D
∗
bf) =

∑

j,k∈Z

〈f,DbDajTbkφ〉DbDajTbkψ =
∑

j,k∈Z

〈
f,DajTkφ̃

〉
DajTkψ̃,and onlude that duality is preserved.Another approah (for obtaining b = 1) makes use of multigenerated wavelet sys-tems. In the following result the onstruted dual wavelet frames are generated by mfuntions again sharing the properties of the starting point funtion ψ; in partiular, if

ψ has vanishing moments up to some order, then so will every funtion in the generatorsets Ψ and Φ.



58 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Corollary 2.6. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 2.3. Let
m ∈ N and b ∈ (0, 2−1a−cm

]. Then the funtions Ψ = {ψ, Tb/mψ, . . . , T(m−1)b/mψ} andthe funtions Φ = {φ, Tb/mφ, . . . , T(m−1)b/mφ}, where φ is de�ned as in (2.4), generatedual frames {DajTbkψ}j,k∈Z,ψ∈Ψ and {DajTbkφ}j,k∈Z,φ∈Φ for L2(R).Proof. Let m ∈ N. For b so that 0 < b/m ≤ 2−1a−c, the funtions ψ and φ, where φ isde�ned as in (2.4), generate dual frames {DajTbk/mψ}j,k∈Z and {DajTbk/mφ}j,k∈Z for
L2(R). Note that (m−1Z) / Z = {0, 1, . . . ,m− 1}, and de�ne:

Ψ =
{
ψ, Tb/mψ, T2b/mψ, . . . , T(m−1)b/mψ

}
.It follows immediately that {DajTb/mkψ}j,k∈Z = {DajTbkψ}j,k∈Z,ψ∈Ψ. Similarly, wehave for φ that {DajTb/mkφ}j,k∈Z = {DajTbkφ}j,k∈Z,φ∈Φ, where

Φ :=
{
φ, Tb/mφ, T2b/mφ, . . . , T(m−1)b/mφ

}
.We onlude {DajTbkψ}j,k∈Z,ψ∈Ψ and {DajTbkφ}j,k∈Z,φ∈Φ are dual frames for L2(R) for

b/m ≤ 2−1a−c, that is, for b ≤ 2−1a−cm.It follows from the orollary that, in the dyadi ase, we an always obtain b = 1 byusing 2c+1 generators.2.3. On the generalized multiresolution strutureWe end this setion with a loser study of the GMRA struture of ψ and φ. To thisend, let ψ ∈ L2(R) satisfy the assumptions in Theorem 2.3. We onsider the subspaes
W b
j (ψ) := span {DajTbkψ : k ∈ Z}. Let ψ̃ = Dbψ be the generator of frame {DajTkψ̃},see Corollary 2.5. From the identity Tbk = Db−1TkDb we have W b

0 (ψ) = Db−1W 1
0 (ψ̃)where W 1

j (ψ̃) = span
{
DajTkψ̃ : k ∈ Z

}. By [10, Theorem 2.14℄,
W 1

0 (ψ̃) =

{
f ∈ L2(R) : f̂ = m

ˆ̃
ψ for some measurable, 1-periodi m}and further, using supp ˆ̃ψ ⊂ [−1/2, 1/2],

W 1
0 (ψ̃) =

{
f ∈ L2(R) : supp f̂ ⊂ supp

ˆ̃
ψ

}
= Ľ2(supp

ˆ̃
ψ),hene W b

0 (ψ) = Ľ2(supp ψ̂) by the above, and by dilation, W b
j (ψ) = Ľ2(aj supp ψ̂). Weonlude that the spae of negative dilates, also alled the ore subspae, assoiatedwith ψ is given by

V0(ψ) = span

(⋃

j<0

W b
j (ψ)

)
= Ľ2(K), K =

⋃

j<0

(
aj supp ψ̂

) ⊂
[
−ac−1, ac−1

]
,whih is a subspae invariant under all translations. It is straightforward to see V0(ψ) =

V0(φ); we will denote this spae by V0. A funtion η ∈ L2(R) is said to generate V0 if
span {Tbkη}k∈Z = V0, and we have that η generates V0 if, and only if, supp η̂ = K (see



3. Dual frames versus tight frames 59[10℄). If we further require {Tbkη}k∈Z to be a frame for V0, then η̂ annot be ontinuoushene η will be poorly loalized in time. This drawbak follows from a result in [2℄;indeed, the sum ∑
k∈Z |η̂((ξ + k)/b)|2 redues to |η̂(ξ/b)|2 for ξ ∈ [−1/2, 1/2] sine

b ≤ 2−1a−c implies bac−1 ≤ 1/(2a) ≤ 1/2 − ε for some ε > 0 hene supp η̂(·/b) = bK ⊂
[−bac−1, bac−1] ⊂ [−1/2 + ε, 1/2 − ε]. Now, the onlusion follows from [2, Theorem3.4℄. We note that the onstruted wavelet frame will not neessarily be a frame fora �xed dilation level subspae Wj(ψ) of L2(R). This situation is similar to that ofthe unitary and oblique extension priniples, but in ontrast to frame multiresolutionanalysis.3. Dual frames versus tight framesIn Theorem 2.3 we expliitly onstrut the dual frame. One might ask why we do notuse the anonial dual frame, or why we do not use the haraterizing equations for tightframes to formulate a similar onstrution proedure of tight frames. In the followingwe will show that these approahes have some disadvantages ompared to Theorem 2.3.For a wavelet frame {DajTbkψ}j,k∈Z, the anonial dual frame is given by

{
S−1DajTbkψ : j, k ∈ Z

}
=
{
DajS−1Tbkψ : j, k ∈ Z

}
,where S is frame operator of {DajTbkψ}j,k∈Z. In general the anonial dual need nothave the struture of a wavelet system, and this is one reason to avoid working withanonial dual frames. However, as we show below, the anonial dual of all waveletframes onsidered in this paper will be of wavelet struture, hene the anonial dualould be used in the synthesis proess in the frame wavelet transform. The problemwith this approah is that it is di�ult to ontrol whih properties the anonial dualframe inherits from the frame sine the appliation of the inverse frame operator andestroy desirable properties. We give an example of this issue in the following.Let ψ ∈ L2(R) be as in the assumptions of Theorem 2.3. Then ψ̂(ξ)ψ̂(ξ + b−1k) = 0for k ∈ Z \ {0}, and onsequently, by [11, Proposition 7.1.19℄ in the dyadi ase anda simple generalization of parts of the proof of the proposition in the general ase, theassoiated frame operator is the Fourier multiplier given by

Ŝf(ξ) =

(∑

j∈Z

∣∣∣ψ̂(ajξ)
∣∣∣
2
)
f̂(ξ) for a.e. ξ ∈ R, (3.1)for all f ∈ L2(R) with C1 ≤ ∑

j∈Z|ψ̂(ajξ)|2 ≤ C2 and C1, C2 as frame bounds for
{DajTbkψ}. Sine S is a Fourier multiplier, it ommutes with all translations, that is,
STr = TrS for all r ∈ R, and the same holds for the inverse frame operator, hene theanonial dual takes the form

{
DajTbk(S

−1ψ) : j, k ∈ Z
}
,whih is a wavelet frame generated by S−1ψ. Moreover, the anonial dual generator isgiven by

Ŝ−1ψ(ξ) =
ψ̂(ξ)

∑
j∈Z

∣∣ψ̂(ajξ)
∣∣2 for a.e. ξ ∈ R, (3.2)



60 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Sine supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z and n ∈ N , we onlude, byequation (3.2), supp Ŝ−1ψ = supp ψ̂ and
Ŝ−1ψ(ξ) =

ψ̂(ξ)
∑

|j|<n
(
ψ̂(ajξ)

)2 for a.e. ξ ∈ R. (3.3)This implies, among other things, that ψ̂ and Ŝ−1ψ will have the same regularity.But it also implies that hoosing ψ̂ to be pieewise linear will not make the anonialdual generator S−1ψ pieewise linear (in the Fourier domain, that is) owing to thedenominator in (3.3). This is unlike the situation in Example 2 where a pieewisepolynomial ψ̂ by Theorem 2.3 gave a dual generator φ̂ pieewise polynomial of the sameorder, e.g., a pieewise linear ψ̂ gave a pieewise linear φ̂. In general the denominator in(3.3) makes the expression for the anonial dual generator �less� expliit. The prie wepay for using the non-anonial dual is a slightly larger support (in the Fourier domain)of the dual generator.Sine the onstrution of wavelet frames by Theorem 2.3 is based on haraterizingequations for dual wavelet frames, it would be natural to look for a similar way ofonstruting tight frames from their haraterizing equations. In a naive approah tosuh a onstrution one would need to hoose ψ ∈ L2(R) so that ψ̂ is real and thefamily ξ 7→ (ψ̂(ajξ))2, j ∈ Z, form a partition of unity and to hoose a su�iently smalltranslation parameter (so that all terms in the series in the so-alled �tq-equations�beome zero owing to disjoint support). Following the ideas from Example 1 we take
ψ ∈ L2(R) as (extending ψ̂ to an even funtion):

ψ̂(ξ) =





f(ξ) ξ ∈ B̄(am, δ),

1 ξ ∈ (am + δ, am+1 − aδ
)
,√

1 − (f(ξ/a))2 ξ ∈ B̄(am+1, aδ),

0 ξ ∈ [0,∞) \ [am − δ, am+1 + aδ
]
.for any m ∈ Z, any δ > 0 smaller than or equal to am/3, and a bounded funtion

f on [am − δ, am + δ] satisfying f(am − δ) = 0, f(am + δ) = 1, and |f | ≤ 1. Theimportant thing to note with this approah is that ψ̂ does not inherit properties from
f in opposition to the situation in Example 1, e.g., taking f to be linear does not make
ψ̂ pieewise linear beause of the square root in the expression above; moreover, it iswell known that the property of being a smooth (non-negative) funtion need not bepreserved when taking square roots.4. Another appliation of Theorem 2.3In Examples 1 and 2 we onstruted dual wavelet frames in a rather expliit way. Thefollowing onstrution is less expliit. In the �rst part of the example below we onstruta C∞ funtion on R with ompat support satisfying the tehnial ondition (2.6), andin the seond part we apply Theorem 2.3 to the onstruted funtion.Example 3 (Part I). Let f ∈ C∞(R) be de�ned as

f(x) =

{
e−1/x x > 0,

0 x ≤ 0,



4. Another appliation of Theorem 2.3 61and hoose positive onstants R > r > 0 so that
∃δ > 0 :

⋃

j∈Z

2j [r + δ,R − δ] = [0,∞) , (4.1)holds, e.g., take r = 1/8 and R = 1/2. We de�ne f1(x) = f(x− r)f(R− x) for x ∈ R,hene supp f1 ⊂ [r,R] and f1 ∈ C∞
0 (R), and we introdue a symmetri version of f1,denoted f2, in order to get a dyadi partition of unity of the negative as well as thepositive real line.

f2(x) =

{
f1(x) for x > 0,

f1(−x) for x ≤ 0.
(4.2)The funtion w will be used to normalize f2:

w(x) =
∑

j∈Z

f2(2
jx).For a �xed x ∈ R this sum only has �nitely many nonzero terms. Obviously, w is a

2j-dyadi periodi funtion and, by (4.1) and the de�nition of f1, it is also boundedaway from 0 and ∞:
∃c, C > 0 : c < w(x) < C for all x ∈ R \ {0},hene we an de�ne a funtion g ∈ C∞

0 (R) by
g(x) =

f2(x)

w(x)
for x ∈ R \ {0}, and, g(0) = 0. (4.3)This g will be a dyadi partition of unity; the alulations are straightforward:

∑

j∈Z

g(2jx) =
∑

j∈Z

f2(2
jx)

w(2jx)
=
∑

j∈Z

f2(2
jx)

w(x)
=

∑
j∈Z f2(2

jx)
∑
k∈Z f2(2kx)

= 1.The onstrution of g looks indeed less expliit than the pieewise polynomial partitionof unity in Example 1 primarily beause g is normalized by an in�nite series w. Thissituation improves by notiing that, in pratie, the series w redue to a �nite sum sine
supp g = supp f2 ⊂ [−R,−r] ∪ [r,R]. For example, if we let r = 1/8 and R = 1/2, wean do with three terms g(x) = f2(x)/

∑1
j=−1 f2(2

jx) for all x ∈ R \ {0}.Remark 1. 1. Note that the mirroring step (4.2) introduing f2 also makes g sym-metri. But it is obvious from the example that we an arry out the onstrutionfor the positive part of the real line only to get a dyadi partition of the unity onthe positive real line, and, then, by the same approah (but with di�erent hoiesof r and R), for the negative real line. This way g will not be symmetri.2. In plae of f one ould hoose any funtion in C∞
0 (R) having the same support as

f . In plae of f1 one ould take any harateristi funtion f1 = χ[2n,2n+1] for some
n ∈ N onvolved with a smooth hδ ∈ C∞

0 (R) for a su�iently small δ > 0, where
hδ(x) = δ−1h(δ−1x), and supph ⊂ [−1, 1], h ≥ 0, ∫ hdµ = 1, and h ∈ C∞

0 (R).Then supphδ ⊂ [−δ, δ] and supphδ ∗ f1 ⊂ [
2n − δ, 2n+1 + δ

].



62 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Example 3 (Part II). We take r = 1/8 and R = 1/2 in Example 3 and set ψ̂ =
f2/

∑1
j=−1 f2(2

j ·) where f2 is given by (4.2), hene
ψ̂(ξ) =





e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ)−1 e(ξ−1/2)−1+e(1/8−2ξ)−1 e(2ξ−1/2)−1 ξ ∈ (1/8, 1/4) ,

1 ξ = 1/4,

e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ/2)−1 e(ξ/2−1/2)−1+e(1/8−ξ)−1 e(ξ−1/2)−1 ξ ∈ (1/4, 1/2) ,

0 ξ ∈ R+ \ (1/8, 1/2) ,and symmetrially for the negative real line. Applying this to Theorem 2.3 with n = 2,
c = −1, and b = 1 yields a pair of dual wavelet generators with ψ̂, φ̂ ∈ C∞(R),where φ̂ is de�ned as in (2.4), and supp ψ̂ ⊂ [−1/2,−1/8] ∪ [1/8, 1/2] and supp φ̂ ⊂
[−1/2,−1/16] ∪ [1/16, 1/2]. The generators are smooth, rapidly deaying, symmetridual framelets with vanishing moments of in�nite order. It is lear that both belong tothe Shwartz spae, but it is also lear, from the equation above, that ψ and φ are notexpliitly given in the time domain.5. The Hardy spaeA similar onstrution proedure for dual wavelet frames holds for the Hardy spae
H2(R) = {f ∈ L2(R) : supp f̂ ⊂ [0,∞)}. The result in Corollary 2.1 an easily betransformed from L2(R) settings to the Hardy spae H2(R). Indeed, we only need toreplae the right hand side b in equation (2.1) by bχ[0,∞)(ξ). In [4, Theorem 1.3℄ suh atransformation is arried out for a similar result on tight wavelet frames [8, Theorem 1℄.The analogue version of Theorem 2.3 for the Hardy spae is as follows. Let n ∈ N and
a > 1. Suppose for ψ ∈ H2(R) that ψ̂ is a real-valued funtion with supp ψ̂ ⊂ [ac−n, ac]for some c ∈ Z and that

∑

j∈Z

ψ̂(ajξ) = χ[0,∞)(ξ) for a.e. ξ ∈ R.Let b ∈ (0, a−c]; atually, we ould even let b ∈ (
0, a−c(1 − a−2n+1)−1

]. Then ψ and
φ de�ned by (2.4) generate dual frames for H2(R). We note that, in the Hardy spae,the hoie of translation parameter beomes less restritive than for L2(R). This owesto the fat that ψ̂ and φ̂ have smaller support sine they are zero on the negative realline.AknowledgementsThe author thanks the reviewers for many helpful remarks whih improved the presen-tation.Referenes[1℄ L.W. Baggett, H.M. Medina, K.D. Merrill, Generalized multi-resolution analysesand a onstrution proedure for all wavelet sets in R

n, J. Fourier Anal. Appl. 5(1999), no. 6, 563�573.[2℄ J.J. Benedetto, S. Li, The theory of multiresolution analysis frames and appliationsto �lter banks, Appl. Comput. Harmon. Anal. 5 (1998), no. 4, 389�427.
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PAPER III
Construting pairs of dualbandlimited frame wavelets in

L
2(Rn)

Jakob LemvigAbstrat. Given a real, expansive dilation matrix we prove thatany bandlimited funtion ψ ∈ L2(Rn), for whih the dilations ofits Fourier transform form a partition of unity, generates a waveletframe for ertain translation latties. Moreover, there exists a dualwavelet frame generated by a �nite linear ombination of dilationsof ψ with expliitly given oe�ients. The result allows a simpleonstrution proedure for pairs of dual wavelet frames whose gen-erators have ompat support in the Fourier domain and desiredtime loalization. The onstrution relies on a tehnial onditionon ψ, and we exhibit a general lass of funtion satisfying thisondition.Keywords. Real, expansive dilation · Bandlimited wavelets · Dualframes · Non-tight frames · Partition of unity
Manusript, August 2008.



66 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)1. IntrodutionFor A ∈ GLn(R) and y ∈ Rn, we de�ne the dilation operator on L2(Rn) by DAf(x) =

|detA|1/2 f(Ax) and the translation operator by Tyf(x) = f(x−y). Given a n×n real,expansive matrix A and a lattie of the form Γ = PZn for P ∈ GLn(R), we onsiderwavelet systems of the form
{DAjTγψ}j∈Z,γ∈Γ

,where the Fourier transform of ψ has ompat support. Our aim is, for any given real,expansive dilation matrix A, to onstrut wavelet frames with good regularity propertiesand with a dual frame generator of the form
φ =

b∑

j=a

cjDAjψ (1.1)for some expliitly given oe�ients cj ∈ C and a, b ∈ Z. This will generalize andextend the one-dimensional results on onstrutions of dual wavelet frames in [16, 19℄to higher dimensions. The extension is non-trivial sine it is unlear how to determinethe translation lattie Γ and how to ontrol the support of the generators in the Fourierdomain. This will be done by onsidering suitable norms in Rn and non-overlappingpaking of ellipsoids in lattie arrangements.The onstrution of redundant wavelet representations in higher dimensions is usu-ally based on extension priniples [7, 8, 10, 11, 12, 13, 15, 17, 18℄. By making use ofextension priniples one is restrited to onsidering expansive dilations A with integeroe�ients. Our onstrutions work for any real, expansive dilation. Moreover, in theextension priniple the number of generators often inreases with the smoothness of thegenerators. We will onstrut pairs of dual wavelet frames generated by one smoothfuntion with good time loalization.It is a well-known fat that a wavelet frame need not have dual frames with waveletstruture. In [21℄ frame wavelets with ompat support and expliit analyti form areonstruted for real dilation matries. However, no dual frames are presented for thesewavelet frames. This an potentially be a problem beause it might be di�ult or evenimpossible to �nd a dual frame with wavelet struture. Sine we exhibit pairs of dualwavelet frames, this issue is avoided.The prinipal importane of having a dual generator of the form (1.1) is that it willinherit properties from ψ preserved by dilation and linearity, e.g., vanishing moments,good time loalization and regularity properties. For a more omplete aount of suhmatters we refer to [16℄.In the rest of this introdution we review basi de�nitions. A frame for a separableHilbert spaeH is a ountable olletion of vetors {fj}j∈J for whih there are onstants
0 < C1 ≤ C2 <∞ suh that

C1 ‖f‖2 ≤
∑

j∈J

∣∣〈f, fj〉
∣∣2 ≤ C2 ‖f‖2 for all f ∈ H.If the upper bound holds in the above inequality, then {fj} is said to be a Bessel sequenewith Bessel onstant C2. For a Bessel sequene {fj} we de�ne the frame operator by

S : H → H, Sf =
∑

j∈J
〈f, fj〉fj.



