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Abstract of the Ph.D. dissertation Wavelet frames and their duals

This thesis is concerned with computational and theoretical aspects of wavelet frame
analysis in higher dimensions and, in particular, with the study of so-called dual frames
of wavelet frames. A frame is a system of “simple” functions or building blocks which
deliver ways of analyzing signals. The signals are then represented by linear combina-
tions of the building blocks with coefficients found by an associated frame, called a dual
frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and
translated versions of a single function; such a frame is said to have wavelet structure.
The dilation of the wavelet building blocks in higher dimension is done via a square
matrix which is usually taken to be integer valued. In this thesis we step away from the
“usual” integer, expansive dilation and consider more general, expansive dilations.

In most applications of wavelet frames it is essential to have a dual frame with the
same structure, but this is not always the case. We explore the relationship between
dual frames of a wavelet frame. We show the existence of a “nice” wavelet frame for
which the canonical choice of a dual frame is not a wavelet system. At the same time,
this “nice” wavelet frame has infinitely many other “nice” dual wavelet frames.

To avoid the possible lack of wavelet structure of a dual frame, we develop a con-
struction procedure for pairs of dual frames which both have wavelet structure. Using
this simple procedure we construct pairs of dual, bandlimited wavelet frames with good
time localization and other attractive properties. Furthermore, the dual wavelet frames
are constructed in such a way that we are guaranteed that both frames will have the
same desirable features. The construction procedure works for any real, expansive di-
lation.

A quasi-affine system is a variant of the wavelet system that has been used suc-
cessfully in the study of properties of wavelet systems for integer dilations. We extend
the investigation of such quasi-affine systems to the class of rational, expansive dila-
tions and introduce a new family of oversampled quasi-affine systems. We show that
the wavelet system is a frame if, and only if, the corresponding family of oversampled
quasi-affine systems are frames with uniform frame bounds. We also prove a similar
equivalence result between pairs of dual wavelet frames and dual quasi-affine frames. We
then characterize when the canonical dual frame of an oversampled quasi-affine frame
is also a quasi-affine system. Finally, we uncover some fundamental differences between
the integer and rational settings by exhibiting an example of a quasi-affine frame such
that its wavelet counterpart is not a frame.






Resumé af ph.d.-afhandlingen Wavelet frames og deres dualer

Denne afhandling omhandler beregningsmaessige og teoretiske aspekter af wavelet-fra-
meteori i flere dimensioner og, i seerdeleshed, studiet af sidkaldte duale frames. En
frame er et system af simple funktioner eller byggesten, som kan bruges til at analysere
signaler. Signalet bliver repraesenteret ved en linearkombination af byggestenene, hvor
koefficienter udregnes ved hjalp af en tilknyttet frame kaldet en dual frame. En wavelet-
frame er en frame, hvor byggestenene er skalerede (dilaterede) og translaterede versioner
af en enkelt funktion. Vi siger, at framen har waveletstruktur. Dilationen af wavelet-
byggestenene i hgjere dimensioner bliver seedvanligvis udfgrt ved en kvadratisk matrix
med heltalsvaerdier. I denne afhandling betragtes mere generelle dilationsmatricer.

I langt de fleste anvendelser af wavelet-frames er det afggrende at veere i besiddelse
en dual frame med waveletstruktur, men dette er ikke altid tilfaeldet. Vi undersgger
forholdet mellem dualer af en wavelet-frame. Vi viser, at der eksisterer wavelet-frames,
for hvilke det kanoniske valg af dual ikke har waveletstruktur, men hvor der findes
uendeligt mange alternative waveletdualer.

For at undga problemer med manglende waveletstruktur af en dual frame udvikles
en metode til konstruktion af par af duale frames, hvor begge frames har wavelet-
struktur. Vi konstruerer par af duale, bandbegraensede wavelet-frames med attraktive
egenskaber. De duale wavelet-frames konstrueres endvidere saledes, at begge frames vil
have samme gode egenskaber. Konstruktionsproceduren virker for alle reelle, ekspansive
dilationsmatricer.