2. The general form of the onstrution proedure 67This operator is bounded, invertible, and positive. A frame {fj} is said to be tight ifwe an hoose C1 = C2; this is equivalent to S = C1I where I is the identity operator.Two Bessel sequenes {fj} and {gj} are said to be dual frames if
f =

∑

j∈J
〈f, gj〉fj ∀f ∈ H.It an be shown that two suh Bessel sequenes are indeed frames. Given a frame {fj},at least one dual always exists; it is alled the anonial dual and is given by {S−1fj}.Only a frame, whih is not a basis, has several duals.For f ∈ L1(Rn) the Fourier transform is de�ned by f̂(ξ) =

∫
Rn f(x)e−2πi〈ξ,x〉dx withthe usual extension to L2(Rn).Sets in Rn are, in general, onsidered equal if they are equal up to sets of measurezero. The boundary of a set E is denoted by ∂E, the interior by E◦, and the losureby E. Let B ∈ GLn(R). A multipliative tiling set E for {Bj : j ∈ Z} is a subset ofpositive measure suh that

∣∣∣Rn \ ∪j∈ZB
j(E)

∣∣∣ = 0 and ∣∣∣Bj(E) ∩Bl(E)
∣∣∣ = 0 for l 6= j. (1.2)In this ase we say that {Bj(E) : j ∈ Z

} is an almost everywhere partition of Rn, orthat it tiles Rn. A multipliative tiling set E is bounded if E is a bounded set and
0 /∈ E. By B-dilative periodiity of a funtion f : Rn → C we understand f(x) = f(Bx)for a.e. x ∈ Rn, and by a B-dilative partition of unity we understand ∑j∈Z f(Bjx) = 1;note that the funtions in the �partition of unity� are not assumed to be non-negative,but an take any real or omplex value.A (full-rank) lattie Γ in Rn is a point set of the form Γ = PZn for some P ∈ GLn(R).The determinant of Γ is d(Γ) = |detP |; note that the generating matrix P is not unique,and that d(Γ) is independent of the partiular hoie of P .2. The general form of the onstrution proedureFix the dimension n ∈ N. We let A ∈ GLn(R) be expansive, i.e., all eigenvalues of Ahave absolute value greater than one, and denote the transpose matrix by B = At. Forany suh dilation A, we want to onstrut a pair of funtions that generate dual waveletframes for some translation lattie. Our onstrution is based on the following resultwhih is a onsequene of the haraterizing equations for dual wavelet frames by Chui,Czaja, Maggioni, and Weiss [6, Theorem 4℄.Theorem 2.1. Let A ∈ GLn(R) be expansive, let Γ be a lattie in Rn, and let Ψ =
{ψ1, . . . , ψL}, Ψ̃ = {ψ̃1, . . . , ψ̃L} ⊂ L2(Rn). Suppose that the two wavelet systems
{DAjTγψl : j ∈ Z, γ ∈ Γ, l = 1, . . . , L} and {DAjTγψ̃l : j ∈ Z, γ ∈ Γ, l = 1, . . . , L} formBessel families. Then {DAjTγψl} and {DAjTγψ̃l} will be dual frames if the followingonditions hold

L∑

l=1

∑

j∈Z

ˆ̃ψl(B
jξ)ψ̂l(Bjξ) = d(Γ) a.e. ξ ∈ Rn, (2.1)

L∑

l=1

ˆ̃ψl(ξ)ψ̂l(ξ + γ) = 0 a.e. ξ ∈ Rn for γ ∈ Γ
∗ \ {0}. (2.2)



68 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)Proof. By ξ = Bjω for j ∈ Z, ondition (2.2) beomes
L∑

l=1

ˆ̃
ψl(B

jω)ψ̂l(Bjω + γ) = 0 a.e. ω ∈ Rn for γ ∈ Γ
∗ \ {0}. (2.3)We use the notation as in [6℄, thus Λ(A,Γ) = {α ∈ Rn : ∃(j, γ) ∈ Z × Γ∗ : α = B−jγ}and IA,Γ(α) = {(j, γ) ∈ Z × Γ∗ : α = B−jγ}. Sine IA,Γ(α) ⊂ Z × (Γ∗ \ {0}) for any

α ∈ Λ(A,Γ) \ {0}, equation (2.3) yields
1

d(Γ)

∑

(j,γ)∈IA,Γ(α)

L∑

l=1

ˆ̃
ψl(B

jω)ψ̂l(Bj(ω +B−jγ)) = 0 a.e. ω ∈ Rnfor α 6= 0. By IA,Γ(0) = Z × {0}, we an rewrite (2.1) as
1

d(Γ)

∑

(j,γ)∈IA,Γ(0)

L∑

l=1

ˆ̃ψl(B
jω)ψ̂l(Bj(ω +B−jγ)) = 1 a.e. ω ∈ Rn,using that B−jγ = 0 for all j ∈ Z. Gathering the two equations displayed above yields

1

d(Γ)

∑

(j,γ)∈IA,Γ(α)

L∑

l=1

ˆ̃
ψl(B

jω)ψ̂l(Bj(ω +B−jγ)) = δα,0 a.e. ω ∈ Rn,for all α ∈ Λ(A,Γ). The onlusion follows now from [6, Theorem 4℄.The following result, Lemma 2.2, gives a su�ient ondition for a wavelet system toform a Bessel sequene; it is an extension of [3, Theorem 11.2.3℄ from L2(R) to L2(Rn).Lemma 2.2. Let A ∈ GLn(R) be expansive, Γ a lattie in Rn, and φ ∈ L2(Rn). Supposethat, for some set M ⊂ Rn satisfying ∪l∈ZB
l(M) = Rn,

C2 =
1

d(Γ)
sup
ξ∈M

∑

j∈Z

∑

γ∈Γ∗

∣∣∣φ̂(Bjξ)φ̂(Bjξ + γ)
∣∣∣ <∞. (2.4)Then the wavelet system {DAjTγφ}j∈Z,γ∈Γ is a Bessel sequene with bound C2. Further,if also

C1 =
1

d(Γ)
inf
ξ∈M


∑

j∈Z

∣∣∣φ̂(Bjξ)
∣∣∣
2
−
∑

j∈Z

∑

γ∈Γ∗\{0}

∣∣∣φ̂(Bjξ)φ̂(Bjξ + γ)
∣∣∣


 > 0, (2.5)holds, then {DAjTγφ}j∈Z,γ∈Γ is a frame for L2(Rn) with frame bounds C1 and C2.Proof. The statement follows diretly by applying Theorem 3.1 in [5℄ on generalizedshift invariant systems to wavelet systems. In the general result for generalized shiftinvariant systems [5, Theorem 3.1℄, the supremum/in�mum is taken over Rn, but be-ause of the B-dilative periodiity of the series in (2.4) and (2.5) for wavelet systems, itsu�es to take the supremum/in�mum over a set M ⊂ Rn that has the property that

∪l∈ZB
l(M) = Rn up to sets of measure zero.



2. The general form of the onstrution proedure 69Theorem 2.1 and Lemma 2.2 are all we need to prove the following result on pairsof dual wavelet frames.Theorem 2.3. Let A ∈ GLn(R) be expansive and ψ ∈ L2(Rn). Suppose that ψ̂ is abounded, real-valued funtion with supp ψ̂ ⊂ ∪dj=0B
−j(E) for some d ∈ N0 and somebounded multipliative tiling set E for {Bj : j ∈ Z

}, and that
∑

j∈Z

ψ̂(Bjξ) = 1 for a.e. ξ ∈ Rn. (2.6)Let bj ∈ C for j = −d, . . . , d and let m = max {j : bj 6= 0} and m = −min {j : bj 6= 0}.Take a lattie Γ in Rn suh that
( d⋃

j=0

B−j(E) + γ
)
∩

m+d⋃

j=−m
B−j(E) = ∅ for all γ ∈ Γ

∗ \ {0}, (2.7)and de�ne the funtion φ by
φ(x) = d(Γ)

m∑

j=−m
bj |detA|−j ψ(A−jx) for x ∈ Rn. (2.8)If b0 = 1 and bj + b−j = 2 for j = 1, 2, . . . , d, then the funtions ψ and φ generate dualframes {DAjTγψ}j∈Z,γ∈Γ and {DAjTγφ}j∈Z,γ∈Γ for L2(Rn).Proof. On the Fourier side, the de�nition in (2.8) beomes

φ̂(ξ) = d(Γ)
m∑

j=−m
bjψ̂(Bjξ).Sine ψ̂ by assumption is ompatly supported in a �ringlike� struture bounded awayfrom the origin, this will also be the ase for φ̂. This property implies that ψ and φ willgenerate wavelet Bessel sequenes. The details are as follows. The support of ψ̂ and φ̂is

supp ψ̂ ⊂
d⋃

j=0

B−j(E), supp φ̂ ⊂
m+d⋃

j=−m
B−j(E). (2.9)Note that 0 ≤ m,m ≤ d. The sets {Bj(E) : j ∈ Z

} tiles Rn, whereby we see that
∣∣∣ supp ψ̂(Bj·) ∩B−d(E)

∣∣∣ = 0 for j < 0 and j > d, (2.10)and,
∣∣∣ supp φ̂(Bj·) ∩B−d(E)

∣∣∣ = 0 for j < −m and j > m+ d. (2.11)Sine m,m ≥ 0, ondition (2.7) implies that ψ̂(Bjξ)ψ̂(Bjξ + γ) = 0 for j ≥ 0 and
γ ∈ Γ∗ \ {0}. Therefore, using (2.10), we �nd that

∑

j∈Z

∑

γ∈Γ∗

∣∣∣ψ̂(Bjξ)ψ̂(Bjξ + γ)
∣∣∣ =

d∑

j=0

(
ψ̂(Bjξ)

)2
<∞ for ξ ∈ B−d(E).



70 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)An appliation of Lemma 2.2 with M = B−d(E) shows that ψ generates a Besselsequene. Similar alulations using (2.11) will show that φ generates a Bessel sequene;in this ase the sum over γ ∈ Γ∗ will be �nite, but it will in general have more than onenonzero term.To onlude that ψ and φ generate dual wavelet frames we will show that ondi-tions (2.1) and (2.2) in Theorem 2.1 hold. By B-dilation periodiity of the sum inondition (2.1), it is su�ient to verify this ondition on B−d(E). For ξ ∈ B−d(E) wehave by (2.10),
1

d(Γ)

∑

j∈Z

ψ̂(Bjξ)φ̂(Bjξ) =
1

d(Γ)

d∑

j=0

ψ̂(Bjξ)φ̂(Bjξ)

= ψ̂(ξ)
[
b0ψ̂(ξ) + b1ψ̂(Bξ) + · · · + bdψ̂(Bdξ)

]

+ ψ̂(Bξ)
[
b−1ψ̂(ξ) + b0ψ̂(Bξ) + · · · + bd−1ψ̂(Bdξ)

]
+ · · ·

+ ψ̂(Bdξ)
[
b−dψ̂(ξ) + · · · + b−1ψ̂(Bd−1ξ) + b0ψ̂(Bdξ)

]
,and further, by an expansion of these terms,

=
d∑

j,l=0

bl−jψ̂(Bjξ)ψ̂(Blξ)

= b0

d∑

j=0

ψ̂(Bjξ)2 +
d∑

j,l=0
j>l

(bj−l + bl−j)ψ̂(Bjξ)ψ̂(Blξ).Using that b0 = 1 and bj−l + bl−j = 2 for j 6= l and j, l = 0, . . . , d, we arrive at
1

d(Γ)

∑

j∈Z

ψ̂(Bjξ)φ̂(Bjξ) =
d∑

j=0

ψ̂(Bjξ)2 +
d∑

j,l=0
j>l

2ψ̂(Bjξ)ψ̂(Blξ)

=

( d∑

j=0

ψ̂(Bjξ)

)2

=

(∑

j∈Z

ψ̂(Bjξ)

)2

= 1,exhibiting that ψ and φ satisfy ondition (2.1).By (2.9) we see that ondition (2.7) implies that the funtions φ̂ and ψ̂(· + γ) willhave disjoint support for γ ∈ Γ∗ \ {0}, hene (2.2) is satis�ed.Remark 1. The use of the parameters bj in the de�nition of the dual generator togetherwith the ondition b−j + bj = 2 was �rst seen in the work of Christensen and Kim [4℄on pairs of dual Gabor frames.We an restate Theorem 2.3 for wavelet systems with standard translation lattie
Zn and dilation Ã = P−1AP , where P ∈ GLn(R) is so that Γ = PZn. The resultfollows diretly by an appliation of the relations D

ÃjDP = DPDAj for j ∈ Z and
DPTPk = TkDP for k ∈ Zn, and the fat that DP is unitary as an operator on L2(Rn).



2. The general form of the onstrution proedure 71Corollary 2.4. Suppose ψ, {bj}, A and Γ are as in Theorem 2.3. Let P ∈ GLn(R) be suhthat Γ = PZn, and let Ã = P−1AP . Then the funtions ψ̃ = DPψ and φ̃ = DPφ, where
φ is de�ned in (2.8), generate dual frames {D

ÃjTkψ̃}j∈Z,k∈Zn and {D
ÃjTkφ̃}j∈Z,k∈Znfor L2(Rn).The following Example 1 is an appliation of Theorem 2.3 in L2(R2) for the quinunxmatrix. In partiular, we onstrut a partition of unity of the form (2.6) for the quinunxmatrix.Example 1. The quinunx matrix is de�ned as

A =

(
1 −1
1 1

)
,and its ation on R2 orresponds to a ounter lokwise rotation of 45 degrees and adilation by √

2I2×2. De�ne the tent shaped, pieewise linear funtion g by

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

J5

J4

J2

J3

J1

x1

x2

Figure 1: Sketh of the triangular domains Ji, i = 1, 2, 3, 4, 5.
g(x1, x2) =





−1 + 2x1 + 2x2, for (x1, x2) ∈ J1,

2x2, for (x1, x2) ∈ J2,

2x1, for (x1, x2) ∈ J3,

2 − 2x1, for (x1, x2) ∈ J4,

2 − 2x2, for (x1, x2) ∈ J5,

0 otherwise,where the sets Ji are the triangular domains skethed in Figure 1. Note that the valueat �the top of the tent� is g(1/2, 1/2) = 1. De�ne ψ̂ as a mirroring of g in the x1 axis



72 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)and the x2 axis:
ψ̂(ξ1, ξ2) =





g(ξ1, ξ2) for (ξ1, ξ2) ∈ [0,∞) × [0,∞) ,

g(ξ1,−ξ2) for (ξ1, ξ2) ∈ [0,∞) × (−∞, 0) ,

g(−ξ1, ξ2) for (ξ1, ξ2) ∈ (−∞, 0) × [0,∞) ,

g(−ξ1,−ξ2) for (ξ1, ξ2) ∈ (−∞, 0) × (−∞, 0) .Sine the transpose B of the quinunx matrix also orresponds to a rotation of 45degrees (but lokwise) and a dilation by √
2I2×2, we see that ∑j∈Z ψ̂(Bjξ) = 1.We are now ready to apply Theorem 2.3 with E = [−1, 1]2\B−1([−1, 1]2) = [−1, 1]2\

I1 and d = 2; the set E is the union of the domians J4 and J5 and their mirrored versions.We hoose b−2 = b−1 = 0 and b1 = b2 = 2d(Γ), hene m = 0 and m = 2. Therefore,
d⋃

j=0

B−j(E),
m+d⋃

j=−m
B−j(E) ⊂ [−1, 1]2 ,that shows that we an take Γ∗ = 2Z2 or Γ = 1/2Z2, sine ([−1, 1]2 + γ) ∩ [−1, 1]2 = ∅whenever 0 6= γ ∈ 2Z2. De�ning the dual generator aording to (2.14) yields

φ(x) = (1/4)ψ(x) + (1/4)ψ(A−1x) + (1/8)ψ(A−2x); (2.12)using that d(Γ) = 1/4, and we remark that φ̂ is a pieewise linear funtion sine this isthe ase for ψ̂. The onlusion from Theorem 2.3 is that ψ and φ generate dual frames
{DAjTk/2ψ}j,k∈Z and {DAjTk/2φ}j,k∈Z for L2(R2).The frame bounds an be found using Lemma 2.2 sine the series (2.4) and (2.5)are �nite sums on E; for {DAjTk/2ψ} one �nds C1 = 4/3 and C2 = 4.When the result on onstruting pairs of dual wavelet frames is written in thegenerality of Theorem 2.3, it is not always lear how to hoose the set E and the lattie
Γ. In Example 1 we showed how this an be done for the quinunx dilation matrix andonstruted a pair of dual frame wavelets. In Setion 3 and Theorem 3.3 we speify howto hoose E and Γ for general dilations. The issue of exhibiting funtions ψ satisfyingthe ondition (2.6) is addressed in Setion 4.In one dimension, however, it is straightforward to make good hoies of E and Γ asis seen by the following orollary of Theorem 2.3. The orollary uni�es the onstrutionproedures in Theorem 2 and Proposition 1 from [16℄ in a general proedure.Corollary 2.5. Let d ∈ N0, a > 1, and ψ ∈ L2(R). Suppose that ψ̂ is a bounded,real-valued funtion with supp ψ̂ ⊂ [−ac,−ac−d−1] ∪ [ac−d−1, ac] for some c ∈ Z, andthat ∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R. (2.13)Let bj ∈ C for j = −d, . . . , d, let m = −min {j : {bj 6= 0}}, and de�ne the funtion φby
φ(x) =

d∑

j=−m
bja

−jψ(a−jx) for x ∈ R. (2.14)



3. A speial ase of the onstrution proedure 73Let b ∈ (0, a−c(1 + am)−1
]. If b0 = b and bj + b−j = 2b for j = 1, 2, . . . , d, then ψ and

φ generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).Proof. In Theorem 2.3 for n = 1 and A = a we take E = [−ac,−ac−1]∪ [ac−1, ac] as themultipliative tiling set for {aj : j ∈ Z
}. The assumption on the support of ψ̂ beomes

supp ψ̂ ⊂
d⋃

j=0

a−j(E) = [−ac,−ac−d−1] ∪ [ac−d−1, ac].Moreover, sine
d⋃

j=0

a−j(E) ⊂ [−ac, ac] ,
2d⋃

j=−m
a−j(E) ⊂ [−ac+m, ac+m] ,and

([−ac, ac] + γ) ∩ [−ac+m, ac+m] = ∅ for |γ| ≥ ac + ac+m = ac(1 + am),the hoie Γ∗ = b−1Z for b−1 ≥ ac(1 + am) satis�es equation (2.7). This orresponds to
Γ = bZ for 0 < b ≤ a−c(1 + am)−1.The assumptions in Corollary 2.5 imply that m ∈ {0, 1, . . . , d}; we note that in ase
m = 0, the orollary redues to [16, Theorem 2℄.3. A speial ase of the onstrution proedureWe aim for a more automated onstrution proedure than what we have from The-orem 2.3, in partiular, we therefore need to deal with good ways of hoosing E and
Γ. The basi idea in this automation proess will be to hoose E as a dilation of thedi�erene between I∗ and B−1(I∗), where I∗ is the unit ball in a norm in whih thematrix B = At is expanding �in all diretions�; we will make this statement preise inSetion 3.1. This idea is instrumental in the proof of Theorem 3.3.3.1. Some results on expansive matriesWe need the following well-known equivalent onditions1 for a (non-singular) matrixbeing expansive.Proposition 3.1. For B ∈ GLn(R) the following assertions are equivalent:(i) B is expansive, i.e., all eigenvalues λi of B satisfy |λi| > 1.(ii) For any norm | · | on Rn there are onstants λ > 1 and c ≥ 1 suh that

|Bjx| ≥ 1/cλj |x| for all j ∈ N0,for any x ∈ Rn.(iii) There is a Hermitian norm | · |∗ on Rn and a onstant λ > 1 suh that
|Bjx|∗ ≥ λj |x|∗ for all j ∈ N0,for any x ∈ Rn.1See Proposition A.1 in Chapter 1 for a more extensive list of equavalent onditions and a proof.



74 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)(iv) E ⊂ λE ⊂ BE for some ellipsoid E = {x ∈ Rn : |Px| ≤ 1}, P ∈ GLn(R) and
λ > 1.By Proposition 3.1 we have that for a given expansive matrix B, there exists a salarprodut with the indued norm | · |∗ so that

|Bx|∗ ≥ λ |x|∗ for x ∈ Rn,holds for some λ > 1. We say that | · |∗ is a norm assoiated with the expansive matrix
B. Note that suh a norm is not unique; we will follow the onstrution as in theproof of [2, Lemma 2.2℄, so let c and λ be as in (ii) in Proposition 3.1 for the standardEulidean norm with 1 < λ < |λi| for i = 1, . . . , n, where λi are the eigenvalues of
B. For k ∈ N satisfying k > 2 ln c/ ln λ we introdue the symmetri, positive de�nitematrix K ∈ GLn(R):

K = I + (B−1)tB−1 + · · · + (B−k)tB−k. (3.1)The salar produt assoiated with B is then de�ned by 〈x, y〉∗ = xtKy. It might notbe e�ortless to estimate c and λ for some given B, but it is obvious that we just need topik k ∈ N suh that BtKB− λ2K beomes positive semi-de�nite for some λ > 1 sinethis orresponds to 〈KBx,Bx〉 ≥ λ2 〈Kx, x〉, that is, |Bx|2∗ ≥ λ2 |x|2∗ for all x ∈ Rn.We let I∗ denote the unit ball in the Hermitian norm | · |∗ = |K1/2·| assoiated wth
B, i.e.,
I∗ = {x ∈ Rn : |x|∗ ≤ 1} =

{
x ∈ Rn : |K1/2x| ≤ 1

}
=
{
x ∈ Rn : xtKx ≤ 1

}
, (3.2)and we let O∗ denote the annulus

O∗ = I∗ \B−1(I∗).The ringlike struture of O∗ is guaranteed by the fat that B is expanding in all dire-tions in the | · |∗ norm, i.e.,
I∗ ⊂ λI∗ ⊂ B(I∗), λ > 1, (3.3)whih is (iv) in Proposition 3.1. We note that by an orthogonal substitution I∗ takes theform {x ∈ Rn : µ1x̃

2
1 + · · · + µnx̃

2
n ≤ 1} where µi are the positive eigenvalues of K and

x = Qx̃ with Q ∈ O(n) omprising of the ith eigenvetor of K as the ith olumn. Theannulus O∗ is a bounded multipliative tiling set for {Bj : j ∈ Z}. This is a onsequeneof the following result.Lemma 3.2. Let B ∈ GLn(R) be an expansive matrix. For x 6= 0 there is a unique
j ∈ Z so that Bjx ∈ O∗; that is,

Rn \ {0} =
⋃

j∈Z

Bj(O∗) with disjoint union. (3.4)



3. A speial ase of the onstrution proedure 75Proof. From equation (3.3) we know that {Bl(I∗)}l∈Z is a nested sequene of subsetsof Rn, thus
Bl(I∗) \Bl−1(I∗) = Bl(O∗), l ∈ Z,are disjoint sets. Sine ∣∣B−jx

∣∣
∗ ≤ λ−j |x|∗ and ∣∣Bjx

∣∣
∗ ≥ λj |x|∗ for j ≥ 0 and λ > 1, wealso have

l⋃

m=−l+1

Bm(O∗) = Bl(I∗) \B−l(I∗) =
{
x ∈ Rn : |B−lx|∗ ≤ 1 and |Blx|∗ > 1

}

⊃
{
x ∈ Rn : λ−l |x|∗ ≤ 1 and λl |x|∗ > 1

}
=
{
x ∈ Rn : λ−l < |x|∗ ≤ λl

}
.Taking the limit l → ∞ we get (3.4).Example 2. Let the following dilation matrix be given

A =

(
3 −3
1 0

)
. (3.5)Here we are interested in the transpose matrix B = At with eigenvalues µ1,2 = 3/2 ±

i
√

3/2, hene B is an expansive matrix with |µ1,2| =
√

3 > 1. The dilation matrix B isnot expanding in the standard norm | · |2 in Rn, i.e., I2 6⊂ B(I2), as shown by Figure 2.In order to have B expanding the unit ball we need to use the Hermitian norm from
K4 K3 K2 K1 0 1 2 3 4

K4

K2

2

4

Figure 2: Boundaries of the sets I2, B(I2), B2(I2), and B3(I2) marked by solid, long dashed,dashed, and dotted lines, respetively. Note that I2 \ B(I2) is non-empty, and even
I2 \B2(I2) is non-empty.(iii) in Proposition 3.1 assoiated with B. In (3.1) we take k = 2 so that the real,symmetri, positive de�nite matrix K is

K = I + (B−1)tB−1 + (B−2)tB−2 =

(
28/9 16/9
16/9 8/3

)
,



76 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)and let 〈x, y〉∗ := xtKy. The hoie k = 2 su�es sine it makes BtKB − λ2K semi-positive de�nite for λ = 1.03 and thus
|Bx|∗ ≥ λ |x|∗ , x ∈ R2,holds for λ = 1.03.Figure 3 and 4 illustrate that B indeed expands the Hermitian norm unit ball I∗ inall diretions. We also remark that the Hermitian norm with k = 1 will not make the
K4 K3 K2 K1 0 1 2 3 4

K6

K4

K2

2

4

6

Figure 3: The unit ball I∗ in the Hermitian norm | · |
∗
assoiated with B and its dilations

B(I∗), B
2(I∗), B

3(I∗). Only the boundaries are marked.dilation matrix B expanding in Rn; in this ase we have a situation similar to Figure 2.3.2. A rude lattie hoieLet us onsider the setup in Theorem 2.3 with the set E = Bc(O∗) for some c ∈ Z,where the norm | · |∗ = |K1/2·| is assoiated with B. Let µ be the smallest eigenvalueof K suh that ℓ =
√

1/µ is the largest semi-prinipal axis of the ellipsoid I∗, i.e.,
ℓ = maxx∈I∗ |x|2. Then we an take any lattie Γ = PZn, where P is a non-singularmatrix satisfying

‖P‖2 ≤ 1

ℓ ‖Ac‖2 (1 + ‖Am‖2)
, (3.6)as our translation lattie in Theorem 2.3. To see this, reall that we are looking for alattie Γ∗ suh that, for γ ∈ Γ∗ \ {0},

supp φ̂ ∩ supp ψ̂(· ± γ) = ∅. (3.7)For our hoie of E we �nd that supp φ̂ ⊂ Bc+m(I∗) and supp ψ̂ ⊂ Bc(I∗). Sine
∣∣Bc+mx

∣∣
2 ≤

∥∥Bc+m
∥∥
2 |x|2 ≤

∥∥Bc+m
∥∥
2 ℓ for any x ∈ I∗,
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K1.0 K0.5 0 0.5 1.0

K1.0

K0.5

0.5

1.0

Figure 4: A zoom of Figure 3. Boundaries of the sets I∗, B(I∗), B2(I∗), and B3(I∗) markedby solid, long dashed, dashed, and dotted lines, respetively.and similar for Bcx, we have the situation in (3.7) whenever |γ|2 ≥ ℓ(‖Ac‖2+‖Ac+m‖2).Here we have used that for the 2-norm ‖A‖2 = ‖B‖2. For z ∈ Zn we have
|z|2 ≤ ‖P t‖2 |(P t)−1z|2 = ‖P‖2 |(P t)−1z|2,therefore, by |z|2 ≥ 1 for z 6= 0, we have
∣∣∣(P t)−1z

∣∣∣
2
≥ 1

‖P‖2

for z ∈ Z \ {0}.Now, by assuming that P satis�es (3.6), we have
|γ|2 = |(P t)−1z|2 ≥ 1/‖P‖2 ≥ ℓ ‖Ac‖2 (1 + ‖Am‖2) ≥ l(‖Ac‖2 +

∥∥Ac+m
∥∥
2)for 0 6= γ = (P t)−1z ∈ (P t)−1Zn = Γ∗, hene the laim follows.A lattie hoie based on (3.6) an be rather rude, and produes onsequently awavelet system with unneessarily many translates. From equation (3.6) it is obviousthat any lattie Γ = PZn with ‖P‖ su�iently small will work as translation lattie forour pair of generators ψ and φ. Hene, the hallenging part is to �nd a sparse translationlattie whereby we understand a lattie Γ with large determinant d(Γ) := |detP |. Inthe dual lattie system this orresponds to a dense lattie Γ∗ with small volume d(Γ∗)of the fundamental parallelotope IΓ∗ sine d(Γ)d(Γ∗) = 1. In Theorem 3.3 in the nextsetion we make a better hoie of the translation lattie ompared to what we havefrom (3.6).Using a rude lattie approah as above, we an easily transform the translation lat-tie to the integer lattie if we allow multiple generators. We pik a matrix P that sat-is�es ondition (3.6) and whose inverse is integer valued, i.e., Q := P−1 ∈ GLn(Z). The



78 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)onlusion from Theorem 2.3 is that {DAjTQ−1kψ}j∈Z,k∈Zn and {DAjTQ−1kφ}j∈Z,k∈Znare dual frames. The order of the quotient group Q−1Zn/Zn is |detQ|, so let {di :
i = 1, . . . , |detQ|} denote a omplete set of representatives of the quotient group, andde�ne

Ψ = {Tdi
ψ : i = 1, . . . , |detQ|} , Φ = {Tdi

φ : i = 1, . . . , |detQ|} .Sine {DAjTQ−1kψ}j∈Z,k∈Zn = {DAjTkψ}j∈Z,k∈Zn,ψ∈Ψ and likewise for the dual frame,the statement follows.3.3. A onrete version of Theorem 2.3We list some standing assumptions and onventions for this setion.General setup. We assume A ∈ GLn(R) is expansive. Let | · |∗ = 〈 · , · 〉1/2∗ be aHermitian norm as in (iii) in Proposition 3.1 assoiated with B = At and let K ∈
GLn(R) be the symmetri, positive de�nite matrix suh that 〈x, y〉∗ = ytKx. Let
Λ := diag(λ1, . . . , λn), where {λi} are the eigenvalues of K, and let Q ∈ O(n) be suhthat the spetral deomposition of K is QtKQ = Λ.The following result is a speial ase of Theorem 2.3, where we, in partiular, speifyhow to hoose the translation lattie Γ. Sine we in Theorem 3.3 de�ne Γ, it allows fora more automated onstrution proedure.Theorem 3.3. Let A,K,Q,Λ be as in the general setup. Let d ∈ N0 and ψ ∈ L2(Rn).Suppose that ψ̂ is a bounded, real-valued funtion with supp ψ̂ ⊂ Bc(I∗) \ Bc−d−1(I∗)for some c ∈ Z, and that (2.6) holds. Take Γ = (1/2)AcQ

√
ΛZn. Then the funtion ψand the funtion φ de�ned by

φ(x) = d(Γ)


ψ(x) + 2

d∑

j=0

|detA|−j ψ(A−jx)


 for x ∈ Rn, (3.8)generate dual frames {DAjTγψ}j∈Z,γ∈Γ and {DAjTγφ}j∈Z,γ∈Γ for L2(Rn)Remark 2. Note that d(Γ) = 2−n |detA|c (λ1 · · ·λn)1/2 and √

Λ = diag(
√
λ1, . . . ,

√
λn).Proof. The annulus O∗ is a bounded multipliative tiling for the dilations {Bj : j ∈ Z
}by Lemma 3.2, hene this is also the ase for Bc(O∗) for c ∈ Z. The support of ψ̂ is

supp ψ̂ ⊂ Bc(I∗) \ Bc−d−1(I∗) = ∪dj=0B
c−j(O∗). Therefore we an apply Theorem 2.3with E = Bc(O∗), bj = 2 and b−j = 0 for j = 1, . . . , d so that m = 0 and m = d.The only thing left to justify is the hoie of the translation lattie Γ. We need toshow that ondition (2.7) with m = 0 and m = d in Theorem 2.3 is satis�ed by

Γ∗ = 2BcQΛ−1/2Zn. By the orthogonal substitution x = Qx̃ the quadrati form xtKxof equation (3.2) redues to
λ1x̃

2
1 + · · · + λnx̃

2
n,where λi > 0, hene in the x̃ = Qtx oordinates I∗ is given by

Ĩ∗ =

{
x̃ ∈ Rn :

(
x̃1

1/
√
λ1

)2

+ · · · +
(

x̃n

1/
√
λn

)2

< 1

}



3. A speial ase of the onstrution proedure 79whih is an ellipsoid with semi axes 1√
λ1
, . . . , 1√

λn
. Therefore, in the x̃ oordinates,

(Ĩ∗ + γ) ∩ Ĩ∗ = ∅ for 0 6= γ ∈ 2Λ−1/2Zn,or, in the x oordinates,
(I∗ + γ) ∩ I∗ = ∅ for 0 6= γ ∈ 2QΛ−1/2Zn.By applying Bc to this relation it beomes

(
Bc(I∗) + γ

) ∩Bc(I∗) = ∅ for 0 6= γ ∈ Γ
∗ = 2BcQΛ−1/2Zn, (3.9)whereby we see that ondition (2.7) is satis�ed with m = 0 and Γ∗ = 2BcQΛ−1/2Zn.The dual lattie of Γ∗ is Γ = 1/2A−cQΛ1/2Zn. It follows from Theorem 2.3 that ψ and

φ generate dual frames for this hoie of the translation lattie.The frame bounds for the pair of dual frames {DAjTγψ}j∈Z,γ∈Γ and {DAjTγφ}j∈Z,γ∈Γin Theorem 3.3 an be given expliitly as
C1 =

1

d(Γ)
inf

ξ∈Bc−d(O∗)

d∑

j=0

(
ψ̂(Bjξ)

)2
, C2 =

1

d(Γ)
sup

ξ∈Bc−d(O∗)

d∑

j=0

(
ψ̂(Bjξ)

)2
,and

C1 =
1

d(Γ)
inf

ξ∈Bc−d(O∗)

d∑

j=−d

(
φ̂(Bjξ)

)2
, C2 =

1

d(Γ)
sup

ξ∈Bc−d(O∗)

d∑

j=−d

(
φ̂(Bjξ)

)2
,respetively. The frame bounds do not depend on the spei� struture of Γ, but onlyon the determinant of Γ; in partiular, the ondition number C2/C1 is independent of

Γ. To verify these frame bounds, we note that equation (3.9) together with the fat
supp ψ̂, supp φ̂ ⊂ Bc(I∗) imply that

ψ̂(ξ)ψ̂(ξ + γ) = φ̂(ξ)φ̂(ξ + γ) = 0 for a.e. ξ ∈ Rn and γ ∈ Γ
∗ \ {0}.Therefore, by equations (2.10) and (2.11) with E = Bc(O∗), m = 0 and m = d, we have

∑

j∈Z

∑

γ∈Γ∗

∣∣∣ψ̂(Bjξ)ψ̂(Bjξ + γ)
∣∣∣ =

∑

j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2

=
d∑

j=0

(
ψ̂(Bjξ)

)2
,and

∑

j∈Z

∑

γ∈Γ∗

∣∣∣φ̂(Bjξ)φ̂(Bjξ + γ)
∣∣∣ =

∑

j∈Z

∣∣∣φ̂(Bjξ)
∣∣∣
2

=
d∑

j=−d

(
φ̂(Bjξ)

)2
,for ξ ∈ Bc−d(O∗). The stated frame bounds follow from Lemma 2.2.



80 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)Example 3. Let A and K be as in Example 2. The eigenvalues of K are λ1 = (26 +
2
√

65)/9 ≈ 4.7 and λ2 = (26 − 2
√

65)/9 ≈ 1.1. Let the normalized (in the standardnorm) eigenvetors of K be olumns of Q ∈ O(2) and Λ = diag(λ1, λ2), hene QtKQ =
Λ. By the orthogonal transformation x = Qx̃ the Hermitian norm unit ball I∗ beomes

Ĩ∗ =

{
x̃ ∈ R2 :

(
x̃1

1/
√
λ1

)2

+

(
x̃2

1/
√
λ2

)2

< 1

}
⊂ I2whih is an ellipse with semimajor axis 1/

√
λ2 ≈ 0.95 and semiminor axis 1/

√
λ1 ≈ 0.46.Sine Λ−1/2 = diag(1/

√
λ1, 1/

√
λ2), we have

∣∣∣(Ĩ∗ + γ) ∩ Ĩ∗
∣∣∣ = 0 for 0 6= γ ∈ 2Λ−1/2Z2.By the orthogonal substitution bak to x oordinates, we get

|(I∗ + γ) ∩ I∗| = 0 for 0 6= γ ∈ 2QΛ−1/2Z2.Suppose that ψ̂ is a bounded, real-valued funtion with supp ψ̂ ⊂ Bc(I∗)\Bc−d−1(I∗)for c = 1 that satis�es the B-dilative partition (2.6). Sine c = 1 we need to take
Γ∗ = 2B1QΛ−1/2Z2 and Γ = 1/2A−1QΛ1/2Z2, see Figure 5 and 6.

K6 K4 K2 0 2 4 6

K6

K4

K2

2

4

6

Figure 5: The dual lattie Γ
∗ = 2BcQΛ

−1/2Z2 for c = 1 is shown by dots, and the boundaryof the set Bc(I∗) by a solid line. Boundaries of the set Bc(I∗) translated to severaldi�erent γ ∈ Γ∗ \ {0} are shown with dashed lines. Reall that supp ψ̂, supp φ̂ ⊂
Bc(I∗), hene supp φ̂ ∩ supp ψ̂(· + γ) = ∅ for γ ∈ Γ∗ \ {0}.3.4. An alternative lattie hoieLet the setup up and assumptions be as in Theorem 3.3, exept for the lattie Γ whihwe want to hoose di�erently. As in Setion 3.2 the dual lattie Γ∗ needs to satisfy (3.7)for γ ∈ Γ∗ \ {0}. We want to hoose Γ∗ as dense as possible sine this will make thetranslation lattie Γ as sparse as possible and the wavelet system with as few translates
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Figure 6: The translation lattie Γ = (1/2)AcQΛ1/2Z2 for c = 1.as possible. Sine supp ψ̂, supp φ̂ ⊂ Bc(I∗), we are looking for latties Γ∗ that paksthe ellipsoids Bc(I∗) + γ, γ ∈ Γ∗, in a non-overlapping, optimal way. By the oordinatetransformation x̂ = Λ−1/2QtB−cx, the ellipsoid Bc(I∗) turns into the standard unit ball
I2 in Rn. This alulations are as follows.

Bc(I∗) =
{
Bcx : |x|2∗ ≤ 1

}
=
{
x : |K1/2B−cx|22 ≤ 1

}

=

{
x :
∣∣∣K1/2B−cBcQΛ−1/2x̂

∣∣∣
2

2
≤ 1

}

=
{
x :
〈
x̂,Λ−1/2QtKQΛ−1/2x̂

〉
2
≤ 1

}
=
{
x : |x̂|22 ≤ 1

}
,and we arrive at a standard sphere paking problem with lattie arrangement of non-overlapping unit n-balls. The proportion of the Eulidean spae Rn �lled by the balls isalled the density of the arrangement, and it is this density we want as high as possible.Taking Γ as in Theorem 3.3 orresponds to a square paking of the unit n-balls I2+kby the lattie 2Zn, i.e., k ∈ 2Zn. The density of this paking is Vn2−n, where Vn is thevolume of the n-ball: V2n = πn/(n!) and V2n+1 = (22n+1n!πn)/(2n + 1)!. This is notthe densest paking of balls in Rn sine there exists a lattie with density bigger than

1.68n2−n for eah n 6= 1 [9℄; a slight improvement of this lower bound was obtainedin [1℄ for n > 5. Moreover, the densest lattie paking of hyperspheres is known up todimension 8, see [20℄; it is preisely this dense lattie we want to use in plae of 2Zn (atleast whenever n ≤ 8).In R2 Lagrange proved that the hexagonal paking, where eah ball touhes 6 otherballs in a hexagonal lattie, has the highest density π/√12. Hene using PZ2 with
P =

(
2 0

1
√

3

)
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π/

√
12

π/22
= 4/

√
12 = 2/

√
3.It is easily seen that this fator equals the relation between the area of the fundamentalparallelogram of the two latties |det 2I2×2| / |detP |. In Figure 5 we see that eah ellipseonly touhes 4 other ellipses orresponding to the square paking 2Zn; in the optimalpaking eah ellipse touh 6 others. In R3 Gauss proved that the highest density is

π/
√

18 obtained by the hexagonal lose and fae-entered ubi paking; here eah balltouhes 12 other balls.4. Dilative partition of unityWith Theorem 3.3 at hand the only issue left is to speify how to onstrut funtions sat-isfying the partition of unity (2.6) for any given expansive matrix. In the two examplesof this setion we outline possible ways of ahieving this.4.1. Construting a partition of unityAs usual we �x the dimension n ∈ N and the expansive matrix B ∈ GLn(R). In the ex-amples in this setion we onstrut funtions satisfying the assumptions in Theorem 3.3,that is, a real-valued funtion g ∈ L2(Rn) with supp g ⊂ Bc(I∗) \Bc−d−1(I∗) for some
c ∈ Z and d ∈ N0 so that the B-dilative partition

∑

j∈Z

g(Bjξ) = 1 for a.e. ξ ∈ Rn, (4.1)holds.In the onstrution we will use that the radial oordinate of the surfae of the ellip-soid ∂Bj(I∗), j ∈ Z, an be parametrized by the n−1 angular oordinates θ1, . . . , θn−1.The radial oordinate expression will be of the form h(θ1, . . . , θn−1)
−1/2 for some posi-tive, trigonometri funtion h, where h is bounded away from zero and in�nity with thespei� form of h depending on the dimension n and the length and orientation of theellipsoid axes.We illustrate this with the following example in R4. We want to �nd the radialoordinate r of the ellipsoid

{
x ∈ R4 : (x1/ℓ1)

2 + (x2/ℓ2)
2 + (x3/ℓ3)

2 + (x4/ℓ4)
2 = 1

}
, ℓi > 0, i = 1, 2, 3, 4,as a funtion the angular oordinates θ1, θ2 and θ3. We express x = (x1, x2, x3, x4) ∈ R4in the hyperspherial oordinates (r, θ1, θ2, θ3) ∈ {0} ∪ R+ × [0, π] × [0, π] × [0, 2π) asfollows:

x1 = r cos θ1, x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3, x4 = r sin θ1 sin θ2 sin θ3.Then we substitute xi, i = 1, . . . , 4, in the expression above and fator out r2 to obtain
r2f(θ1, θ2, θ3) = 1, where

f(θ1, θ2, θ3) = ℓ−2
1 cos2 θ1 + ℓ−2

2 sin2 θ1 cos2 θ2 (4.2)
+ ℓ−2

3 sin2 θ1 sin2 θ2 cos2 θ3 + ℓ−2
4 sin2 θ1 sin2 θ2 sin2 θ3.



4. Dilative partition of unity 83The onlusion is that r = r(θ1, θ2, θ3) = f(θ1, θ2, θ3)
−1/2.Example 4. For d = 1 in Theorem 3.3 we want g ∈ Cs0(R

n) for any given s ∈ N ∪ {0}.The hoie d = 1 will �x the �size� of the support of g so that supp g ⊂ Bc(I∗)\Bc−2(I∗)for some c ∈ Z. Now let r1 = r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1) denote theradial oordinates of the surfae of the ellipsoids ∂Bc−1(I∗) and ∂Bc(I∗) parametrizedby n− 1 angular oordinates θ1, . . . , θn−1, respetively.Let f be a ontinuous funtion on the annulus S = Bc(O∗) satisfying f |∂Bc−1(I∗) = 1and f |∂Bc(I∗) = 0. Using the parametrizations r1, r2 of the surfaes of the two ellipsoidsand �xing the n−1 angular oordinates we realize that we only have to �nd a ontinuousfuntion f : [r1, r2] → R of one variable (the radial oordinate) satisfying f(r1) = 1 and
f(r2) = 0. For example the general funtion f ∈ C0(S) of d variables an be any of thefuntions below:

f(x) = f(r, θ1, . . . , θn−1) =
r2 − r

r2 − r1
, (4.3a)

f(x) = f(r, θ1, . . . , θn−1) =
(r2 − r)2

(r2 − r1)3
(2(r − r1) + r2 − r1), (4.3b)

f(x) = f(r, θ1, . . . , θn−1) = 1
2 + 1

2 cos π( r−r1r2−r1 ), (4.3)where r = |x| ∈ [r1, r2], θ1, . . . , θn−2 ∈ [0, π], and θn−1 ∈ [0, 2π); reall that r1 =
r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1). In de�nitions (4.3b) and (4.3) the funtion
f even belongs to C1(S).De�ne g ∈ L2(R) by:

g(x) =





1 − f(Bx) for x ∈ Bc−1(I∗) \Bc−2(I∗),

f(x) for x ∈ Bc(I∗) \Bc−1(I∗),

0 otherwise. (4.4)This way g beomes a B-dilative partition of unity with supp g ⊂ Bc(I∗) \Bc−2(I∗), sowe an apply Theorem 3.3 with ψ̂ = g and d = 2.We an simplify the expressions for the radial oordinates r1, r2 of the surfae of theellipsoids ∂Bc−1(I∗) and ∂Bc(I∗) from the previous example by a suitable oordinatehange. The idea is to transform the ellipsoid Bc−1(I∗) to the standard unit ball I2 bya �rst oordinate hange x̃ = Λ1/2QtB−c+1x. This will transform the outer ellipsoid
Bc(I∗) to another ellipsoid. A seond and orthogonal oordinate transform x̂ = Qt′ x̃will make the semiaxes of this new ellipsoid parallel to the oordinate axes, leavingthe standard unit ball I2 unhanged. Here Q′ omes from the spetral deompositionof A−1B−1, i.e., A−1B−1 = Qt′Λ′Q′. In the x̂ oordinates r1 = 1 is a onstant and
r2 = f−1/2 with f of the form (4.2) for n = 4 and likewise for n 6= 4.In the onstrution in Example 4 we assumed that d = 1. The next example worksfor all d ∈ N; moreover, the onstruted funtion will belong to C∞

0 (Rn).Example 5. For su�iently small δ > 0 de�ne ∆1,∆2 ⊂ Rn by
∆1 = Bc−d−1(I∗) + B(0, δ),

∆2 + B(0, δ) = Bc(I∗).