Quasi-affine systemer er en variation af det almindelige waveletsystem, der normalt
benyttes i studiet af waveletsystemer for heltalsdilationer. Vi udvider studiet af sdidanne
quasi-affine systemer til klassen af rationelle, ekspansive dilationer og introducerer en ny
familie af oversamplede quasi-affine systemer. Vi viser, at et waveletsystem er en frame,
hvis og kun hvis den tilsvarende familie af oversamplede quasi-affine systemer er frames
med uniforme framegraenser. Vi beviser ogsa lignende aekvivalensresultater for par af
duale wavelet-frames og par af duale quasi-affine frames. Desuden karakteriserer vi,
hvornar den kanoniske dual af en oversamplet quasi-affin frame ogsa er et quasi-affint
system. Endeligt afdaekker vi nogle fundamentale forskelle mellem den rationelle og
den heltallige situation ved at give et eksempel péa en quasi-affin frame, hvis tilhgrende
waveletsystem ikke er en frame.
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Overview

This thesis deals with computational and theoretical aspects of wavelet frames and their
duals. The thesis consists of one introductory chapter and four research papers. Two
of the four papers are joint work with Marcin Bownik from University of Oregon.

Chapter 1 provides a general introduction to wavelet frame analysis and a survey
of the new results presented in this thesis. The main text splits naturally into three
parts: Paper I (and Appendix B in Chapter 1) on theoretical aspects of wavelet frames
and their duals, Papers II and III on computational aspects of wavelet frames and dual
frames and, in particular, on the construction of dual wavelet frames, and Paper IV
on theoretical aspects of wavelet and quasi-wavelet frames. The introductory chapter,
Chapter 1, contains two appendices: Appendix A on expansive matrices and lattices in
R™ and Appendix B on an example of a non-biorthogonal Riesz wavelet.

The four research papers are listed below. Papers I and II have been published.

Paper I Marcin Bownik and Jakob Lemvig. The canonical and alternate duals of a
wavelet frame. Applied and Computational Harmonic Analysis 23(2):263-272,
2007.

Paper IT Jakob Lemvig. Constructing pairs of dual bandlimited framelets with desired
time localization. Advances in Computational Mathematics doi:10.1007/s10444-
008-9066-7. Appeared online May 2008.

Paper IIT Jakob Lemvig. Constructing pairs of dual bandlimited frame wavelets in
L?(R™). Manuscript August 2008.
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Paper IV Marcin Bownik and Jakob Lemvig. Affine and quasi-affine frames for ra-
tional dilations. Submitted September 2008.

A note to the reader

The papers are presented without modifications from the journal or preprint version.
References to sections, theorems, equation numbers, etc. will therefore be references
within the paper or chapter itself unless otherwise noted. References in Chapter 1 to,
e.g., a theorem in one of the papers will be of the form “Theorem 2.3 in Paper II” or
“Theorem I1.2.3”. This convention also means that the list of references is placed at the
end of each chapter or paper.

Kgs. Lyngby, Jakob Lemvig
September 2008.
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CHAPTER 1

Introduction

The first section, Section 1, is a brief introduction to wavelet frame analysis and the
research presented in this thesis. Section 2 is a review of mathematical definitions
central to the thesis. The last section of this introductory chapter is a survey of the
new scientific results obtained in the four papers [6, 7, 25, 26] which are presented in
the thesis as Papers I, II, III, and IV. The survey is found in Section 3.

1. Motivation

The traditional Fourier analysis yields some of the most versatile methods in engineering,
and it is used in almost every branch of engineering. Wavelet analysis is a modern
alternative to Fourier methods; it has its origin in mathematics, quantum physics,
electrical engineering, and seismic geology.

Wavelet frames are a redundant version of the standard wavelet transform; the
redundancy implies that we use more data than strictly necessary to describe the signal;
the redundancy, or surplus of data, acts as our safety net in cases of corruption or loss
of data.

The principal objectives in signal processing techniques encompass compression and
analysis of signals by representing these in terms of convenient building blocks. In
particular, we want expansions of a signal f of finite energy, i.e., f € L2(R") = {f :
R" — C: fou|f(2)Pdz < oo},

f@) =) exfr(x)  in L*(R"),

kel

where the functions f,, € L?(R") are our basic building blocks. The coefficient cy,
should be straightforward to calculate; in most applications it is also crucial that there
are only few important coefficients {c;}. In wavelet analysis the building blocks { f}
have a particular structure: they are stretched (dilated) and translated versions of a
single “oscillating” function.