84 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)This makes ∆2 \∆1 a subset of the annulus Bc(I∗)\Bc−d−1(I∗); it is exatly the subset,where points less than δ in distane from the boundary have been removed, or in otherwords
∆2 \ ∆1 + B(0, δ) = Bc(I∗) \Bc−d−1(I∗).For this to hold, we of ourse need to take δ > 0 su�iently small, e.g., suh that

∆1 ⊂ r∆1 ⊂ ∆2 holds for some r > 1.Let h ∈ C∞
0 (Rn) satisfy supph = B(0, 1), h ≥ 0, and ∫ hdµ = 1, and de�ne

hδ = δ−dh(δ−1·). By onvoluting the harateristi funtion on ∆2 \ ∆1 with hδ weobtain a smooth funtion living on the annulus Bc(I∗)\Bc−d−1(I∗). So let p ∈ C∞
0 (Rn)be de�ned by

p = hδ ∗ χ∆2\∆1
,and note that suppp = Bc(I∗) \ Bc−d−1(I∗) sine supphδ = B(0, δ). Normalizing thefuntion p in a proper way will give us the funtion g we are looking for. We willnormalize p by the funtion w:

w(x) =
∑

j∈Z

p(Bjx).For a �xed x ∈ Rn \{0} this sum has either d or d+1 nonzero terms, and w is thereforebounded away from 0 and ∞:
∃c, C > 0 : c < w(x) < C for all x ∈ Rn \ {0},hene we an de�ne a funtion g ∈ C∞

0 (Rn) by
g(x) =

p(x)

w(x)
for x ∈ Rn \ {0}, and, g(0) = 0. (4.5)The funtion g will be an almost everywhere B-dilative partition of unity as is seen byusing the B-dilative periodiity of w:

∑

j∈Z

g(Bjx) =
∑

j∈Z

p(Bjx)

w(Bjx)
=
∑

j∈Z

p(Bjx)

w(x)
=

1

w(x)

∑

j∈Z

p(Bjx) = 1.Sine p is supported on the annulus Bc(I∗) \Bc−d−1(I∗), we an simplify the de�nitionin (4.5) to get rid of the in�nite sum in the denominator; this gives us the followingexpression
g(x) = p(x)/

d∑

j=−d
p(Bjx) for x ∈ Rn \ {0}.We an obtain a more expliit expression for p by the following approah. Let r1 =

r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1) denote the radial oordinates of the surfaeof the ellipsoids ∂Bc−d−1(I∗) and ∂Bc(I∗) parametrized by n − 1 angular oordinates
θ1, . . . , θn−1, respetively. Finally, let p ∈ C∞

0 (Rn) be de�ned by
p(x) = η(|x| − r1) η(r2 − |x|), with r1 = r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1)where θ1, . . . , θn−1 an be found from x, and

η(x) =

{
e−1/x x > 0,

0 x ≤ 0.
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88 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONS1. IntrodutionQuasi-a�ne systems are little known ousins of well-studied a�ne systems also knownas wavelet systems. Let A be an expansive dilation matrix, i.e., n× n real matrix withall eigenvalues |λ| > 1. The a�ne system generated by a funtion ψ ∈ L2(Rn) is
A(ψ) =

{
ψj,k(x) := |detA|j/2 ψ(Ajx− k) : j ∈ Z, k ∈ Zn

}
. (1.1)The a�ne systems are dilation invariant, but not shift invariant. However, if the dilation

A has integer entries, that is AZn ⊂ Zn, then one an modify the de�nition of a�nesystems to obtain shift invariant systems. This leads to the notion of a quasi-a�nesystem
Aq(ψ) =



ψ̃j,k(x) :=

{ |detA|j/2 ψ(Ajx− k) : j ≥ 0, k ∈ Zn

|detA|j ψ(Aj(x− k)) : j < 0, k ∈ Zn



 , (1.2)whih was introdued and investigated for integer, expansive dilation matries by Ronand Shen [20℄. Despite that the orthogonality of the a�ne system annot be arriedover to the orresponding quasi-a�ne system due to the oversampling of negative salesof the a�ne system, it turns out that the frame property is preserved. This importantdisovery is due to Ron and Shen [20℄ who proved that the a�ne system A(ψ) is aframe if, and only if, its quasi-a�ne ounterpart Aq(ψ) is a frame (with the same framebounds). Furthermore, quasi-a�ne systems are shift invariant and thus muh easier tostudy than a�ne systems whih are dilation invariant.The goal of this work is to extend the study of quasi-a�ne systems to the lassof expansive rational dilations. Let A be an expansive dilation with rational entries,that is AQn ⊂ Qn. The �rst author [3℄ generalized the notion of a quasi-a�ne framefor rational, expansive dilations whih oinides with the usual de�nition in the ase ofinteger dilations. The main idea of Ron and Shen [20℄ is to oversample negative salesof the a�ne system at a rate adapted to the sale in order for the resulting system to beshift invariant, i.e., φ ∈ Aq(ψ) ⇒ Tkφ ∈ Aq(ψ) for all k ∈ Zn. In order to de�ne quasi-a�ne systems for rational expansive dilations one needs to oversample both negativeand positive sales of the a�ne system (at a rate proportional to the sale) whihresults in a quasi-a�ne system that in general oinides with the a�ne system only atthe sale zero. This an easily be seen in one dimension where the quasi-a�ne systemhas a relatively simple algebrai form. Suppose that a = p/q ∈ Q is a dilation fator,where |a| > 1, p, q ∈ Z are relatively prime. Then, the quasi-a�ne system assoiatedwith a is given by

Aq(ψ) =

{
|p|j/2 |q|−j ψ(ajx− q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 ψ(ajx− pjk) : j < 0, k ∈ Z

}
. (1.3)In the rational ase it is muh less lear than in the ase of integer, expansive dilations(where both systems oinide at all non-negative sales), whether there is any relation-ship between a�ne and quasi-a�ne systems. Nevertheless, the �rst author proved in[3℄ that the tight frame property is preserved when moving between rationally dilateda�ne and quasi-a�ne systems. This result has initially suggested that there is not muhdi�erene between integer and rational ases.



1. Introdution 89In this work we show that this belief is largely inorret by unovering substantialdi�erenes between the theory of integer dilated and rationally dilated quasi-a�ne sys-tems. For any rational, non-integer dilation we give an example of an a�ne systemwhih is not a frame, but yet, the orresponding quasi-a�ne system is a frame. Thiskind of example does not exist for integer dilations due to the above mentioned resultof Ron and Shen.To understand the broken symmetry between the integer and rational ase we in-trodue a new lass of quasi-a�ne systems indexed by the hoie of the oversamplinglattie Λ ⊂ Zn. In short, the quasi-a�ne system Aq
Λ
(ψ) is de�ned to be the smallestshift invariant system with respet to a lattie Λ, i.e., φ ∈ Aq

Λ
(ψ) ⇒ Tλφ ∈ Aq

Λ
(ψ) for

λ ∈ Λ, whih ontains all elements of the original a�ne system A(ψ). In order to makethis de�nition meaningful we also need to renormalize the elements of Aq
Λ
(ψ) at a rateorresponding to the rate of oversampling as it was done previously. Again, this is bestillustrated in one dimension. We take Λ = (pq)JZ for J ∈ N0 sine this partiular hoiegives the oversampled quasi-a�ne system Aq

Λ
(ψ) a nie algebrai form:

Aq
Λ
(ψ) =





|p|j/2 |q|−j+J/2 ψ(ajx− qJ−jk) : j > J, k ∈ Z

|a|j/2 ψ(ajx− k) : −J ≤ j ≤ J, k ∈ Z

|p|j+J/2 |q|−j/2 ψ(ajx− pj+Jk) : j < −J, k ∈ Z




, (1.4)see Example 3. Then our main result an be stated as follows.Theorem 1.1. The a�ne system A(ψ) is a frame for L2(Rn) if, and only if, every Λ-oversampled quasi-a�ne system Aq

Λ
(ψ) is a frame with uniform frame bounds for all

Λ ⊂ Zn.In the ase when the dilation A is integer-valued, the lass of Λ-oversampled quasi-a�ne systems redues to the standard quasi-a�ne system Aq(ψ) and its dilates, seeExample 2. Hene, the original result of Ron and Shen [20℄ follows immediately fromTheorem 1.1. The proof of Theorem 1.1 is in�uened by the work of Hernández, Labate,Weiss, and Wilson [13, 14℄, where the authors obtain reproduibility haraterizationsof generalized shift invariant (GSI) systems inluding a�ne, wave pakets, and Gaborsystems. The key element of these tehniques is the use of almost periodi funtionswhih was pioneered by Laugesen [17, 18℄ in his work on translational averaging ofthe wavelet funtional. Using these methods Laugesen [18℄ gave another proof of theequivalene of a�ne and quasi-a�ne frames in the integer ase. In this work we showthat these tehniques an be generalized to treat rationally dilated quasi-a�ne systemsas well.In the next part of the paper we investigate more subtle frame properties of quasi-a�ne systems. We haraterize when the anonial dual frame of a Λ-oversampledquasi-a�ne frame Aq
Λ
(ψ) is also a quasi-a�ne frame. In the ase of integer dilations,suh haraterization is due to the �rst author and Weber [5℄. Theorem 1.2 generalizesthis result to the ase of rational dilations. It is remarkable that the existene ofthe anonial quasi-a�ne dual frame is independent of the hoie of the oversamplinglattie Λ. Hene, if suh anonial dual frame exists for some Λ-oversampled quasi-a�nesystem, then it must exist for all latties Λ ⊂ Zn.



90 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSTheorem 1.2. Suppose the quasi-a�ne system Aq
Λ0

(ψ) is a frame for L2(Rn) for somelattie Λ0 ⊂ Zn. Then, the anonial dual frame of Aq
Λ0

(ψ) is of the form Aq
Λ0

(φ) forsome φ ∈ L2(Rn) if, and only if, for all α ∈ Zn \ {0},
tα(ξ) :=

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0. (1.5)In this ase, Aq
Λ
(φ) is the anonial dual frame of Aq

Λ
(ψ) for all latties Λ ⊂ Zn.We also investigate pairs of dual quasi-a�ne frames. Here, the theory of rationallydilated quasi-a�ne frames parallels quite losely that of integer dilated systems. Hene,we have a perfet equivalene between pairs of dual a�ne frames and pairs of dualquasi-a�ne frames, regardless of the hoie of the oversampling lattie Λ.Theorem 1.3. Suppose that A(ψ) and A(φ) are Bessel sequenes in L2(Rn). Then thefollowing are equivalent:(i) A(ψ) and A(φ) are dual frames,(ii) Aq

Λ0
(ψ) and Aq

Λ0
(φ) are dual frames for some oversampling lattie Λ0 ⊂ Zn,(iii) Aq

Λ
(ψ) and Aq

Λ
(φ) are dual frames for all oversampling latties Λ ⊂ Zn.Theorem 1.3 points at a loation of the broken symmetry in the equivalene betweena�ne and quasi-a�ne frames in the rational non-integer ase. If suh non-equivaleneexists, then it an only exhibit itself for quasi-a�ne frames whih do not have a dualquasi-a�ne frame. The last setion of this work is devoted to showing that suh phenom-ena does indeed exist. For any non-integer rational dilation fator we give an exampleof a quasi-a�ne frame Aq

Λ
(ψ) suh that the orresponding a�ne system A(ψ) is not aframe.Theorem 1.4. For eah rational non-integer dilation fator a > 1, there exists a funtion

ψ ∈ L2(R) suh that Aq
Λ
(ψ) is a frame for any oversampling lattie Λ ⊂ Z, but yet,

A(ψ) is not a frame.Despite that eah system Aq
Λ
(ψ) is a frame, its lower frame bound drops to zeroas the lattie Λ gets sparser. Hene, this example does not ontradit Theorem 1.1.Moreover, in the light of Theorem 1.3, none of the quasi-a�ne frames Aq

Λ
(ψ) an havea dual quasi-a�ne frame.We end this introdution by reviewing some basi de�nitions. A frame sequene is aountable olletion of vetors {fj}j∈J suh that there are onstants 0 < C1 ≤ C2 <∞satisfying, for all f ∈ span{fj},

C1 ‖f‖2 ≤
∑

j∈J
|〈f, fj〉|2 ≤ C2 ‖f‖2 .If span{fj} = H for a separable Hilbert spae H, we say that the frame sequene

{fj}j∈J is a frame for H; if the upper bound in the above inequality holds, but notneessarily the lower bound, the sequene {fj} is said to be a Bessel sequene withBessel onstant C2. For a Bessel sequene {fj}, we de�ne the frame operator of {fj}by
S : H → H, Sf =

∑

j∈J
〈f, fj〉fj.



2. Generalized shift invariant systems, latties and oversampling 91If {fj} is a frame, this operator is bounded, invertible, and positive. A frame {fj} issaid to be tight if we an hoose C1 = C2; this is equivalent to S = C1I, where I isthe identity operator. If furthermore C1 = C2 = 1, the sequene {fj} is said to be aParseval frame.Two Bessel sequenes {fj} and {gj} are said to be dual frames if
f =

∑

j∈J
〈f, gj〉fj for all f ∈ H.It an be shown that two suh Bessel sequenes indeed are frames, and we shall saythat the frame {gj} is dual to {fj}, and vie versa. At least one dual always exists, itis given by {S−1fj} and alled the anonial dual.Let f ∈ L2(Rn) for some �xed n ∈ N. The translation by y ∈ Rn is Tyf(x) =

f(x − y); dilation by an n × n non-singular matrix B is DBf(x) = |detB|1/2 f(Bx).These two operations are unitary as operators on L2(Rn). Let Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn) and let A be a �xed n × n expansive matrix, i.e., all eigenvalue λ of A satisfy
|λ| > 1. The a�ne system of unitaries A assoiated with the dilation A is de�ned as
A = {DAjTγ : j ∈ Z, k ∈ Zn}, and the a�ne system A(Ψ) generated by Ψ is de�ned as

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ} ,where ψj,k = DAjTγψ for j ∈ Z, k ∈ Zn. We say that Ψ is a frame wavelet if A(Ψ) is aframe for L2(Rn), and say that Ψ and Φ is a pair of dual frame wavelets if their waveletsystems are dual frames. The transpose of the (�xed) dilation matrix A is denoted by
B = At.Following [12℄, the loal ommutant of a system of operators U at the point f ∈
L2(Rn) is de�ned as

Cf (U) :=
{
T ∈ B(L2(Rn)) : TUf = UTf ∀U ∈ U

}
.For f ∈ L1(Rn), the Fourier transform is de�ned by

F f(ξ) = f̂(ξ) =

∫

Rn
f(x)e−2πi〈ξ,x〉dxwith the usual extension to L2(Rn). We will frequently prove our results on the followingsubspae of L2(Rn)

D =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is ompat in Rn \ {0}

}
, (1.6)and extend the result by density arguments.2. Generalized shift invariant systems, latties and oversam-plingIn this setion we review some fundamental properties of latties, shift invariant systems,oversampling of shift invariant systems, mixed dual Gramians, and generalized shiftinvariant systems.



92 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONS2.1. Latties in RnA lattie Γ in Rn is a disrete subgroup under addition generated by integral linearombinations of n linearly independent vetors {pi}ni=1 ⊂ Rn, i.e.,
Γ = {z1p1 + · · · + znpn : z1, . . . , zn ∈ Z} .In other words, it is a set of points of the form PZn for a non-singular n× n matrix P .Let Γ be a lattie in Rn. If Γ = PZn, we say that the matrix P ∈ GLn(R) generates thelattie Γ. A generating matrix of a given lattie is only unique up to multipliation fromthe right by integer matries with determinant one in absolute value; in partiular, if

Γ = PZn for some P ∈ GLn(R), then also Γ = PSZn for any S ∈ SLn(Z). Thedeterminant of Γ is de�ned to be:
d(Γ) = |detP | , (2.1)where P ∈ GLn(R) is a generating matrix for Γ; note that d(Γ) > 0 and d(Zn) = 1.The determinant d(Γ) is independent of the partiular hoie of generating matrix Pand equals the volume of a fundamental domain IΓ of the lattie Γ, where

IΓ = P ([0, 1)n) = {c1p1 + · · · + cnpn : 0 ≤ ci < 1 for i = 1, . . . , n}with pi denoting the ith olumn of a generating matrix P . Note that Rn = ∪γ∈Γ(γ+IΓ)with the union being disjoint, and that the spei� shape of IΓ depends on the hoieof the generating matrix P .Suppose that Γ ⊂ Λ, in other words, that Γ is a sublattie of some �denser� lattie
Λ. We de�ne the index of Γ in Λ as

D =
d(Γ)

d(Λ)
. (2.2)The index D is always a positive integer; it is atually the number of opies of paral-lelotopes IΓ that �ts inside a larger parallelotope IΛ. If D is the index of Γ in Λ, wehave from [6, �I.2.2℄,

DΛ ⊂ Γ ⊂ Λ, (2.3)and, from [6, Lemma I.1℄,
#{Λ/Γ} = D ≡ d(Γ)/d(Λ), (2.4)where #{Λ/Γ} is the order of the quotient group Λ/Γ. As illustrated in the following,these simple relations are often very useful. Suppose Γ is a rational lattie, i.e., the pointsof the lattie have rational oordinates or, equivalently, the entries of a generating matrix

P are rational. In this situation we de�ne Γ̃, the integral sublattie of Γ, by Γ̃ = Zn ∩ Γ,and the extended integral superlattie of Γ by Γ + Zn. Using the haraterization oflatties in [6, Theorem III.VI℄, it is straightforward to show that these point sets atuallyare latties. Thus Γ̃ = Γ ∩ Zn is a sublattie of Zn with index in Zn as
D =

d(Γ̃)

d(Zn)
= d(Γ̃),



2. Generalized shift invariant systems, latties and oversampling 93and onsequently,
d(Γ̃)Zn ⊂ Γ̃ ⊂ Γ. (2.5)This shows that any rational lattie Γ has a integral sublattie of the form cZn, wherethe onstant c ∈ N an be taken to be c = d(Γ̃) = vol (I

Γ̃
) = #{Zn/Γ̃}. Sine we alsohave #{Γ/Γ̃} = d(Γ̃)/d(Γ), the above alulations show that

#{Zn/Γ̃} = #{Γ/Γ̃}d(Γ).In a similar way, we have for the extended integral superlattie of Γ

#{(Γ + Zn)/Zn} = d(Γ + Zn)−1 = vol (IΓ+Zn)−1 ∈ Nand
#{(Γ + Zn)/Zn}(Γ + Zn) ⊂ Zn.The dual lattie of Γ is given by

Γ
∗ = {η ∈ Rn : 〈η, γ〉 ∈ Z for γ ∈ Γ} , (2.6)thus if Γ = PZn, then Γ∗ = (P t)−1Zn. The determinants of dual latties satisfy thefollowing relation

d(Γ)d(Γ∗) = 1.If Γ ⊂ Λ, then Λ∗ ⊂ Γ∗. For rational latties Γ and Λ the dual lattie of Γ ∩ Λ and
Γ + Λ are Γ∗ + Λ∗ and Γ∗ ∩ Λ∗, respetively. Dual latties are sometimes alled polar orreiproal latties. We refer to [6℄ for further basi properties of latties.2.2. Shift invariant systemsDe�nition 1. Suppose that Γ is a (full-rank) lattie in Rn, i.e., Γ = PZn for some n×nnon-singular matrix P . A losed subspaeW ⊂ L2(Rn) is said to be shift invariant (SI)with respet to the lattie Γ or simply Γ-SI, if f ∈ W implies Tγf ∈ W for all γ ∈ Γ.Given a ountable family Φ ⊂ L2(Rn) and a lattie Γ we de�ne the Γ-SI system EΓ(Φ)and the Γ-SI subspae SΓ(Φ) by

EΓ(Φ) = {Tγφ : φ ∈ Φ, γ ∈ Γ} , SΓ(Φ) = spanEΓ(Φ) .We will need the following result on oversampling of shift invariant frame sequenes;in ase the frame sequene is atually a frame for all of L2(Rn) assertion (i) belowredues to [14, Theorem 3.3℄. Our proof is more elementary than [14, Theorem 3.3℄ andis inluded to illustrate how well behaved shift invariant systems are under oversampling.Proposition 2.1. Let Γ,Γ′ be latties in Rn and Φ,Ψ ⊂ L2(Rn) ountable sets of thesame ardinality. Suppose that Γ ⊂ Γ′ and SΓ(Φ) = SΓ′

(Φ). Then the following asser-tions hold:(i) If EΓ(Φ) is a frame sequene with bounds C1, C2, then
1

#{Γ′/Γ}1/2
EΓ

′

(Φ)is a frame sequene with bounds C1, C2.



94 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONS(ii) Suppose that SΓ(Φ) = SΓ(Ψ) = SΓ′

(Ψ). If EΓ(Φ) and EΓ(Ψ) are dual frames for
SΓ(Φ), then

1

#{Γ′/Γ}1/2
EΓ

′

(Φ) and 1

#{Γ′/Γ}1/2
EΓ

′

(Ψ)are dual frames for SΓ(Φ).Proof. To prove (i) assume that there are onstant C1, C2 > 0 suh that
C1 ‖f‖2 ≤

∑

φ∈Φ

∑

γ∈Γ

|〈f, Tγφ〉|2 ≤ C2 ‖f‖2 for all f ∈ SΓ(Φ) .Let {d1, . . . , dq} be a omplete set of representatives of the quotient group Γ′/Γ. Foreah dr, r = 1, . . . , q, we then have
C1 ‖f‖2 ≤

∑

φ∈Φ

∑

γ∈Γ

|〈T−drf, Tγφ〉|2 ≤ C2 ‖f‖2 for all f ∈ SΓ(Φ)using the isometry of the translation operator, i.e., ‖T−drf‖ = ‖f‖, and the Γ′-SI of
SΓ′

(Φ) = SΓ(Φ). Adding these q inequalities yield
qC1 ‖f‖2 ≤

∑

φ∈Φ

q∑

r=1

∑

γ∈Γ

|〈f, Tdr+γφ〉|2 ≤ qC2 ‖f‖2 ,and thus,
C1 ‖f‖2 ≤

∑

φ∈Φ

∑

γ∈Γ′

|〈f, q−1/2Tγφ〉|2 ≤ C2 ‖f‖2 .Sine q = #{Γ′/Γ}, assertion (i) is proved.Let Φ and Ψ be indexed by I, i.e., Φ = {φi}i∈I and Ψ = {ψi}i∈I . By our assumptionwe have
f =

∑

i∈I

∑

γ∈Γ

〈f, Tγφi〉Tγψi for all f ∈ SΓ(Φ) = SΓ(Ψ) ,hene, in partiular,
‖f‖2 =

∑

i∈I

∑

γ∈Γ

〈f, Tγφi〉〈Tγψi, f〉.Using the same tehniques as in the proof of (i) we arrive at
f =

∑

i∈I

∑

γ∈Γ′

〈f, q−1/2Tγφi〉 q−1/2Tγψi for all f ∈ SΓ(Φ) = SΓ′

(Φ) .By (i) the sequenes q−1/2EΓ′

(Φ) and q−1/2EΓ′

(Ψ) are Bessel sequenes, and (ii) isproved.As an immediate onsequene of Proposition 2.1 we have the following useful fatfor SI frame sequenes spanning all of L2(Rn).



2. Generalized shift invariant systems, latties and oversampling 95Corollary 2.2. Let Γ be a lattie. If EΓ(Φ) is a frame for L2(Rn) with bounds C1, C2,then, for any superlattie Γ′ of Γ, i.e., Γ ⊂ Γ′,
1

#{Γ′/Γ}1/2
EΓ′

(Φ)is a frame for L2(Rn) with bounds C1, C2.Corollary 2.2 is [14, Theorem 3.3℄ stated in terms of latties rather than in termsof lattie generating matries. In the matrix version the ondition Γ ⊂ Γ′ beomes theless transparent, but equivalent, ondition C−1RC ∈ GLn(Z), where Γ = CZn and
Γ′ = R−1CZn for R,C ∈ GLn(R), i.e., EΓ(Φ) = {TCkφ : k ∈ Zn, φ ∈ Φ} and EΓ′

(Φ) =
{TR−1Ckφ : k ∈ Zn, φ ∈ Φ}.2.3. Oversampling SI systemsFollowing [3℄ we introdue the notion of oversampling a SI system by a rational lattie.De�nition 2. Let Γ, Λ be rational latties in Rn, i.e., latties with generating matriesin GLn(Q). Suppose Φ ⊂ L2(Rn) is a ountable set. De�ne OΓ

Λ
(Φ), the oversampling of

EΓ(Φ) by a rational lattie Λ ⊂ Qn, as
OΓ

Λ(Φ) = EΓ+Λ

(
1

#{Λ/(Λ ∩ Γ)}1/2
Φ

)
.By de�nition OΓ

Λ
(Φ) is always SI with respet to Λ, and if Λ ⊂ Γ, no oversamplingours, and the oversampled system OΓ

Λ
(Φ) = EΓ(Φ). Moreover,

OΓ

Λ(Φ) ≡
{

1

#{Λ/(Λ ∩ Γ)}1/2
Tωφ : φ ∈ Φ, ω ∈ Γ + Λ

}

=

{
1

#{Λ/(Λ ∩ Γ)}1/2
Td+γφ : φ ∈ Φ, d ∈ [Λ/(Λ ∩ Γ)], γ ∈ Γ

}

≡ 1

#{Λ/(Λ ∩ Γ)}1/2

⋃

d∈[Λ/(Λ∩Γ)]

Td
(
EΓ(Φ)

)
,where the union runs over representatives of distint osets of the group Λ/(Λ ∩ Γ).Indeed, the penultimate equality is a onsequene of the fat that by hoosing represen-tatives of osets of (Γ + Λ)/Γ in Λ, we also have representatives of Λ/(Λ ∩ Γ). Likewise,hoosing the representatives of osets of (Γ + Λ)/Λ to be in Γ yields representatives of

Γ/(Λ ∩ Γ), hene
OΓ

Λ(Φ) =
1

#{Λ/(Λ ∩ Γ)}1/2

⋃

d∈[Γ/(Λ∩Γ)]

Td
(
EΛ(Φ)

)
. (2.7)2.4. Mixed dual GramiansLet Λ be a lattie in Rn, and let IΛ∗ denote a fundamental domain of Λ∗. De�ne theisometri, isomorphism J between L2(Rn) and L2(IΛ∗ , ℓ2(Λ∗)) by

J f : IΛ∗ → ℓ2(Λ∗), J f(ξ) =
{
f̂(ξ + λ)

}
λ∈Λ∗

for f ∈ L2(Rn). (2.8)



96 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSSequenes of the form J f(ξ) are alled �bers of ℓ2(Λ∗) parametrized by the base spae
ξ ∈ IΛ∗ . Let {fi}i∈I and {gi}i∈I be ountable olletions of funtions in L2(Rn). Bygeneralizing [1, Theorem 2.3℄, we have that EΛ({fi}) is a frame (or Bessel sequene) in
L2(Rn) if, and only if, {d(Λ∗)1/2J fi(ξ)}i∈I is a frame (or Bessel sequene) in ℓ2(Λ∗)for a.e. ξ ∈ IΛ∗ with bounds being preserved. From this fat it is straightforward toverify that EΛ({fi}) and EΛ({gi}) are dual frames if, and only if, {d(Λ∗)1/2J fi(ξ)}i∈Iand {d(Λ∗)1/2J gi(ξ)}i∈I are dual frames for a.e. ξ ∈ IΛ∗ .Now, assume that EΛ({fi}) and EΛ({gi}) are Bessel sequenes. For a �xed ξ ∈ IΛ∗set ti = d(Λ∗)1/2J fi(ξ) and ui = d(Λ∗)1/2J gi(ξ) for i ∈ I. The synthesis operators forthe �bers {ti} and {ui} are de�ned by

T : ℓ2(I) → ℓ2(Λ∗), T ({ci}) =
∑

i∈I
citi,

U : ℓ2(I) → ℓ2(Λ∗), U({ci}) =
∑

i∈I
ciui,respetively. The analysis operators are the adjoint operators, and one �nds

T ∗(a) = {〈a, ti〉}i∈I , U∗(a) = {〈a, ui〉}i∈I ,for a = {aλ}λ∈Λ∗ ∈ ℓ2(Λ∗). The �bers {ti} and {ui} being dual frames in ℓ2(Λ∗) meansin terms of the analysis and synthesis operators that
TU∗ = Iℓ2(Λ∗), or, UT ∗ = Iℓ2(Λ∗),where Iℓ2(Λ∗) is the identity operator on ℓ2(Λ∗). This fat is obvious.The mixed dual Gramian G̃ = G̃(ξ) is de�ned as G̃ = UT ∗. In the standard basis

{ek}k∈Λ∗ of ℓ2(Λ∗) the mixed dual Gramian ats by 〈G̃ek, el〉 =
∑
i∈I ti(k)ui(l), so

G̃ =

(
d(Λ∗)

∑

i∈I
f̂i(ξ + k)ĝi(ξ + l)

)

k,l∈Λ∗

. (2.9)By the above, the SI systems EΛ({fi}) and EΛ({gi}) are dual frames if, and only if,
G̃(ξ) = Iℓ2(Λ∗) for a.e. ξ ∈ IΛ∗ .The following result is a generalization of [3, Lemma 2.5℄. Lemma 2.3 says that themixed dual Gramian of a pair of oversampled SI systems is in one part a resaling ofthe original mixed dual Gramian, whereas in the other part it has zero entries.Lemma 2.3. Let Γ and Λ be latties, and let Ψ = {ψi}i∈I and Φ = {φi}i∈I be ountablesets in L2(Rn). Suppose OΓ

Λ
(Ψ) and OΓ

Λ
(Φ) are Bessel sequenes. Then the mixed dualGramian of OΓ

Λ
(Ψ) and OΓ

Λ
(Φ) is given for k, l ∈ Λ∗ as

G̃(ξ)k,l =




d(Γ∗)

∑
i∈I ψ̂i(ξ + k)φ̂i(ξ + l) if k − l ∈ Γ∗ ∩ Λ∗,

0 if k − l ∈ Λ∗ \ Γ∗. (2.10)Proof. We paraphrase the oversampled systems OΓ

Λ
(Ψ) and OΓ

Λ
(Φ) using (2.7) whihyields

OΓ

Λ(Ψ) = EΛ
(
Ψ′) , where Ψ′ =

⋃

d∈[Γ/(Λ∩Γ)]

{
1

#{Λ/(Λ ∩ Γ)}1/2
TdΨ

}
,



2. Generalized shift invariant systems, latties and oversampling 97and
OΓ

Λ(Φ) = EΛ
(
Φ′) , where Φ′ =

⋃

d∈[Γ/(Λ∩Γ)]

{
1

#{Λ/(Λ ∩ Γ)}1/2
TdΦ

}
.Hene, by (2.9),

d(Λ∗)−1G̃(ξ)k,l =
1

#{Λ/(Λ ∩ Γ)}
∑

i∈I

∑

d∈[Γ/(Λ∩Γ)]

T̂dψi(ξ + k)T̂dφi(ξ + l)

=
1

#{Λ/(Λ ∩ Γ)}


 ∑

d∈[Γ/(Λ∩Γ)]

e−2πi〈k−l,d〉


∑

i∈I
ψ̂i(ξ + k)φ̂i(ξ + l).Using Lemma 3.6 and #{Γ/(Λ ∩ Γ)}/#{Λ/(Λ ∩ Γ)} = d(Λ)/d(Γ) = d(Γ∗)/d(Λ∗) thisyields (2.10).2.5. Generalized shift invariant systemsGeneralized shift invariant system were introdued and studied in the work of Hernán-dez, Labate, and Wilson [13℄, and independently by Ron and Shen [23℄.De�nition 3. For a olletion of funtions {gp}p∈P , a generalized shift invariant (GSI)system is de�ned as ⋃

p∈P
EΓp(gp) , (2.11)where {Γp}p∈P is a ountable olletion of latties in Rn. The Γp-SI system EΓp(gp) issaid to be the pth layer of the GSI system.Letting Φ = {gp}p∈P and Γ = Γp for eah p ∈ P in (2.11) for a GSI system, wereover the SI system EΓ(Φ). Moreover, a GSI system is SI if there exists a (sparse)lattie Γ so that Γ ⊂ Γp for eah p ∈ P. Furthermore, if Cp ∈ GLn(R) is hosen suhthat Γp = CpZ

n for eah p ∈ P, then the GSI system in (2.11) takes the form
{
TCpkgp : k ∈ Zn, p ∈ P

}
. (2.12)We will use the following results about GSI systems from [13℄. Here, we state theresults from [13℄ in terms of latties in Rn rather than in terms of (2.12) and matries

{Cp}. The reason behind this onvention is that a matrix Cp satisfying Γp = CpZ
n isnot unique and most of our onditions simplify when stated in terms of latties ratherthan matries.Theorem 2.4 (Theorem 2.1 in [13℄). Let P be a ountable set, {gp}p∈P a olletionof funtions in L2(Rn) and {Γp}p∈P a olletion of latties in Rn. Assume the loalintegrability ondition (LIC):

L(f) :=
∑

p∈P

∑

m∈Γ∗
p

∫

supp f̂

∣∣∣f̂(ξ +m)
∣∣∣
2
d(Γ∗p) |ĝp(ξ)|2 dξ <∞ for all f ∈ D. (2.13)Then the GSI system ∪p∈PEΓp(gp) is a Parseval frame for L2(Rn) if, and only if,

∑

p∈P
d(Γ∗p)ĝp(ξ)ĝp(ξ + α) = δα,0 for a.e. ξ ∈ Rn (2.14)for eah α ∈ ∪i∈PΓ∗p.



98 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSThe fat that LIC, in general, is neessary an be found in [4, Example 3.2℄. Reallthe relation between the determinants of dual latties d(Γ∗p) = 1/d(Γp).Proposition 2.5 (Proposition 2.4 in [13℄). Let P be a ountable set, {gp}p∈P a olletionof funtions in L2(Rn) and {Γp}p∈P a olletion of latties in Rn. Assume that the LICgiven by (2.13) holds. Then, for eah f ∈ D, the funtion
w(x) =

∑

p∈P

∑

k∈Γp

∣∣〈Txf, Tkgp〉
∣∣2 (2.15)is a ontinuous funtion that oinides pointwise with the absolutely onvergent series

w(x) =
∑

p∈P

∑

m∈Γ∗
p

ŵp(m)e2πi〈m,x〉 , (2.16)where
ŵp(m) = d(Γ∗p)

∫

Rn
f̂(ξ)f̂(ξ +m) ĝp(ξ)ĝp(ξ +m) dξ. (2.17)The funtion w in (2.16) is an almost periodi funtion. In ase the GSI systemfrom Proposition 2.5 is a Γ-SI system for some lattie Γ, the funtion w is atually

Γ-periodi, and an thus be onsidered as a regular Fourier series on the fundamentalparallelopiped IΓ.Proposition 2.6 (Proposition 4.1 in [13℄). Let P be a ountable set, {gp}p∈P a olletionof funtions in L2(Rn) and {Γp}p∈P a olletion of latties in Rn. If the GSI system
∪p∈PEΓp(gp) is a Bessel sequene with bound C2 > 0, then

∑

p∈P
|ĝp(ξ)|2 /d(Γp) ≤ C2 for a.e. ξ ∈ Rn. (2.18)The following result is a generalization of Proposition 5.6 in [13℄. The result statesthat the loal integrability ondition for a�ne systems A(ψ) is equivalent with loalintegrability of a Calderón sum (2.19), hene the name of the ondition.Proposition 2.7. Let A ∈ GLn(R) be expansive and ψ ∈ L2(Rn). Then,
∑

j∈Z

∣∣∣ψ̂(B−jξ)
∣∣∣
2
∈ L1lo(Rn \ {0}), (2.19)if, and only if,

L(f) =
∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ +Bjm)|2 |detAj | |F DAjψ(ξ)|2 dξ

=
∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ +Bjm)|2 |ψ̂(B−jξ)|2 dξ <∞ for all f ∈ D. (2.20)In the proof of Proposition 2.7 we use the following elementary lattie ountinglemma.



2. Generalized shift invariant systems, latties and oversampling 99Lemma 2.8. Let B ∈ GLn(R) be expansive and R > 0. Then, there exists C > 0 suhthat
#{(ξ +BjZn) ∩ B(0, R)} ≤ Cmax (1, |detB|−j) for any j ∈ Z, ξ ∈ Rn. (2.21)Proof. Sine the matrix B is expansive, there exists J ∈ Z suh that

B(0,
√
n) ⊂ B−j(B(0, R)) for all j ≤ J. (2.22)For the same reason, one J is �xed, there exists R0 > 0 suh that

B−j(B(0, R)) ⊂ B(0, R0) for all j > J. (2.23)Let
Kj = {k ∈ Zn : ξ +Bjk ∈ B(0, R)} = {k ∈ Zn : B−jξ + k ∈ B−j(B(0, R))}.Using (2.22) and (2.23)

⋃

k∈Kj

(B−jξ + k + [0, 1]n) ⊂ B−j(B(0, R)) + B(0,
√
n) ⊂

{
2B−j(B(0, R)) for j ≤ J,

B(0, R0 +
√
n) for j > J.Thus,

#Kj =

∣∣∣∣
⋃

k∈Kj

(B−jξ + k + [0, 1]n)

∣∣∣∣ ≤
{
cn(2R)n |detB|−j for j ≤ J,

cn(R0 +
√
n)n for j > J,where cn = |B(0, 1)|. This immediately implies (2.21).Proof of Proposition 2.7. Assume (2.19). Let f ∈ D and hoose R > 1 suh that

supp f̂ ⊂
{
ξ ∈ Rn :

1

R
< |ξ| < R

}
.Sine the matrix B is expansive, there exists a onstantK ∈ N suh that, eah trajetory

{Bjξ}j∈Z hits the above annulus at most K times. Thus,
#
{
j ∈ Z : ξ ∈ B−j(supp f̂)

}
≤ K.On the other hand, by Lemma 2.8 we have that, for any ξ ∈ Rn,

#{(ξ +BjZn) ∩ supp f̂} ≤ Cmax (1, |detB|−j).Combining the last two estimates
L(f) ≤

∑

j∈Z

‖f̂‖2
∞Cmax (1, |detB|−j)

∫

supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ

≤ ‖f̂‖2
∞C

∑

j≥0

∫

supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ + ‖f̂‖2
∞C

∑

j<0

∫

B−j(supp f̂)

∣∣∣ψ̂(ξ)
∣∣∣
2

dξ

≤ ‖f̂‖2
∞C

∫

supp f̂

∑

j≥0

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ + ‖f̂‖2
∞CK

∫

Rn

∣∣∣ψ̂(ξ)
∣∣∣
2

dξ <∞.



100 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSThe last inequality is a onsequene of (2.19) and ψ ∈ L2(Rn).Conversely, if L(f) <∞ for all f ∈ D, then in partiular by hoosing f̂ = χE for aompat set E ⊂ Rn \ {0} we have
∫

E

∑

j∈Z

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ =
∑

j∈Z

∫

E

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ ≤ L(f) <∞.Sine the set E was arbitrarily hosen, the validity of (2.19) follows.Remark 1. One should add that (2.19) and thus (2.20) hold if, and only if, the Bessel-likeondition holds on the dense subspae D,
∑

j∈Z

∑

k∈Zn

∣∣〈f, ψj,k〉
∣∣2 <∞ for all f ∈ D. (2.24)Indeed, this fat is a onsequene of [2, Lemma 3.1℄ whih holds for real expansivedilations.3. Oversampling a�ne systems into quasi-a�ne systemsIn this setion we show that the frame property is preserved when going from a�ne toquasi-a�ne systems. To haraterize under what onditions we an also go from quasi-a�ne to a�ne systems, we introdue a new family of oversampled quasi-a�ne systems.We then show that an a�ne system is a frame if, and only if, the orresponding familyof quasi-a�ne systems are frames with uniform frame bounds.3.1. Properties of quasi-a�ne systemsFor a rational lattie Λ we introdue the notion of a Λ-oversampled quasi-a�ne system.De�nition 4. Let A ∈ GLn(Q) be a rational, expansive matrix, and let Λ be rationallattie in Rn, i.e., Λ = PZn with P ∈ GLn(Q). Suppose Ψ ⊂ L2(Rn) is a �nite set.De�ne Aq

Λ
(Ψ) the Λ-oversampled quasi-a�ne system by

Aq
Λ
(Ψ) =

⋃

j∈Z

OA
−jZn

Λ (DAjΨ) .When Λ = Zn we often drop the subsript Λ, and we say that Aq(Ψ) = Aq
Zn(Ψ) is thestandard quasi-a�ne system.By de�nition Aq

Λ
(Ψ) is SI with respet to Λ. Note that we need to assume thatthe dilation A and the lattie Λ are rational in order to guarantee lattie struture of

A−jZn + Λ for eah j ∈ Z. If Λ = Zn, we reover the usual quasi-a�ne system, i.e.,
Aq

Λ
(Ψ) = Aq(Ψ), introdued in [3℄.We will use the following notation throughout this paper. The translation lattiefor the a�ne system at sale j ∈ Z is denoted by Γj = A−jZn; its Λ-sublattie is

Γ̃j = A−jZn ∩ Λ and its Λ-extended superlattie is Kj = A−jZn + Λ. Note that Kj isthe translation lattie for the Λ-oversampled quasi-a�ne system at sale j ∈ Z. Finally,for J ∈ N, let
MJ =

⋂

|j|≤J
Γj ≡

⋂

|j|≤J
AjZn,



3. Oversampling a�ne systems into quasi-a�ne systems 101and note that MJ is an integral lattie. Summarizing, we will use the following lattiestogether with their dual latties:
Γj = A−jZn, Γ

∗
j = BjZn, (3.1)

Γ̃j = A−jZn ∩ Λ, Γ̃
∗
j = BjZn + Λ

∗, (3.2)
Kj = A−jZn + Λ, K

∗
j = BjZn ∩ Λ

∗, (3.3)
MJ =

⋂

|j|≤J
AjZn, M

∗
J = +

|j|≤J
BjZn = B−JZn + · · · +BJZn. (3.4)Let Ψ,Φ ⊂ L2(Rn) be �nite sets. For j ∈ Z and f ∈ L2(Rn) de�ne the a�nefuntionals

Kj(f) =
∑

g∈EA−jZn(D
Aj Ψ)

|〈f, g〉|2 , N(f,Ψ) =
∑

j∈Z

Kj(f) =
∑

g∈A(Ψ)

|〈f, g〉|2 , (3.5)and quasi-a�ne funtionals
Kq

Λ,j(f) =
∑

g∈OA−jZn
Λ

(D
Aj Ψ)

|〈f, g〉|2 , N q
Λ
(f,Ψ) =

∑

j∈Z

Kq
Λ,j(f) =

∑

g∈Aq
Λ
(Ψ)

|〈f, g〉|2 . (3.6)Whenever unambiguous, we drop the referene to the set of generators and simply write
N(f) and N q

Λ
(f).Before going deeper into our investigation we illustrate the notion of a quasi-a�nesystem in a few spei� situations.Example 1. Let J ∈ N and onsider the quasi-a�ne system obtained by oversamplingwith respet to MJ = ∩|j|≤JA

jZn introdued above. Sine A−jZn + MJ = A−jZn and
A−jZn ∩ MJ = MJ for |j| ≤ J , we see that

OA
−jZn

MJ
(DAjΨ) = EA

−jZn+MJ

(
#{MJ/MJ}−1/2DAjΨ

)
= EA

−jZn
(DAjΨ) , (3.7)for |j| ≤ J . Hene with this oversampling lattie, the sales |j| ≤ J for the a�ne system

A(Ψ) =
⋃

j∈Z

EA
−jZn

(DAjΨ)and the MJ -oversampled quasi-a�ne system
Aq

MJ
(Ψ) =

⋃

j∈Z

OA
−jZn

MJ
(DAjΨ)oinide.Example 2. Suppose A ∈ GLn(Z) is integer valued. Let Λ = AlZn for some l ∈ Z. Thenthe Λ-oversampled quasi-a�ne system is just a dilated version of standard quasi-a�nesystem (1.2). To be preise, we have the following relation:

Aq
AlZn(Ψ) = DA−l(Aq(Ψ)). (3.8)



102 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSTo see this note that
A−jZn + Λ = A−jZn +AlZn =

{
AlZn, j < −l,
A−jZn, j ≥ −l,and that

#{AlZn/(AlZn ∩A−jZn)} =





#{AlZn/A−jZn} = d(Zn)
d(Aj+lZn)

= 1
|detAj+l| , j < −l,

#{AlZn/AlZn} = 1, j ≥ −l,whereby we have
Aq
AlZn(Ψ) =

⋃

j≥−l
EA

−jZn
(DAjΨ) ∪

⋃

j<−l
EA

lZn
(
|detA|(j+l)/2DAjΨ

)
.Reall that

Aq(Ψ) =
⋃

j≥0

EA
−jZn

(DAjΨ) ∪
⋃

j<0

EZn
(
|detA|j/2DAjΨ

)
,and the validity of (3.8) follows by DA−lTk = TAlkDA−l and a hange of variables.Example 3. The quasi-a�ne system has a relatively simple algebrai form in one di-mension. Suppose a = p/q ∈ Q is a dilation fator, where |a| > 1, p, q ∈ Z are relativelyprime. Let Λ ⊂ Z be a lattie. For simpliity, we assume that Λ = pJ1qJ2rZ for some

J1, J2 ∈ N0, r ∈ N, where pq and r are relatively prime. Then, the quasi-a�ne system
Aq

Λ
(Ψ) assoiated with a is given by

Aq
Λ
(Ψ) = {ψ̃j,k : j, k ∈ Z, ψ ∈ Ψ}.Here, for ψ ∈ L2(R) and j, k ∈ Z, we set

ψ̃j,k(x) =





|a|j/2 |q|(J2−j)/2 ψ(ajx− qJ2−jk) if j > J2,

|a|j/2 ψ(ajx− k) if − J1 ≤ j ≤ J2,

|a|j/2 |p|(j+J1)/2 ψ(ajx− pj+J1k) if j < −J1.