In the standard approach for expressing signals in terms of wavelet building blocks,
one lets the building blocks form an orthonormal basis. However, the basis requirement
can be so restrictive on the building blocks that we sometimes have to give up on
desirable properties. One way to overcome this issue is to replace the basis approach
with the more general approach of frames. Frames generalize the notion of bases in
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such a way that we obtain much more flexibility in the construction of our building
blocks {fi} and more freedom in the choice of the coefficients {cj} and yet still so
restrictive that the numerical stability of the bases approach is preserved. For frames
the coefficients {cy} are found by using a so-called dual frame, either the canonical dual
or an alternate dual frame.

One of the motivations of the research presented in this thesis was to step away from
the “standard” wavelet systems with integer, expansive dilations and examine compu-
tational and theoretical aspects of wavelet systems with general expansive dilations. It
is not only of theoretical interest to consider non-integer dilations since non-integer set-
tings in some cases allow for a favourable, dense sampling of the time-frequency plane.
The standard fast wavelet algorithm from multiresolution analysis breaks down for ra-
tional dilations, but Selesnick and Bayram [1] recently developed a redundant discrete
frame wavelet transform based on non-integer, rational dilations, see also [22].

Frames are a generalization of orthonormal bases, hence the major reason to consider
wavelet frames in place of orthonormal wavelet bases is to obtain more flexibility and
freedom. The representation of a function or signal in terms of a frame involves either
the canonical dual or an alternate dual. But the canonical dual of a wavelet frame
need not have wavelet structure; and even worse, there might not be any (canonical or
alternate) dual with wavelet structure. Since only wavelet frames with wavelet duals are
useful (e.g., from the point of view that the fast wavelet algorithm will not be available
for either the analysis or synthesis of the signal if there is no wavelet dual), the freedom,
in these cases, ends up being deceptive. This, among other things, motivated the joint
work with Marcin Bownik in Paper I on the relationship between the canonical dual and
alternate duals. In particular, we show that “nice” wavelet frames can have many “nice”
alternate dual wavelet frames and at the same time a canonical dual which is not even
a wavelet system. Hence, when working with the canonical dual one has to pay close
attention to the structure of this dual. In Paper II and III the possible lack of wavelet
structure of dual frames is avoided altogether by constructing pairs of (non-canonical)
dual wavelet frames. The generators of this pair of dual frames are given in a very
explicit way and have attractive properties.

To improve results in applications involving multidimensional data the undecimated
wavelet transform is sometimes preferred to the standard wavelet transform, see for
example [10]. This approach adds shift invariance and redundancy to the algorithm;
indeed, the associated algorithm is a frame wavelet decomposition algorithm without
down sampling. The associated theoretical tool is the so-called quasi-wavelet (also
called quasi-affine) system which is a shift invariant counterpart of the wavelet (also
called affine) system. In Paper IV with Marcin Bownik we initiate the study of such
systems and their oversampled counterpart in multiple dimensions for rational, expan-
sive dilations. We prove equivalence results between affine and quasi-affine systems,
and we characterize quasi-affine frames whose canonical dual frame takes the form of
a quasi-affine system. Equivalent results on affine and quasi-affine systems are useful
because they, in the study of wavelet systems, allow us to replace the dilation invariant
wavelet system with the much simpler shift invariant quasi-affine system.
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2. Preliminaries and notation

2.1. Frames in Hilbert spaces

We are concerned with series expansions in separable Hilbert spaces. So, let H be a
separable Hilbert spaces with inner product (-,-) linear in the first entry. Our central
definition is that of a frame for H.