(3.9)Note that the above onvention for ψ̃j,k in the ase when Λ = Z beomes the rationallydilated quasi-a�ne system (1.3) introdued by the �rst author in [3℄. In partiular, ifthe dilation fator a is an integer, this is the original quasi-a�ne system of Ron andShen [20℄. To show (3.9) note that
a−jZ + Λ = a−jZ + pJ1qJ2rZ =

{
p−j(qjZ + pJ1+jqJ2rZ) = p−jqmin(j,J2)Z for j ≥ 0

qj(p−jZ + pJ1qJ2−jrZ) = qjpmin(−j,J1)Z for j < 0

=





p−jqJ2Z for j > J2,

a−jZ for − J1 ≤ j ≤ J2,

pJ1qjZ for j < −J1.



3. Oversampling a�ne systems into quasi-a�ne systems 103Hene, one needs to oversample at a rate |q|j−J2 if j > J2 (or |p|−J1−j if j < −J1)to obtain the quasi-a�ne system Aq
Λ
(Ψ) from the a�ne system A(Ψ). Note that inthe intermediate range −J1 ≤ j ≤ J2, no oversampling is required and both systemsoinide at these sales. Also note that the hoie J1 = J2 orresponds to oversamplingby MJ1 , see Example 1.Remark 2. Let Λ be a rational lattie, and onsider the Λ-oversampled quasi-a�nesystem Aq

Λ
(Ψ). By de�nition this system is Λ-SI. Take a rational superlattie Λ′ of Λ,i.e., Λ ⊂ Λ′. Then the further oversampled system Aq

Λ′(Ψ) is obviously Λ′-SI; moreover,it an be written in term of Aq
Λ
(Ψ) as

Aq
Λ′(Ψ) =

1

#{Λ′/Λ}1/2

⋃

d∈[Λ′/Λ]

Td
(Aq

Λ
(Ψ)

)
.By Corollary 2.2 we have the following useful result for oversampled quasi-a�neframes:Lemma 3.1. Let A ∈ GLn(Q). Suppose Λ ⊂ Λ′ for rational latties Λ,Λ′. Then if

Aq
Λ
(Ψ) is a frame for L2(Rn) with bounds C1, C2, then Aq

Λ′(Ψ) is a frame for L2(Rn)with bounds C1, C2.3.2. A�ne and quasi-a�ne systems as GSI systemsSine a�ne and quasi-a�ne systems are GSI systems, the results from Setion 2.5 anbe applied to these systems, see [13, 14℄. We restate some of these results in terms oflatties in Rn. The quasi-a�ne system Aq
Λ
(Ψ) introdued above an be expressed as aGSI system (2.11) by taking P = {(j, l) : j ∈ Z, l = 1, . . . , L} and

Γp = Γ(j,l) = A−jZn + Λ (3.10)
gp(x) = g(j,l)(x) = #{Λ/(Λ ∩A−jZn)}−1/2DAjψl(x) (3.11)for all p ∈ P.By applying Proposition 2.6 to a�ne and quasi-a�ne systems we immediately havethe following result, see also [3, Proposition 4.5℄.Proposition 3.2. Suppose that Ψ ⊂ L2(Rn) and that either of the following holds:(a) A ∈ GLn(R) is expansive and A(Ψ) is a Bessel sequene with bound C2,(b) A ∈ GLn(Q) is expansive and Aq

Λ
(Ψ) is a Bessel sequene with bound C2 for somerational lattie Λ.Then, ∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ Rn. (3.12)For the Λ-oversampled quasi-a�ne systems we have the following result on the quasi-a�ne funtional wq
Λ
de�ned below.



104 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSProposition 3.3. Let A ∈ GLn(Q) be expansive, Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), and let
Λ be a rational lattie. Suppose that eah ψ ∈ Ψ satis�es ondition (2.19). Then, foreah f ∈ D, the Λ-periodi funtion

wq
Λ
(x) =

∑

g∈Aq
Λ
(Ψ)

|〈Txf, g〉|2 =
L∑

l=1

∑

j∈Z

∑

k∈Kj

∣∣〈Txf, djTkDAjψl〉
∣∣2 , (3.13)where dj = #{Λ/(Λ ∩ A−jZn)}−1/2 and Kj is given by (3.3), is a ontinuous funtionthat oinides pointwise with the (Λ-periodi) absolutely onvergent series

wq
Λ
(x) =

L∑

l=1

∑

j∈Z

∑

µ∈K∗

j

bj,l(µ)e2πi〈µ,x〉 , (3.14)where
bj,l(µ) =

∫

Rn
f̂(ξ)f̂(ξ + µ) ψ̂l(B−jξ)ψ̂l(B

−j(ξ + µ)) dξ. (3.15)Proof. The result follows by an appliation of Proposition 2.5 to quasi-a�ne systems. Inorder to apply Proposition 2.5 we need to verify the LIC ondition (2.13) for quasi-a�nesystems, i.e., that
Lq

Λ
(f) :=

L∑

l=1

∑

j∈Z

∑

µ∈K∗

j

∫

supp f̂
|f̂(ξ + µ)|2 |ψ̂l(B−jξ)|2 dξ <∞ (3.16)holds for f ∈ D. Sine eah ψ ∈ Ψ satis�es ondition (2.19), Proposition 2.7 tells usthat the LIC ondition for a�ne systems is satis�ed, i.e., that L(f) < ∞. Finally, theestimate in (3.16) follows by

Lq
Λ
(f) ≤

L∑

l=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ +Bjm)|2 |ψ̂l(B−jξ)|2 dξ ≡ L(f) <∞,where we have used that K∗

j ⊂ BjZn for all j ∈ Z. Consequently, the expression in(3.15) follows diretly from (2.17) by
1/d(K∗

j ) = d(Kj) =

∣∣detA−j ∣∣
#{Λ/(Λ ∩A−jZn)} .Proposition 3.4 below states a similar result for a�ne systems. The result is ageneralization of [14, Proposition 2.8℄, where the Bessel ondition on A(Ψ) is relaxedby (2.19). Proposition 3.4 is a diret onsequene of Propositions 2.5 and 2.7.Proposition 3.4. Let A ∈ GLn(R) be expansive and Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn).Suppose that eah ψ ∈ Ψ satis�es ondition (2.19). Then, for eah f ∈ D, the funtion

w(x) =
∑

g∈A(Ψ)

|〈Txf, g〉|2 =
L∑

l=1

∑

j∈Z

∑

k∈Zn

∣∣〈Txf,DAjTγψl〉
∣∣2 , (3.17)



3. Oversampling a�ne systems into quasi-a�ne systems 105is an almost periodi funtion that oinides pointwise with the absolutely onvergentseries
w(x) =

L∑

l=1

∑

j∈Z

∑

m∈Zn

cj,l(m)e2πi〈Bjm,x〉, (3.18)where
cj,l(m) =

∫

Rn
f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)ψ̂l(B

−j(ξ +Bjm)) dξ. (3.19)Remark 3. As noted in [14℄ the sum over j ∈ Z in Proposition 3.4 an be replaed by asum over a smaller set j ∈ J ⊂ Z. The same holds for Proposition 3.3.The series representing w and wq
Λ
are very similar. By a hange of variables, (3.14)beomes

wq
Λ
(x) =

L∑

l=1

∑

j∈Z

∑

m∈Zn∩B−jΛ∗

cj,l(m)e2πi〈Bjm,x〉 , (3.20)where the oe�ients cj,l(m) are given by (3.19). Sine Zn ∩B−jΛ∗ ⊂ Zn for all j ∈ Z,we an onsider the series for wq
Λ
in (3.20) as the series representing w in (3.18) withsome oe�ients set to zero; exatly those oe�ients cj,l(m) for whih m ∈ Zn\B−jΛ∗.We stress that this onnetion holds without any assumptions on the rational lattie Λ,e.g., there is no assumption on Λ being integer valued.3.3. From a�ne to quasi-a�ne systemsThe frame property arries over when moving from a�ne to Λ-oversampled quasi-a�nesystems for any rational lattie Λ. This statement is the main result of this setion andis ontained in Theorem 3.5.Theorem 3.5. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let Λ be any rationallattie in Rn. If the a�ne system A(Ψ) is a frame for L2(Rn) with frame bounds

C1, C2, then the Λ-oversampled quasi-a�ne system Aq
Λ
(Ψ) is a frame for L2(Rn) withframe bounds C1, C2.The following lemma, whih is needed in the proof of Theorem 3.5, is a onsequeneof [15, Lemma 23.19℄.Lemma 3.6. Suppose K,M are latties in Rn suh that K ⊂ M. Then, for m ∈ K∗,

1

#{M/K}
∑

d∈[M/K]

e2πi〈m,d〉 =

{
1 m ∈ M∗,

0 m ∈ K∗ \ M∗.
(3.21)The proof of Theorem 3.5 relies on the following key result on translational averagingof a�ne funtionals.Lemma 3.7. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let Λ be an integrallattie in Rn. For eah J ∈ N de�ne

MJ =
⋂

|j|≤J
AjZn.



106 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSSuppose the a�ne system A(Ψ) is a frame for L2(Rn). Then
N q

Λ
(f) = lim

J→∞
1

#{(MJ + Λ)/MJ}
∑

d∈[(MJ+Λ)/MJ ]

N(Tdf) for f ∈ D, (3.22)where D is given by (1.6), N by (3.5) and N q
Λ
by (3.6).Proof. Let Ψ = {ψ1, . . . , ψL}. For f ∈ D, by (3.20),

N q
Λ
(f) = wq

Λ
(0) =

L∑

l=1

∑

j∈Z

∑

m∈Zn∩B−jΛ∗

cj,l(m), (3.23)where cj,l(m) are given in equation (3.19). So �x J ∈ N and let {d1, . . . , ds(J)} bea omplete set of representative of the quotient group (MJ + Λ)/MJ so that s(J) isthe order of the group. We want to express N q
Λ
(f) as an average of N(Tdrf) over

r = 1, . . . , s(J), thus we onsider
1

s(J)

s(J)∑

r=1

N(Tdrf) =
1

s(J)

s(J)∑

r=1

L∑

l=1

∑

|j|≤J

∑

m∈Zn

cj,l(m) e2πi〈Bjm,dr〉

+
1

s(J)

s(J)∑

r=1

L∑

l=1

∑

|j|>J

∑

m∈Zn

cj,l(m) e2πi〈Bjm,dr〉

=: I1(J) + I2(J), (3.24)whih follows by (3.18). By absolute onvergene of the sum above, we onlude that
I2(J) → 0 as J → ∞. Assume that the following identity holds.

I1(J) =
L∑

l=1

∑

|j|≤J

∑

m∈Zn∩B−jΛ∗

cj,l(m). (3.25)Taking the limit J → ∞ in (3.24) and using equation (3.23) yield
lim
J→∞

1

s(J)

s(J)∑

r=1

N(Tdrf) = lim
J→∞

(
I1(J) + I2(J)

)
= lim

J→∞

L∑

l=1

∑

|j|≤J

∑

m∈Zn∩B−jΛ∗

cj,l(m)

= N q
Λ
(f).Hene, to omplete the proof we have only left to show (3.25). Taking K = MJ and

M = MJ + Λ in Lemma 3.6 gives us for all m̃ ∈ M∗
J :

s(J)∑

r=1

e2πi〈m̃,dr〉 =

{
s(J) m̃ ∈ M∗

J ∩ Λ∗,

0 m̃ ∈ M∗
J \ Λ∗.

(3.26)Fix j ∈ Z with |j| ≤ J . Take m̃ = Bjm. Obviously, m̃ ∈ M∗
J ∩ Λ∗ preisely when

m ∈ B−jM∗
J ∩B−jΛ∗, and m̃ ∈ M∗

J \ Λ∗ preisely when m ∈ B−jM∗
J \B−jΛ∗. Sine

B−j
M

∗
J = +

−J−j≤l≤J−j
BlZn ⊃ Zn,



3. Oversampling a�ne systems into quasi-a�ne systems 107we onlude from equation (3.26) that, for all m ∈ Zn,
s(J)∑

r=1

e2πi〈B
jm,dr〉 =

{
s(J) m ∈ Zn ∩B−jΛ∗,

0 m ∈ Zn \B−jΛ∗,
(3.27)and this holds for all |j| ≤ J . Using these relations we arrive at:

I1(J) ≡
L∑

l=1

∑

|j|≤J

∑

m∈Zn

cj,l(m)
1

s(J)

s(J)∑

r=1

e2πi〈Bjm,dr〉

=
L∑

l=1

∑

|j|≤J

∑

m∈Zn∩B−jΛ∗

cj,l(m),whih ompletes the proof of the lemma.Proof of Theorem 3.5. Assume that the a�ne system A(Ψ) is a frame for L2(Rn) withbounds C1, C2. It su�es to prove that Aq
Λ0

(Ψ) is a frame for integer latties Λ0, i.e.,
Λ0 ⊂ Zn, whih follows from the fat that any rational lattie Λ has an integral sublattieof the form cZn for some c ∈ N, e.g., take c = d(Λ ∩ Zn), see equation (2.5). Hene, ifwe prove that Aq

cZn(Ψ) is a frame with bounds C1, C2, then, by applying Lemma 3.1,
Aq

Λ
(Ψ) is a frame with the frame bounds being preserved.So let Λ0 be an integral lattie. By our hypothesis there are onstants C1, C2 > 0so that

C1 ‖f‖2 ≤ N(f) ≤ C2 ‖f‖2 ∀f ∈ L2(Rn).Fix J ∈ N and onsider MJ introdued above. For eah representative d ∈ [MJ+Λ0)/MJ ]we have
C1 ‖f‖2 ≤ N(Tdf) ≤ C2 ‖f‖2 ∀f ∈ L2(Rn),where we have used that ‖Txf‖ = ‖f‖ for x ∈ Rn. Adding these equations for eahrepresentative d yields:

#{(MJ + Λ0)/MJ}C1 ‖f‖2 ≤
∑

d∈[(MJ+Λ0)/MJ ]

N(Tdf) ≤ #{(MJ + Λ0)/MJ}C2 ‖f‖2 .By taking the limit J → ∞, we have
C1 ‖f‖2 ≤ lim

J→∞
1

#{(MJ + Λ0)/MJ}
∑

d∈[(MJ+Λ0)/MJ ]

N(Tdf) ≤ C2 ‖f‖2for all f ∈ L2(Rn). Sine Λ0 is an integer lattie, we an apply Lemma 3.7. This givesus
C1 ‖f‖2 ≤ N q

Λ
(f) ≤ C2 ‖f‖2for f ∈ D. Extending these inequalities to all of L2(Rn) by a standard density argumentompletes the proof.



108 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSRemark 4. The speial ase of Theorem 3.5 in one dimension with Λ = Z was �rstshown in [14, Theorem 2.18℄. In fat, [14, Theorem 2.18℄ is stated for quasi-a�nesystems obtained by oversampling with respet to the lattie Λ = s−1Z, where s isrelatively prime to p and q, and a = p/q is a dilation fator. In this ase the quasi-a�nesystem Aq
Λ
(Ψ) takes a nie algebrai form:

Aq
s−1Z(Ψ) =

{
|p|j/2 |q|−j |s|−1/2 ψ(ajx− s−1q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 |s|−1/2 ψ(ajx− s−1pjk) : j < 0, k ∈ Z

}
.Hene, the above system is obtained by further oversampling of the standard quasi-a�ne system Aq

Z(Ψ) given by (1.3). However, our Theorem 3.5 holds for oversamplingwith respet to any rational lattie Λ, suh as in (1.4) or in Example 3. The sparser thelattie Λ is, the better result we have due to Lemma 3.1 on oversampling of quasi-a�nesystems.3.4. From quasi-a�ne to a�ne systemsWhen moving from quasi-a�ne to a�ne systems the frame property only arries overif we impose stronger onditions on the set of generators. Hene, we have only thefollowing partial onverse of Theorem 3.5.Theorem 3.8. Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn). If MJ -oversampledquasi-a�ne system Aq
MJ

(Ψ) is a frame for L2(Rn) with uniform frame bounds C1, C2for all J ∈ N, where MJ is given by (3.4), then the a�ne system A(Ψ) is a frame for
L2(Rn) with frame bounds C1, C2.Proof. Assume that

C1 ‖f‖2 ≤ N q
MJ

(f) ≤ C2 ‖f‖2 for all f ∈ Dholds for all J ∈ N. Sine sale j of the a�ne system and the MJ -oversampled quasi-a�ne system agrees whenever |j| ≤ J , we have by (3.7),
Kj(f) = Kq

MJ ,j
(f) for all |j| ≤ J, f ∈ L2(Rn).Thus, for J ∈ N,

∑

|j|≤J
Kj(f) =

∑

|j|≤J
Kq

MJ ,j
(f) ≤ C2 ‖f‖2 .Letting J → ∞ yields

N(f) = lim
J→∞

∑

|j|≤J
Kj(f) ≤ lim sup

J→∞

∑

|j|≤J
Kq

MJ ,j
(f) ≤ C2 ‖f‖2 ,whereby we onlude that A(Ψ) is a Bessel sequene with bound C2. Likewise for thelower bound:

C1 ‖f‖2 ≤
∑

|j|≤J
Kq

MJ ,j
(f) +

∑

|j|>J
Kq

MJ ,j
(f) =

∑

|j|≤J
Kj(f) +

∑

|j|>J
Kq

MJ ,j
(f). (3.28)
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lim
J→∞

∑

|j|>J
Kq

MJ ,j
(f) = 0 for f ∈ D. (3.29)Then, by equation (3.28),

C1 ‖f‖2 ≤ lim
J→∞

∑

|j|≤J
Kj(f) = N(f) for f ∈ D.Sine A(Ψ) satis�es the upper bound, we an extend this inequality to all of L2(Rn)by a density argument, hene the a�ne system A(Ψ) satis�es the lower bound withonstant C1.To omplete the proof we need to verify (3.29). We have already showed that A(Ψ)is a Bessel sequene, so by Proposition 3.4 the series in (3.18) onverges absolutely and

L∑

l=1

∑

j∈Z

∑

m∈Zn

|cj,l(m)| <∞,where cj,l(m) is given by (3.19). Therefore, by (3.20) and Remark 3,
∑

|j|>J
Kq

MJ ,j
(f) ≡

∑

|j|>J

L∑

l=1

∑

k∈Kj

∣∣〈f, djTkDAjψl〉
∣∣2 ≤

∑

|j|>J

L∑

l=1

∑

m∈Zn∩B−jM∗

J

|cj,l(m)|

≤
∑

|j|>J

L∑

l=1

∑

m∈Zn

|cj,l(m)| → 0 as J → ∞.This shows (3.29) and ompletes the proof of Theorem 3.8.The following result ombines Theorems 3.5 and 3.8 in a more oneptually trans-parent and less tehnial form.Theorem 3.9. Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn). Then, the a�ne system
A(Ψ) is a frame for L2(Rn) with frame bounds C1, C2 if, and only if, the Λ-oversampledquasi-a�ne system Aq

Λ
(Ψ) is a frame for L2(Rn) with uniform frame bounds C1, C2 forall integer latties Λ.3.5. Reovering known equivalene resultsWe end this setion by illustrating the general nature of Theorems 3.5 and 3.8. Inpartiular, we will show that the well known equivalene result of Ron and Shen [20℄ fora�ne and quasi-a�ne frames for integer dilation A ∈ GLn(Z) is a simple onsequeneof these results. Moreover, we have the following generalization of their result.Proposition 3.10. Let A ∈ GLn(Z) be expansive and Ψ ⊂ L2(R). Then the followingassertions are equivalent:(i) A(Ψ) is a frame with bounds C1, C2,(ii) Aq

Λ0
(Ψ) is a frame with bounds C1, C2 for some oversampling lattie Λ0 ⊂ Zn,(iii) Aq

Λ
(Ψ) is a frame with bounds C1, C2 for all oversampling latties Λ ⊂ Zn.