Definition 1. A frame is a countable collection of vectors { f;}jcindexsets such that there
are constants 0 < C7 < (5 < oo satisfying

CullFIP < D WAMP < CollfIP forall f € H. (2.1)
JjeJ
If only the upper bound in the inequality (2.1) holds, then {f;} is said to be a Bessel
sequence with Bessel constant Cl.
For a Bessel sequence {f;}, we define the frame operator of {f;} by

S:H—H,  Sf=> (f.fj)f
JjeJ
If {f;} is a frame, this operator is bounded, invertible, and positive. A frame {f;} is
said to be tight if we can choose C) = Cb; this is equivalent to S = C'11, where [ is the
identity operator on H. If furthermore C; = Cy = 1, the sequence {f;} is said to be a
Parseval frame.
Two Bessel sequences {f;} and {g;} are said to be dual frames if

f:Z(f,gj>fj for all f € H.
JjeET

It can be shown that two such Bessel sequences indeed are frames, and we shall say
that the frame {g;} is dual to {f;}, and vice versa. At least one dual always exists,
it is given by {S~!f;} and called the canonical dual. A frame that is also a Schauder
basis is called a Riesz basis. A frame that is not a Schauder basis is called a redundant
frame. Redundant frames have several duals; a dual which is not the canonical dual is
called an alternate dual.

2.2. Wavelet frames in L?(R")
Wavelet frames are frames with a dilation and translation structure in H = L?(R"). Fix
n €N, and let f € L%(R™). The translation by y € R™ is T, f(x) = f(x —y); dilation by

an n X n non-singular matrix B is D f(z) = |det B[l/Q f(Bzx); modulation by b € R"
is Eyf(z) = e?™02) f(z). For f € L'(R"), the Fourier transform is defined by

FIO=F©O = [ fape s

n

with the usual extension to L?(R™). These four operations are unitary as operators on
L?(R™), and they play a key role in wavelet analysis. The commutator relations below
will be used repeatedly. For k € R", j € Z and B = P~!BP for some P € GL,(R), we

have

Ty Dp = DpTpyg, Dp F = F Dpty-1, Dz, Dp = DpDg;. (2.2)
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The local commutant of a system of operators U at the point f € L?(R") is defined as
CrUd) == {T € B(L*(R")) : TUf =UTf YU €eU}.

A (full-rank) lattice ' in R™ is a point set of the form I = PZ" for some P € GL,(R).
The determinant of I' is d(I') = |det P|; note that the generating matrix P is not unique
and d(I') is independent of the particular choice of P. We refer to Appendix A.2 for
more facts on lattices in R™.

Let W = {41,...,¢5} C L?(R"), let I be a lattice in R™, and let A be a fixed n x n
expansive matrix, i.e., all eigenvalue A of A satisfy |A| > 1. The wavelet (or affine)
system of unitaries A associated with the dilation A and translation lattice I is defined
as A= {Dy;Ty :j € Z,~y € T'}. The wavelet system A(¥) generated by ¥ is defined as

AW) ={Yjy:j€Z,yeT,¢p € ¥}, (2.3)

where

Wiy = DyTyp = |det A2 (A7 - —y)  forjeZ,yeT.

If we need to stress the dependence of the underlying dilation matrix A and translation
lattice I, we say that the wavelet system A(V) is associated with (A4,T), or we use the
notation A(¥, A,T") for (2.3).

We say that U is a frame wavelet if A(¥) is a frame for L?(R"), and say that ¥ and
® is a pair of dual frame wavelets if their wavelet systems are dual frames. We usually
denote the transpose of the (fixed) dilation matrix A by B = A’

A generalized multiresolution analysis (GMRA) is a sequence {Dy; (V') };ez of closed
subspaces of L?(R") with the following four properties:

(a‘) V c DA(V)a

(b) UjezDas (V) = L*(R™),
(c) NjezDas (V) = {0},

(d) T,V CV forall y e T.

Whenever condition (d) is satisfied, we say that V' is shift invariant with respect to I
A frame wavelet V¥ is said to be associated with a GMRA if its space of negative dilates

V(W) = span{usy, 1 < 0, v €T} (2.4)

satisfies conditions (a)—(d) with V' = V().
Finally, the Gabor system generated by W is defined as { ExT, ¢ : A e A,y e T,¢p € ¥}
for lattices A and ' in R™.

A note on the dilation matrix and the translation lattice

In general our only requirement on the dilation matrix A € GL,(R) is that it is expan-
sive, in other words, that it has eigenvalues strictly greater than one in absolute value
(see Appendix A.1 for a list of equivalent conditions). However, we will sometimes put
further restrictions on A (or I'). In particular, we will consider the following cases:
the lattice preserving dilation, i.e., AT C I', and the rank preserving dilation, i.e., the
intersection Al N T is a full-rank lattice. It is obvious that lattice preserving dilations
are rank preserving.
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Furthermore, it is usually not necessary to consider arbitrary translation lattices I,
and one is often able to restrict attention to the standard translation lattice Z". Indeed,
for A € GL,(R) expansive and [ = PZ" for some P € GL,(R) consider the wavelet
system A(¥, A,T). By the commutator relations (2.2), we see

A(DpW, A,Z") = Dp (A(¥, A,T)), (2.5)

where the matrix A := P~1AP is similar to A. Observe that the set of all matrices
similar to an expansive matrix is precisely the set of all expansive matrices. Since Dp
is unitary, properties such as the frame and Bessel property carry over between the two
systems. Hence, in these cases it is possible to reduce studies of wavelet systems with
general translation lattice to the setting of integer lattice.

Therefore, we can without loss of generality usually restrict attention to wavelet
systems associated with (A,Z"), i.e.,

AW) ={yjr:j €L,k €Z" eV},

as is the case in Paper IV. Moreover, whenever we take [ = Z", lattice preserving
dilations simply mean integer dilations A € GL,(Z) and rank preserving dilations
simply mean rational dilations A € GL,(Q). This is a simple consequence of the
following two facts:

1) A€ GL,(Z) & AZ* C Z"
2) Ae GL,(Q) & AQ™ C Q™" & AZ™ N Z™ has full rank.

Of course, when we reduce our study to the standard translation lattice Z", we need
to recall that, e.g., a result on rational dilations and translation lattice Z™ actually is a
result on rank preserving dilations and general translation lattices I'.

Nevertheless, in Paper I1I, we actually do consider the general case of wavelet sys-
tems associated with (A, ') for arbitrary I'. The reason is that we, in this paper, want to
construct pairs of dual wavelet frames for some given expansive dilation A € GL,(R).
Of course, we can still apply the reduction step in (2.5), but this changes the dilation
matrix A (to A).

3. Survey of the new results
The following section is a survey of the new results and their relation to known results.
3.1. Canonical and alternate duals of a wavelet frame (Paper I)

Let ¥ = {41,...,91} C L?(R™). The canonical dual frame of a Gabor frame {E\T, ¥}
always takes the form of a Gabor system. In other words, the canonical dual frame is
of the form {E)\T,®} for some ® = {¢1,...,¢r} C L*(R"). Consequently, in Gabor
analysis, the frame and its canonical dual frame are always systems of functions with
the same structure. This is not the case for wavelet frames. Indeed, Daubechies [17] and
Chui and Shi [14] proved that the canonical dual of a wavelet Riesz basis need not have
wavelet structure. Hence, in particular, the canonical dual frame of a wavelet frame need
not be a wavelet system. In Paper I with Marcin Bownik we explore the relationship
between wavelet structure of canonical and alternate dual frames of a wavelet frame.
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The canonical dual of a wavelet frame A(V) = {Dy; Tk} jcz kezn pew is given as
-1 . ) — g—1 )
{$71 Dy T} = { D5 T}

= {DAﬂ?k’i}

JEZkEZ ie{1,....L JEZkEZ ie{1,...,.L}

jez.keZn ie{l,...,.L}’
where S is the frame operator of A(¥), and {n*?} is a family of functions, not necessarily
with translation structure, indexed by {1,...,L} x Z™. In the calculations above we
used that the frame operator commutes with dilation; the calculations show that we
only need to worry about the structure of the canonical dual on one scale, e.g., 7 = 0.

The canonical dual takes the form of a wavelet system generated by |¥| = L func-
tions, i.e.,

{S_lDAJ'Tk¢i} = {DAka(S_lwz’)}

= {DAjTk¢i}jeZ,kEZ”,iE{l,.--vL} ’

JELkeL™ied{l,...,.L} JELkeL™ie]{l,...,L}

precisely when 73,511 = S™'T}4) for all ¢ € ¥ and k € Z"; that is, precisely when
St e Cy({Ty : k €Z™}) for all p € ¥. Observe that the local commutant Cy({T}, :
k € Z"}) is likely to be a lot bigger than the commutant {7}, : k € Z"}'.