110 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSProof. By Theorem 3.5, we are only left to prove (ii) ⇒ (i), but this will follow froman appliation of Theorem 3.8. From Lemma 3.1 we have that Aq(Ψ) is a frame for
L2(Rn) with bounds C1, C2. Reall the identity

Aq
AlZn(Ψ) = DA−l(Aq(Ψ)) for l ∈ Zfrom Example 2. This tells us, by unitarity of the dilation operator, that Aq

AlZn(Ψ) isa frame with (uniform) bounds C1, C2 for eah l ∈ Z. Sine A has integer entries, wehave
MJ ≡

⋂

|j|≤J
AjZn = AJZn for J ∈ N,and the onlusion follows from Theorem 3.8.4. Dual a�ne and quasi-a�ne framesThe goal of this setion is to prove the equivalene between pairs of dual a�ne and quasi-a�ne frames in the setting of rational dilations. To ahieve this we will use well-studiedfundamental equations of a�ne systems.De�nition 5. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) and Φ = {φ1, . . . , φL} ⊂

L2(Rn) are suh that
L∑

l=1

∑

j∈Z

(|ψ̂l(B−jξ)|2 + |φ̂l(B−jξ)|2) <∞ for a.e. ξ. (4.1)We say that a pair (Ψ,Φ) satis�es the fundamental equations if
t̃0(ξ) :=

L∑

l=1

∑

j∈Z

ψ̂l(B
−jξ)φ̂l(B−jξ) = 1 for a.e. ξ, (4.2)

t̃α(ξ) :=
L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = 0 for a.e. ξ and all α ∈ Zn \ {0}.(4.3)Remark 5. Note that the assumption (4.1) is made to guarantee that the series in (4.2)onverges absolutely, and hene the Calderón ondition (4.2) is meaningful. On theother hand, the series (4.3) onverges absolutely for a.e. ξ without any assumptions(apart from Ψ,Φ ⊂ L2(Rn), that is). Indeed, for any ψ ∈ L2(Rn) and α ∈ Rn,

∫

Rn

∑

j≤J

∣∣∣ψ̂(B−j(ξ + α))
∣∣∣
2
dξ =

∫

Rn

∑

j≤J
|detA|j |ψ̂(ξ)|2dξ =

|detA|J+1

|detA| − 1
‖ψ‖2 <∞(4.4)for any J ∈ N. Sine the dilation B is expansive, for any α 6= 0, there exists J ∈ Nsuh that j ∈ Z and α ∈ BjZn implies that j ≤ J . Hene, by 2 |zw| ≤ |z|2 + |w|2 for
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z,w ∈ C,

∑

j∈Z:α∈BjZn

∣∣ψ̂l(B−jξ)φ̂l(B−j(ξ + α))
∣∣ ≤ 1

2

∑

j∈Z:α∈BjZn

|ψ̂l(B−jξ)|2

+ 1
2

∑

j∈Z:α∈BjZn

|φ̂l(B−j(ξ + α))|2 <∞ for a.e. ξ ∈ Rn.The last inequality is a onsequene of (4.4).We will need the following result whih was originally proved by Frazier, Garrigós,Wang, and Weiss [11℄ in the dyadi setting. Later it was extended by the �rst author[2℄ to the setting of integer, expansive dilations and by Chui, Czaja, Maggioni, andWeiss [8℄ to the setting of real, expansive dilations. We inlude an alternative proof ofTheorem 4.1 for the sake of ompleteness and sine its tehniques will be used later.Theorem 4.1. Let A ∈ GLn(R) be expansive. Suppose that Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn) and Φ = {φ1, . . . , φL} ⊂ L2(Rn) are suh that

L∑

l=1

∑

j∈Z

(|ψ̂l(B−jξ)|2 + |φ̂l(B−jξ)|2) ∈ L1lo(Rn \ {0}).Then, the a�ne systems A(Ψ) and A(Φ) form a weak pair of frames, i.e.,
‖f‖2 =

L∑

l=1

∑

j∈Z

∑

k∈Zn

〈f,DAjTkψl〉〈DAjTkφl, f〉 for all f ∈ D, (4.5)if, and only if, the fundamental equations (4.2) and (4.3) hold.Proof. The proof is based on Proposition 3.4 on a�ne systems and the idea of polar-ization as in [18, Setion 8℄. By our assumption on Ψ and Φ, we an de�ne
N(f,Ψ,Φ) =

L∑

l=1

∑

j∈Z

∑

k∈Zn

〈f,DAjTkψl〉〈DAjTkφl, f〉 for f ∈ D, (4.6)where the multiple series onverge absolutely. This follows immediately by Remark 1and
2 |〈f,DAjTkψl〉〈DAjTkφl, f〉| ≤ |〈f,DAjTkψl〉|2 + |〈DAjTkφl, f〉|2 .By the polarization identity

z̄w =
1

4

4∑

p=1

ip |ipz + w|2 for z,w ∈ C,we have
N(f,Ψ,Φ) =

1

4

4∑

p=1

ipN(f,Θp), where Θp = {θl,p}Ll=1, θl,p = ipψl + φl (4.7)
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L∑

l=1

∑

j∈Z

∣∣∣θ̂l,p(B−jξ)
∣∣∣
2
≡

L∑

l=1

∑

j∈Z

∣∣∣ipψ̂l(B−jξ) + φ̂l(B
−jξ)

∣∣∣
2

≤ 2
L∑

l=1

∑

j∈Z

(|ψ̂l(B−jξ)|2 + |φ̂l(B−jξ)|2) ∈ L1lo(Rn \ {0}),we an apply Proposition 3.4 to Θp for eah p. This yields
N(Txf,Θp) =

L∑

l=1

∑

j∈Z

∑

m∈Zn

bj,l,p(m)e2πi〈Bjm,x〉,where
bj,l,p(m) =

∫

Rn
f̂(ξ)f̂(ξ +Bjm) θ̂l,p(B−jξ)θ̂l,p(B

−j(ξ +Bjm)) dξ, (4.8)for l = 1, . . . , L, j ∈ Z,m ∈ Zn, and the integral in (4.8) onverges absolutely. By thepolarization identity
z̄1w2 =

1

4

4∑

p=1

ip(ipz1 + w1)(i
pz2 + w2) for z1, z2, w1, w2 ∈ C,we have

1

4

4∑

p=1

ipθ̂l,p(B−jξ)θ̂l,p(B
−j(ξ +Bjm))

≡ 1

4

4∑

p=1

ip (ipψ̂l(B−jξ) + φ̂l(B−jξ))
(
ipψ̂l(B

−j(ξ +Bjm)) + φ̂l(B
−j(ξ +Bjm))

)

= ψ̂l(B−jξ)φ̂l(B
−j(ξ +Bjm)).Therefore, by (4.7),

w̃(x) := N(Txf,Ψ,Φ) =
L∑

l=1

∑

j∈Z

∑

m∈Zn

c̃j,l(m)e2πi〈Bjm,x〉, (4.9)where
c̃j,l(m) =

1

4

4∑

p=1

ipbj,l,p(m) =

∫

Rn
f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)φ̂l(B

−j(ξ +Bjm)) dξ.By a hange of summation order, using absolute onvergene of the series in (4.9), wehave
w̃(x) =

∑

α∈∪j∈ZBjZn

c̃αe
2πi〈α,x〉, (4.10)
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c̃α =

∫

Rn
f̂(ξ)f̂(ξ + α)

L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B−jξ)φ̂l(B
−j(ξ + α)) dξ

=

∫

Rn
f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ, for α ∈ ∪j∈ZB

jZn. (4.11)Assume that the a�ne systems A(Ψ) and A(Φ) form a weak pair of frames. Using
‖Txf‖ = ‖f‖, this implies that the almost periodi funtion w̃(x) from (4.9) is onstant.To be preise: w̃(x) = ‖f‖2. By uniqueness of oe�ients for Fourier series of almostperiodi funtions [13, Lemma 2.5℄, this only happens if, for α ∈ ∪j∈ZB

jZn,
c̃0 = ‖f‖2 and c̃α = 0 for α 6= 0. (4.12)By (4.11), this shows that

∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2
t̃0(ξ) dξ = ‖f‖2 = ‖f̂‖2, for all f ∈ D.Sine D is dense in L2(Rn), this implies further that t̃0(ξ) = 1 for a.e. ξ ∈ Rn showingthat the �rst fundamental equation (4.2) holds.For a nonzero α we have by (4.11) and (4.12),

∫

Rn
f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ = 0, for all f ∈ D,for α ∈ (∪j∈ZB

jZn
) \ {0}. In partiular, this equality holds for α ∈ Zn \ {0}. We needto show that t̃α = 0 almost everywhere for α ∈ Zn \ {0}. The onlusion is almostimmediate from Du Bois-Reynold's lemma that says that for loal integrable funtions

u on Rn satisfying ∫ uv = 0 for all v ∈ C∞
0 we have u = 0. We �x α ∈ Zn \ {0},and let IZn denote a fundamental domain of Zn. For arbitrary l ∈ Zn we onsider thetranslated parallelepiped Il = IZn + l ⊂ Rn and de�ne f by

f̂(ξ) =





1 for ξ ∈ Il,

t̃α(ξ) for ξ + α ∈ Il,

0 otherwise.This de�nition makes sense sine ∪l∈ZnIl = Rn and (Il − α) ∩ Il = ∅ for α ∈ Zn \ {0}.Furthermore, sine t̃α is bounded by Remark 5, we have f ∈ D. Consequently,
0 =

∫

Rn
f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ =

∫

Il

1 t̃α(ξ) t̃α(ξ) dξ =

∫

Il

∣∣t̃α(ξ)
∣∣2 dξ,whih implies that t̃α(ξ) vanishes almost everywhere for ξ ∈ Il. Sine l ∈ Zn wasarbitrarily hosen we dedue that t̃α(ξ) = 0 for a.e. ξ ∈ Rn. This shows that the seondfundamental equation (4.3) holds.Conversely, assume that the fundamental equations (4.2) and (4.3) hold. Equation(4.3) states that t̃α(ξ) = 0 for a.e. ξ ∈ Rn for α ∈ Zn \ {0}. By a hange of variables

γ = Blξ and β = Blα (l ∈ Z), this implies t̃β(γ) = 0 for β ∈ BlZn \ {0}. Sine this



114 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSholds for all l ∈ Z, we onlude t̃α = 0 almost everywhere for α ∈ ∪j∈ZB
jZn \ {0}.Hene, by (4.11), c̃α = 0 for α ∈ ∪j∈ZB

jZn \ {0}. Therefore, w̃(x) = c̃0 = ‖f‖2 for all
x ∈ Rn so, in partiular,

N(f,Ψ,Φ) ≡ w̃(0) = ‖f‖2 for all f ∈ D.We onlude that the a�ne systems A(Ψ) and A(Φ) form a weak pair of frames.We are now able to prove the haraterization of dual a�ne and quasi-a�ne framesin terms of fundamental equations using the theory of mixed dual Gramians of Ronand Shen [19, 21, 23℄. An alternative proof using the ideas of polarization of a�nefuntionals is presented at the end of this setion. In the integer ase Theorem 4.2 was�rst shown by Ron and Shen [20, 22℄ with some deay assumptions on generators Ψ and
Φ. Chui, Shi, and Stökler [9℄ proved the same result without any deay assumptions,see also [2, Theorem 4.1℄. Theorem 4.2 generalizes this result to the setting of rationaldilations.Theorem 4.2. Let A ∈ GLn(Q) be expansive. Suppose A(Ψ) and A(Φ) are Besselsequenes in L2(Rn). Then the following assertions are equivalent:(i) A(Ψ) and A(Φ) are dual frames.(ii) Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) are dual frames for some integer oversampling lattie Λ0 ⊂

Zn.(iii) Aq
Λ
(Ψ) and Aq

Λ
(Φ) are dual frames for all integer oversampling latties Λ ⊂ Zn.(iv) Ψ and Φ satisfy the fundamental equations (4.2) & (4.3).Proof. The loal integrability ondition in Theorem 4.1 is satis�ed by Proposition 3.2sine A(Ψ) and A(Φ) are assumed to be Bessel sequenes. Furthermore, weak duality(4.5) of two Bessel sequenes implies �strong� duality [2, Lemma 2.7℄, i.e., that A(Ψ)and A(Φ) are dual frames. Hene, by Theorem 4.1, we have (i) ⇔ (iv); this equivaleneis well-known, even for real dilations [8, Theorem 4℄.The proof of the equivalenes (ii) ⇔ (iii) ⇔ (iv) is based on the approah used in[3, Theorem 3.4℄. Let G̃j(ξ)k,l denote the mixed dual Gramian of OA−jZn

Λ
(DAjΨ) and

OA
−jZn

Λ
(DAjΦ) for j ∈ Z, see Setion 2.4. By Lemma 2.3 with Γ = A−jZn, this mixeddual Gramian is given as
G̃j(ξ)k,l =




|detA|j∑L

l=1 D̂Ajψ(ξ + k)D̂Ajφ(ξ + l) k − l ∈ Γ∗ ∩ Λ∗,

0 k − l ∈ Λ∗ \ Γ∗,

=





∑L
l=1 ψ̂l(ξ + k)φ̂l(ξ + l) k − l ∈ BjZn ∩ Λ∗,

0 k − l ∈ Λ∗ \BjZn,for k, l ∈ Λ∗. The mixed dual Gramian of Aq
Λ
(Ψ) and Aq

Λ
(Φ) is found by additivity ofthe jth layer mixed dual Gramian G̃j(ξ) as

G̃(ξ)k,l =
∑

j∈Z

G̃j(ξ)k,l

=
L∑

l=1

∑

j∈Z

ψ̂l(B
−j(ξ + k))φ̂l(B−j(ξ + l)) ×

{
1 k − l ∈ BjZn ∩ Λ∗,

0 k − l ∈ Λ∗ \BjZn,



4. Dual a�ne and quasi-a�ne frames 115for k, l ∈ Λ∗. We only onsider k, l ∈ Λ∗ so k − l ∈ Λ∗ is trivially satis�ed. Thus, wearrive at the following expression for the mixed dual Gramian:
G̃(ξ)k,l =

L∑

l=1

∑

j∈Z:k−l∈BjZn

ψ̂l(B
−j(ξ + k))φ̂l(B−j(ξ + l)) ≡ t̃l−k(ξ + k). (4.13)Assume (ii) holds. This implies that the mixed dual Gramian G̃(ξ) is the iden-tity operator on ℓ2(Λ∗

0) for a.e. ξ ∈ IΛ∗

0
, hene G̃(ξ)k,l = δk,l for a.e. ξ ∈ IΛ∗

0
. Byequation (4.13), for α ∈ Λ∗

0,
δα,0 =

L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) ≡ t̃α(ξ) for a.e. ξ ∈ Rn. (4.14)This implies (iv) sine Zn ⊂ Λ∗

0.Assume (iv) holds. We will show that this implies (iii), i.e., that G̃(ξ)k,l = δk,l fora.e. ξ ∈ IΛ∗ and all k, l ∈ Λ∗, where Λ is any integer lattie satisfying Λ ⊂ Zn. By ahange of variables, we see that t̃α(ξ) = 0 for a.e. ξ and all α ∈ ∪j∈ZB
jZn \ {0}. If

α ∈ Λ∗ \ ∪j∈ZB
jZn, then obviously t̃α = 0, hene equation (4.14) holds for α ∈ Λ∗.This shows that the mixed dual Gramian G̃(ξ) is the identity operator on ℓ2(Λ∗) fora.e. ξ ∈ IΛ∗

0
whih is equivalent to assertion (iii).The last impliation (iii) ⇒ (ii) is obvious.It is possible to give an alternative proof of Theorem 4.2 using the ideas of polar-ization from the proof of Theorem 4.1. Sine the equivalene (i) ⇔ (iv) in Theorem 4.2is well-known, we will only (re)prove (ii) ⇔ (iii) ⇔ (iv) here.Another proof of Theorem 4.2. Let Λ ⊂ Zn. For f ∈ D, we de�ne the Λ-periodi fun-tion w̃q

Λ
(x) by

w̃q
Λ
(x) = N q

Λ
(Txf,Ψ,Φ) =

L∑

l=1

∑

j∈Z

∑

k∈Kj

〈Txf, djTkDAjψl〉〈djTkDAjφl, Txf〉, (4.15)where dj = #{Λ/(Λ ∩ A−jZn)}−1/2 and Kj is given by (3.3). The series in (4.15) on-verges absolutely sine Aq
Λ
(Ψ) and Aq

Λ
(Φ) are Bessel sequenes. Applying polarizationidentities as in the proof of Theorem 4.1 yields

w̃q
Λ
(x) =

∑

α∈∪j∈ZBjZn∩Λ∗

c̃αe2πi〈α,x〉, (4.16)where the oe�ients {c̃α} are given in (4.11).Assume (ii) holds. It is well-known that under the Bessel ondition the weak dualityof frames is equivalent to the duality of frames, see for example [7, Theorem 5.6.2℄.Hene, (ii) is equivalent to N q
Λ0

(f,Ψ,Φ) = ‖f‖2 for all f ∈ L2(Rn). Sine ‖Txf‖ = ‖f‖,this implies that w̃q
Λ0

(x) = ‖f‖2. By uniqueness of oe�ients of the Fourier series of
w̃q

Λ0
, this happens only when

c̃α = ‖f‖2 δα,0 for α ∈ ∪j∈ZB
jZn ∩ Λ

∗.



116 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSFollowing the proof of Theorem 4.1, we immediately have that this implies t̃α = δα,0almost everywhere for α ∈ ∪j∈ZB
jZn ∩ Λ∗. In partiular, sine Zn ⊂ Λ∗, we have

t̃α(ξ) = δα,0 for a.e. ξ and α ∈ Zn. This is preisely assertion (iv).Assume (iv) holds. By a hange of variables, this implies that t̃α(ξ) = δα,0 for a.e.
ξ and all α ∈ ∪j∈ZB

jZn. Therefore,
c̃α = ‖f‖2 δα,0 for α ∈ ∪j∈ZB

jZn,and we note that these equations are independent of Λ. Hene, by (4.16), for any
Λ ⊂ Zn,

N q
Λ
(f,Ψ,Φ) = w̃q

Λ
(0) = c̃0 = ‖f‖2 for all f ∈ D.By a density argument, this equality holds for all f ∈ L2(Rn), and assertion (iii) follows.Remark 6. It is apparent from the proof above that the equivalene of (ii), (iii), and(iv) in Theorem 4.2 holds under the weaker assumption that Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) areBessel sequenes in L2(Rn) for some Λ0 ⊂ Zn.5. Diagonal a�ne systemsIn this setion we study a partiularly interesting sublass of generators where the equiv-alene between a�ne and quasi-a�ne frames exhibits the largest degree of symmetry.This is a lass of diagonal a�ne systems for whih the o�-diagonal funtions tα de�nedbelow vanish. We show that the lass of diagonal a�ne frames onsists preisely ofquasi-a�ne frames having a anonial dual quasi-a�ne frame. This extends a result ofWeber and the �rst author [5℄ from the setting of integer dilations to that of rationaldilations.De�nition 6. For a given dilation matrix A and Ψ ⊂ L2(Rn) we introdue the familyof funtions {tα}α∈Zn on Rn by:

tα(ξ) =
∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) for ξ ∈ Rn. (5.1)In partiular,
t0(ξ) =

∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2.We say that the a�ne system A(Ψ) is diagonal if tα(ξ) = 0 a.e. for all α ∈ Zn \ {0}.Note that the series in (5.1) onverges absolutely for a.e. ξ in light of Remark 5. Inaddition, if Ψ ⊂ L2(Rn) generates an a�ne Bessel sequene A(Ψ) with bound C2, or aquasi-a�ne Bessel sequene Aq
Λ
(Ψ) for some lattie Λ, then eah tα is well de�ned andessentially bounded in light of Proposition 3.2 and

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

∣∣ψ̂(B−jξ)ψ̂(B−j(ξ + α))
∣∣ ≤ 1

2

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

|ψ̂(B−jξ)|2

+ 1
2

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

|ψ̂(B−j(ξ + α))|2 ≤ C2.



5. Diagonal a�ne systems 117Now, with the extra assumption tα(ξ) = 0 a.e. for α ∈ Zn \ {0}, we have the followingequivalene result.Theorem 5.1. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn) and let C1, C2 > 0 be on-stants. Suppose that the a�ne system A(Ψ) is diagonal. Then the following assertionsare equivalent:(i) the a�ne system A(Ψ) is a frame for L2(Rn) with bounds C1, C2.(ii) the quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) with bounds C1, C2 for someinteger lattie Λ0 ⊂ Zn.(iii) the quasi-a�ne system Aq
Λ
(Ψ) is a frame for L2(Rn) with bounds C1, C2 for allinteger latties Λ ⊂ Zn.(iv)

C1 ≤
∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ Rn.Proof. Let Λ ⊂ Zn be a lattie in Rn. For �xed f ∈ D, let w and wq
Λ
be the fun-tions introdued in (3.13) and (3.17). By a hange of summation order, using absoluteonvergene of the series, these funtions an be written as

w(x) =
∑

α∈∪j∈ZBjZn

cα e2πi〈α,x〉, wq
Λ
(x) =

∑

α∈∪j∈ZBjZn∩Λ∗

cα e2πi〈α,x〉, (5.2)where
cα =

∫

Rn
f̂(ξ)f̂(ξ + α)

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) dξ

=

∫

Rn
f̂(ξ)f̂(ξ + α) tα(ξ) dξ, for α ∈ ∪j∈ZB

jZn. (5.3)Our standing assumption in this theorem is that tα(ξ) = 0 a.e. for α ∈ Zn \ {0}.By a hange of variables, this implies tα(ξ) = 0 a.e. for α ∈ ∪j∈ZB
jZn \ {0}. Thus theexpressions in (5.2) redue to

w(x) = wq
Λ
(x) = c0 =

∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2
t0(ξ)dξ for all x ∈ Rn,hene w and wq

Λ
are equal and onstant funtions of x. Therefore

N(f) = w(0) = wq
Λ
(0) = N q

Λ
(f)for f ∈ D. Sine D is dense in L2(Rn), we �nd that (i) ⇔ (ii) ⇔ (iii). Note that (i) ⇒(iii) also follows diretly from Theorem 3.5.We will verify that (i) ⇔ (iv). In terms of the tα-funtions, assertion (iv) reads,

C1 ≤ t0(ξ) ≤ C2 almost everywhere. By the above and an appliation of the Planhereltheorem, assertion (i) is equivalent to
C1〈f̂ , f̂〉 ≤ 〈t0f̂ , f̂〉 ≤ C2〈f̂ , f̂〉 for f ∈ L2(Rn). (5.4)This implies that

C1 ≤ t0(ξ) ≤ C2 for a.e. ξ ∈ Rn,whih, on the other hand, learly implies (5.4).



118 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSAs a orollary we have the following onverse of Theorem 3.5.Corollary 5.2. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let A(Ψ) be diagonal.Suppose that the Λ0-oversampled quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) withbounds C1, C2 for some integer lattie Λ0 ⊂ Zn. Then, the a�ne system A(Ψ) is a framefor L2(Rn) with bounds C1, C2.As a diret onsequene of Theorem 3.5 and Corollary 5.2 we generalize the equiva-lene of a�ne and quasi-a�ne Parseval frames due to the �rst author [3, Theorem 3.4℄,see also [14, Theorem 2.17℄.Theorem 5.3. Suppose A ∈ GLn(Q) is expansive and Ψ ⊂ L2(Rn). Then the followingassertions are equivalent:(i) the a�ne system A(Ψ) is a Parseval frame for L2(Rn)(ii) the quasi-a�ne system Aq
Λ0

(Ψ) is a Parseval frame for L2(Rn) for some integerlattie Λ0 ⊂ Zn(iii) the quasi-a�ne systemAq
Λ
(Ψ) is a Parseval frame for L2(Rn) for all integer latties

Λ ⊂ ZnProof. The impliation (i) ⇒ (iii) is a speial ase of Theorem 3.5, and (iii) ⇒ (ii)is obvious. Proposition 3.2 and the proof of Proposition 3.3 show that the loal inte-grability ondition (3.16) for the quasi-a�ne system is satis�ed, hene we an applyTheorem 2.4 to Aq
Λ
(Ψ). By equations (2.14), (3.10) and (3.11) this implies that tα = 0for α ∈ Zn \ {0}, hene the a�ne system is diagonal. An appliation of Corollary 5.2gives us (ii) ⇒ (i).5.1. Canonial dual quasi-a�ne framesOur next aim is to haraterize when the anonial dual of a quasi-a�ne frame isalso a quasi-a�ne frame. To ahieve this we need the following result resembling [5,Proposition 1℄.Theorem 5.4. Let A ∈ GLn(Q) be expansive. Suppose the Aq

Λ0
(Ψ) is a frame for some

Λ0 ⊂ Zn, whih has a dual quasi-a�ne frame Aq
Λ0

(Φ). Then, for any S ∈ B(L2(Rn))we have
S ∈ Cψ(Aq

Λ0
) for all ψ ∈ Ψ ⇔ S ∈ {DA, Tλ : λ ∈ Λ0}′Note that we need to assume a muh stronger hypothesis than the assumption of[5, Proposition 1℄ saying that the quasi-a�ne system Aq

Zn(Ψ) is omplete in L2(Rn).Proof. The fat that Aq
Λ0

(Ψ) and Aq
Λ0

(Φ) are dual frames implies that the fundamentalequations (4.2) and (4.3) hold, see Remark 6. By Theorem 4.1, the a�ne system A(Ψ)is omplete in L2(Rn).Suppose that S ∈ Cψ(Aq
Λ0

). Sine the quasi-a�ne system Aq
Λ0

(Ψ) is Λ0-SI, S mustommute with translations Tλ, λ ∈ Λ0. Likewise, sine the a�ne system A(Ψ) is a partof the quasi-a�ne system Aq
Λ0

(Ψ) (up to normalizing onstants), S ∈ Cψ(A). Sinethe a�ne system A(Ψ) is omplete in L2(Rn) and A(Ψ) is dilation-invariant, S mustommute with the dilation operator DA.Conversely, if S ∈ {DA, Tλ : λ ∈ Λ0}′, then learly S belongs to the loal ommutant
Cψ(Aq

Λ0
) for any hoie of ψ ∈ L2(Rn).



5. Diagonal a�ne systems 119Remark 7. Note that if S ∈ {DA, Tλ : λ ∈ Λ0}′, then S ommutes with all translation
Tλ, λ ∈ Rn. Indeed, by TAjλ = DA−jTλDAj , S must ommute with TAjλ for j ∈ Zand λ ∈ Λ0. Sine A is expansive, ∪j∈ZA

jΛ0 is dense in Rn. Hene, by ontinuityof x 7→ Txf for f ∈ L2(Rn), we have S ∈ {DA, Tλ : λ ∈ Rn}′. In fat, we have thefollowing lemma whih is a straightforward generalization of [5, Lemma 2℄.Lemma 5.5. Let A ∈ GLn(R) be expansive, Λ a lattie, and S ∈ B(L2(Rn)). Then,
S ∈ {DA, Tλ : λ ∈ Λ}′ if, and only if, S is a B-dilation periodi Fourier multiplier, i.e.,there exists a funtion s ∈ L∞(Rn) suh that

Ŝf(ξ) = s(ξ)f̂(ξ) for a.e. ξ,where s(ξ) = s(Bξ) for a.e. ξ.Proof. Assume S ∈ {DA, Tλ : λ ∈ Λ}′. By TAjλ = DA−jTλDAj , S ommutes with TAjλfor j ∈ Z and λ ∈ Λ, i.e.,
STk = TkS for k ∈ ∪j∈ZA

j
Λ. (5.5)The union ∪j∈ZA

jΛ is dense in Rn sine A is expansive. For x ∈ Rn take {kn}n∈N from
∪j∈ZA

jΛ suh that kn → x. By ontinuity of x 7→ Txf for f ∈ L2(Rn), kn → x implies
Tknf → Txf in the L2 norm, i.e., Tkn → Tx in the strong operator topology. Hene, byequation (5.5), we have STx = TxS, proving that S is a Fourier multiplier. Finally, by
DAS = SDA and

F DASf(ξ) =

∫

Rn
DASf(x)e−2πix·ξdx = |detA|−1/2 s(B−1ξ)f̂(B−1ξ),and

F SDAf(ξ) = s(ξ)

∫

Rn
DAf(x)e−2πix·ξdx = |detA|−1/2 s(ξ)f̂(B−1ξ),we have B-periodiity of the symbol s.Conversely, assume S is a Fourier multiplier with a B-dilation periodi symbol. Theoperator S ommutes with all translations by the Fourier multiplier property and withdilationsDA by the B-dilation periodiity of the symbol and the two displayed equationsabove.Theorem 5.6. Let A ∈ GLn(Q) be expansive. Suppose the oversampled quasi-a�nesystem Aq

Λ0
(Ψ) is a frame for L2(Rn) for some integer latties Λ0 ⊂ Zn. Then theanonial dual frame of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ) for some set of funtions Φ ⊂

L2(Rn) with ardinality #Φ = #Ψ if, and only if,
tα(ξ) =

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0 for all α ∈ Zn \ {0}. (5.6)Moreover, in the positive ase Aq
Λ
(Ψ) is a frame for all integer latties Λ ⊂ Zn and itsanonial dual frame is Aq

Λ
(Φ).



120 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSProof. Let Sq
Λ0

be the frame operator of the quasi-a�ne system Aq
Λ0

(Ψ). Sine Aq
Λ0

(Ψ)is a frame, equation (3.12) is satis�ed, hene the expression for wq
Λ0

in (5.2) holds for
f ∈ D.Assume that the anonial dual of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ), i.e., Sq

Λ0
∈ Cψ(Aq

Λ0
)for all ψ ∈ Ψ. By Theorem 5.4 and Remark 7, Sq

Λ0
∈ {DA, Tλ : λ ∈ Rn}′, hene

wq
Λ0

(x) =
〈
Sq

Λ0
Txf, Txf

〉
=
〈
TxS

q
Λ0
f, Txf

〉
=
〈
Sq

Λ0
f, f

〉
∀x ∈ Rn,whih shows that wq

Λ0
is onstant for every f ∈ D.For eah f ∈ D we express wq

Λ0
as the Λ0-periodi Fourier series (5.2). Suh a Fourierseries is identially onstant if, and only if,

cα ≡
∫

Rn
f̂(ξ)f̂(ξ + α) tα(ξ) dξ = 0 for all α ∈

(⋃

j∈Z

BjZn ∩ Λ
∗
0

)
\ {0} ,by the uniqueness of the Fourier oe�ients. In partiular, this equality holds for

α ∈ Zn \ {0} sine Zn ⊂ Λ ∗
0 . Fix α ∈ Zn \ {0}. Let IΛ ∗

0
denote a fundamental domainof Λ ∗

0 and, for l ∈ Λ ∗
0 , let Il = IΛ ∗

0
+ l. De�ne f by

f̂(ξ) :=





1 for ξ ∈ Il,

tα(ξ) for ξ + α ∈ Il,
0 otherwise.Sine tα is bounded by the Bessel bound C2, we have f ∈ D. Now,

0 =

∫

Rn
f̂(ξ)f̂(ξ + α) tα(ξ)dξ =

∫

Il

tα(ξ)tα(ξ)dξ =

∫

Il

|tα(ξ)|2 dξ,for eah l ∈ Λ ∗
0 . Sine ∪l∈Λ ∗

0
Il = Rn we dedue that tα(ξ) = 0 for a.e. ξ ∈ Rn, and thetheorem is half proved.Conversely, assume tα(ξ) = 0 for α ∈ Zn\{0}. Then tα(ξ) = 0 for α ∈ (∪j∈ZB

jZn
)\

{0} by a hange of variables. In partiular, tα(ξ) = 0 for α ∈ (∪j∈ZB
jZn ∩ Λ ∗

0

) \ {0},hene wq
Λ0

(x) = c0 for every x ∈ Rn, i.e., wq
Λ0

is onstant on Rn for every f ∈ D.Therefore, for every x ∈ Rn,
〈
Sq

Λ0
Txf, Txf

〉
= wq

Λ0
(x) = wq

Λ0
(0) =

〈
Sq

Λ0
f, f

〉 for f ∈ D.This equality extends to all f ∈ L2(Rn) by a density argument, hene
〈(
T−xS

q
Λ0
Tx − Sq

Λ0

)
f, f

〉
= 0 for f ∈ L2(Rn).We onlude that Sq

Λ0
Tx = TxS

q
Λ0

for all x ∈ Rn, in other words, Sq
Λ0

is a Fouriermultiplier:
Ŝq

Λ0
f(ξ) = s(ξ)f̂(ξ) for a.e. ξ ∈ Rn and all f ∈ L2(Rn), (5.7)



6. Broken symmetry between the integer and rational ase 121for some symbol s ∈ L∞(Rn). We laim the symbol of Sq
Λ0

is
s(ξ) = t0(ξ) =

∑

ψ∈Ψ

∑

j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2
.This funtion is obviously a B-dilation periodi funtion, that is, s(ξ) = s(Bξ). ByProposition 3.2 the funtion is bounded by the upper frame bound s(ξ) ≤ C2 for a.e. ξ,so s ∈ L∞(Rn). By the Planherel theorem, we see

wq
Λ0

(0) = 〈Sq
Λ0
f, f〉 =

〈
Ŝq

Λ0
f, f̂

〉 for all f ∈ D,and, by (5.3) with α = 0, that
c0 =

∫

Rn
f̂(ξ)f̂(ξ)

∑

ψ∈Ψ

∑

j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2

dξ.Sine wq
Λ0

(x) = c0 for all x ∈ Rn, we have, in partiular,
〈
Ŝq

Λ0
f, f̂

〉
= wq

Λ0
(0) = c0 = 〈sf̂ , f̂〉 for all f ∈ D.Therefore, s is a B-dilation periodi symbol of Sq

Λ0
implying that Sq

Λ0
ommutes with

DA, see Lemma 5.5. The frame operator Sq
Λ0

belongs therefore to {DA, Tλ : λ ∈ Λ0}′.As a result we �nd that (Sq
Λ0

)−1 ∈ Cψ(Aq
Λ0

) for ψ ∈ Ψ. This is equivalent to theanonial dual of Aq
Λ0

(Ψ) having the quasi-a�ne struture with the same number ofgenerators.6. Broken symmetry between the integer and rational aseThe goal of this setion is to illustrate fundamental di�erenes between integer andrational ases. That is, a mere fat that a quasi-a�ne system is a frame does not implythat an a�ne system must be a frame as well. This kind of phenomenon annot happenfor integer dilations where we have a perfet equivalene of the frame property betweena�ne and quasi-a�ne systems. Moreover, this annot happen for Parseval frames dueto Theorem 5.3, or more generally, for a�ne frames having duals by Theorem 4.2.Moreover, Theorem 6.1 shows the optimality of our results. That is, the assumption ofuniformity of frame bounds of quasi-a�ne systems in Theorem 3.8 annot be removedin general.Theorem 6.1. Let 1 < a ∈ Q \ Z be a rational non-integer dilation fator. Then, thereexists a funtion ψ ∈ L2(R) suh that Aq
Λ
(ψ) is a frame for any oversampling lattie

Λ ⊂ Z, but yet, A(ψ) is not a frame.Remark 8. In the light of Theorem 3.8, the frame bounds of the quasi-a�ne systems
Aq

Λ
(ψ) are not uniform for all latties Λ ⊂ Z. In fat, we will see that the lower framebound of Aq

Λ
(ψ) drops to 0 as a lattie Λ gets sparser and sparser. Consequently, in thelimiting ase, when no oversampling is present, we obtain an a�ne system A(ψ) whihis not a frame due to the failure of the lower frame bound.



122 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSWe will need the following well-known result, see [16, Theorem 13.0.1℄ or the proofof [10, Lemma 3.4℄Theorem 6.2. Suppose that ψ ∈ L2(R) is suh that ψ̂ ∈ L∞(R) and
ψ̂(ξ) =O(|ξ|δ) as ξ → 0,

ψ̂(ξ) =O(|ξ|−1/2−δ) as |ξ| → ∞,for some δ > 0. Then the a�ne system A(ψ) is a Bessel sequene.We de�ne the spae Ľ2(K), invariant under all translations, by
Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}for measurable subsets K of R.Proof of Theorem 6.1. Choose δ > 0 so that 1

a(a+1) < δ < 1
a2+1 . De�ne ψ ∈ L2(R) as

ψ̂ = 1(−a2δ,−δ)∪(δ,a2δ). First, we shall show that the a�ne system A(ψ) is not a frame.To ahieve this we will follow the idea from [5, Example 2℄. We will need the followingstandard identity, whih an be shown by the periodization argument
∑

k∈Z

|〈f, Tkψ〉|2 =

∫ 1

0

∣∣∣
∑

k∈Z

f̂(ξ + k)ψ̂(ξ + k)
∣∣∣
2
dξ for any f ∈ L2(R). (6.1)Let Kδ = (1 − a2δ, a2δ). By the restrition on δ, we have

Kδ ⊂ (δ, a2δ) ⊂ (δ, 1 − δ) and Kδ − 1 ⊂ (−a2δ,−δ) ⊂ (−1 + δ,−δ).Hene, by a diret alulation using (6.1) we have for any f ∈ L2(R)

∑

k∈Z

|〈f, Tkψ〉|2 =

∫

Kδ

|f̂(ξ− 1) + f̂(ξ)|2dξ+

∫

(δ,1−a2δ)
|f̂(ξ)|2dξ+

∫

(a2δ,1−δ)
|f̂(ξ− 1)|2dξ.(6.2)In partiular, by restriting (6.2) to a subspae Ľ2(Lδ), where

Lδ = (−∞,−1 + δ) ∪ (Kδ − 1) ∪ (−δ, δ) ∪Kδ ∪ (1 − δ,∞),we obtain a onvenient formula
∑

k∈Z

|〈f, Tkψ〉|2 =

∫

Kδ

|f̂(ξ − 1) + f̂(ξ)|2dξ for any f ∈ Ľ2(Lδ). (6.3)For any natural number N and su�iently small ε = ε(N) > 0, we de�ne a funtion
fN ∈ L2(R) by

f̂N =
N∑

k=0

(1I+
k
− 1I−

k
), (6.4)where

I+
k =

(
a−k

a+ 1
− ε,

a−k

a+ 1

)
, I−k =

(
− a−k

a+ 1
− ε,− a−k

a+ 1

)
. (6.5)
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ε
N∑

k=0

(δa−k/(a+1) − δ−a−k/(a+1)).We laim that
DajfN ∈ Ľ2(Lδ) for all j ∈ Z. (6.6)Indeed, (6.6) follows immediately from

aj(I+
k ∪ I−k ) ⊂





(−δ, δ) j ≤ k − 1,

(Kδ − 1) ∪Kδ j = k, k + 1,

(−∞,−1 + δ) ∪ (1 − δ,∞) j ≥ k + 2,for k = 0, . . . , N and for su�iently small ε = ε(N) > 0, i.e.,
0 < ε < min

{
a−N+1

(
δ − 1

a(a+ 1)

)
, a−N−2

(
a2

a+ 1
− 1 + δ

)}
.Let S be the frame operator orresponding to the a�ne system A(ψ). Note thatby Theorem 6.2, S is bounded. Our goal is to show that S is not bounded from below.Combining (6.3)�(6.6) we have

‖SfN‖2 =
∑

j∈Z

∑

z∈Z

|〈fN ,DajTzψ〉|2 =
∑

j∈Z

∑

z∈Z

|〈DajfN , Tzψ〉|2

=
N+1∑

j=0

a−j
∫

Kδ

|f̂N (a−j(ξ − 1)) + f̂N(a−jξ)|2dξ = 4ε.Here, we used that for ξ ∈ Kδ

f̂N (a−j(ξ − 1)) + f̂N (a−jξ) =





1I+0
(ξ) − 1I−0

(ξ − 1) j = 0,

0 j = 1, . . . , N,

1aN+1I+
N

(ξ) − 1aN+1I−
N

(ξ − 1) j = N + 1.The presene of anellations at sales j = 1, . . . , N is due to translation-dilation linkageof the quadruple of points {±a/(a + 1),±1/(a + 1)}. On the other hand,
‖fN‖2 = ‖f̂N‖2 = 2ε(N + 1).Sine N is arbitrary, this shows that the frame operator S is not bounded from below.Consequently, A(ψ) is not a frame.Next, we will show that Aq

Λ
(ψ) is a frame for any hoie of lattie Λ ⊂ Z. Sine

A(ψ) is a Bessel sequene, Theorem 3.5 yields that Aq
Λ
(ψ) is a Bessel sequene as well.Hene, it remains to establish the lower frame bound for Aq

Λ
(ψ).Let a = p/q, where p, q ∈ N are relatively prime, and l ∈ N be suh that Λ = lZ.Let

J1 = max{j ∈ N0 : pj divides l}, J2 = max{j ∈ N0 : qj divides l}.



124 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSTake any j ∈ Z. Then, we have the equality of latties a−jZ + Λ = a−jZ ⇐⇒ l is aninteger multiple of a−j. Clearly, this is equivalent to l being divisible by qj if j > 0 or
l divisible by p−j if j < 0. Therefore,

a−jZ + Λ = a−jZ ⇐⇒ −J1 ≤ j ≤ J2. (6.7)Consequently,
a−jZ + Λ =

1

cj
a−jZ for some cj ≥ 2, where j < −J1 or j > J2. (6.8)The properties (6.7) and (6.8) enable us to identify the quasi-a�ne system Aq

Λ
(ψ).At the sales −J1 ≤ j ≤ J2, the quasi-a�ne system Aq

Λ
(ψ) oinides with the a�nesystem A(ψ). However, outside of this �nite range of sales the quasi-a�ne system isobtained by oversampling the a�ne system at a rate cj ≥ 2. This will lead to a simpleform of the frame operator Sq

Λ
of the quasi-a�ne system Aq

Λ
(ψ).Indeed, suppose that j < −J1 or j > J2. By De�nition 4 and (6.8) the quasi-a�nesystem Aq

Λ
(ψ) at the sale j is

Oa
−jZ

Λ (Dajψ) = Ea
−jZ+Λ

(
1

|Λ/(Λ ∩ a−jZ)|1/2Dajψ

)
= Ea

−j/cjZ((cj)
−1/2Dajψ).Hene,

∑

g∈Oa−jZ

Λ
(D

ajψ)

|〈f, g〉|2 =
1

cj

∑

k∈Z

|〈f, Ta−jk/cjDajψ〉|2

=
∑

k∈Z

1

cjaj

∣∣∣∣
∫

R
f̂(ξ)ψ̂(a−jξ)e2πikξ/(a

jcj)dξ

∣∣∣∣
2

=

∫

R
|f̂(ξ)|2|ψ̂(a−jξ)|2dξ.The last step is a onsequene of the fat that supp ψ̂(a−j ·) ⊂ (−aj, aj) and that cj ≥ 2.Combining this with (6.7) yields

∥∥Sq
Λ
f
∥∥2 =

J2∑

j=−J1

∑

k∈Z

|〈f,DajTkψ〉|2+
( ∑

j<−J1

+
∑

j>J2

)∫

(−aj+2δ,−ajδ)∪(aj δ,aj+2δ)
|f̂(ξ)|2dξ

≥
J2∑

j=−J1

|〈Da−jf, Tkψ〉|2 +

(∫

|ξ|<a−J1+1δ
+

∫

|ξ|>aJ2+1δ

)
|f̂(ξ)|2dξ. (6.9)By (6.2),

∑

k∈Z

|〈Da−jf, Tkψb〉|2

= aj
∫

Kδ

|f̂(aj(ξ− 1))+ f̂(ajξ)|2dξ+aj
∫ 1−a2δ

δ
|f̂(ajξ)|2dξ+aj

∫ 1−δ

a2δ
|f̂(aj(ξ− 1))|2dξ.

=

∫

ajKδ

|f̂(ξ − aj) + f̂(ξ)|2dξ +

∫

aj(a2δ−1,−δ)∪aj (δ,1−a2δ)
|f̂(ξ)|2dξ. (6.10)



Referenes 125Take any f ∈ L2(R) with ‖f‖ = 1 and let η =
∥∥Sq

Λ
(f)
∥∥2. By equations (6.9) and(6.10), ∫Z |f̂ |2 ≤ η, where

Z = {ξ : |ξ| < a−J1+1δ} ∪ {ξ : |ξ| > aJ2+1δ} ∪
J2⋃

j=−J1

{ξ : ajδ < |ξ| < aj(1 − a2δ)}.Using (6.10) one an show that
Ij :=

∫

ajδ<|ξ|<aj+1δ
|f̂(ξ)|2dξ

≤ 2

∫

aj+1δ<|ξ|<aj+2δ
|f̂(ξ)|2dξ+2

∫

ajKδ

|f̂(ξ−aj)+ f̂ (ξ)|2dξ+

∫

ajδ<|ξ|<aj(1−a2δ)
|f̂(ξ)|2dξ

≤ 2

∫

aj+1δ<|ξ|<aj+2δ
|f̂(ξ)|2dξ + 2η. (6.11)Thus, we have a bound Ij ≤ 2(Ij+1 + η). Combining this with the fat that IJ2+1 ≤ ηyields Ij ≤ 6 · 2J2−jη for j ≤ J2. Consequently,

‖f‖2 ≤
∫

Z
|f̂(ξ)|2dξ +

J2∑

j=−J1+1

Ij ≤ 6 · 2J1+J2η.This proves that the frame operator Sq
Λ
of Aq

Λ
(ψ) is bounded from below by a onstantdepending only on J1 and J2, thus ompleting the proof of Theorem 6.1.Remark 9. By Theorem 3.8, the frame bounds of the quasi-a�ne systems Aq

Λ
(ψ) are notuniform for all Λ ⊂ Z. More preisely, the lower frame bound of Aq

Λ
(ψ) must approah0 for some hoie of sparser and sparser latties Λ. By analyzing the proof of Theorem6.1 it is not di�ult to show that this happens for the family of latties ΛJ = (pq)JZ as

J → ∞. This is due to the fat that in this ase the quasi-a�ne system Aq
Λ
(ψ) oinideswith the a�ne system A(ψ) at the sales −J ≤ j ≤ J and the same argument as in the�rst part of the proof of Theorem 6.1 applies.Theorem 6.1 says that the lower frame bound is not preserved in general when wemove from a quasi-a�ne system Aq

Λ
(Ψ) to the orresponding a�ne system A(Ψ) forrational non-integer dilations. It is not known whether the same ould happen with theupper bound. This leads to the following open problem.Question 1. Let Ψ ⊂ L2(Rn) and A ∈ GLn(Q). Suppose that Aq
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