One of the major open problems concerning the canonical dual of a wavelet frame is
to give a characterization of those wavelet frames having a canonical dual with wavelet
structure. One result in this direction is due to Bownik and Weber [8] who showed that
if the canonical dual of a wavelet frame has the wavelet structure with the same number
of generators, then the space of negative dilates is shift invariant:

Theorem 3.1 (Theorem 1in [8]). Let A € GL,(Z) be expansive and ¥ = {11,...,¢r} C
L%(R™). Suppose that the canonical dual of a wavelet frame {¢; 1, : j € Z,k € Z", ) € ¥}
has a wavelet structure, i.e., it is of the form {¢; : j € Z,k € Z",$ € ®} for some frame
wavelet ® = {¢1,...,¢r}. Then, the space of negative dilates

V(¥) =span{v;:j <0, ke Z",+ € U}
is shift invariant with respect to Z'.

Remark 1. For a Riesz wavelet ¥ the other direction also holds, i.e., shift invariance of
V() implies wavelet structure of the canonical dual.

This result gives us a necessary condition for the canonical dual of a wavelet frame
to have wavelet structure, but the characterization problem is still open, even for dyadic
dilation in one dimension, i.e., A = 2.

Now, let us take a closer look at the example of Daubechies [17] and Chui and Shi
[14] that exhibits a wavelet Riesz basis whose canonical dual is not a wavelet system.
Let 1) € L*(R) be the generator of an orthonormal wavelet basis in L*(R) with dyadic
dilation. Define n as a perturbation of 1

n(z) = p(x) +e229(22) = () + eDyp(x)  for z € R, (3.1)
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for some fixed 0 < € < 1. In [14] it is shown that the function n generates a wavelet
Riesz basis {Dy;Tn};kez whose (canonical) dual is not of the form {Iy;T;¢} for any
¢ € L?(R). This argumentation can be extended to show that the canonical dual
{S71n;x} is not of the form

{DyiTio : j, k € Z,¢ € D}

for any finite set ® C L%(R) of generators, see Appendix B.1.

For this last statement to make sense, we need to explain precisely what is under-
stood by a wavelet frame with a canonical dual frame with more generators than the
frame itself. For a pair of dual frames {1z} and {¢;s} in L?(R) we have a represen-
tation of elements in L%(R) as

f= ([ oje)ve  forall fe L*(R). (3.2)

J,kEZL

From this representation we observe that there is a very specific pairing of elements
between the dual frames which we have to respect: the (z,[)-th element of {¢;} is
used to find the coefficient for the matching element in {1);} which obviously is 1. .
Hence, if we want to speak of a dual frame with more generators than the wavelet
frame itself, we need to pay close attention to this pairing (or duality) of elements. For
canonical dual frames, as argued above, we only need to verify the pairing on one of the
scales j € Z. Now, to understand what is meant by a canonical dual frame with more
generators, we [ift the pairing to another scale j > 0 or, more generally, to a sparser
translation lattice. Let 1) € L?(R) be the generator of a frame {¢jvk}j,k€Z with dyadic
dilation. Suppose that the canonical dual of {1} is not a wavelet system generated
by one function. The idea is to consider the wavelet frame {1;;} as a wavelet system
of the form

{jk};rez = {DQJ'TPM; LGk €Z,4p € {y, Ty, ... 7TP—1¢}}

for some P € N. Now, it might happen that this system (that is, the right hand side
system) has a canonical dual with wavelet structure as systems on the sparser translation
lattice PZ with P generators; for further details see also page 23 in Appendix B.
Suppose for simplicity that the canonical dual frame is generated by two functions
{¢1,¢2}. For this to make sense, we need to lift the duality to the translation lattice
27, where we match {DijQk'lp} @] {DijQk(Tw)} and {DQjT2k¢1} @] {DQjT2k¢2} as dual
frames with equal number of generators. Equivalently, we can say that we lift the
duality to scale j = 1, where we have the well-known form of dual frames {1} =
{ng Tk(Dﬂ[))}U{DQJTk(DgTQ/))} and {DijkD2¢1}U{D2kaD2¢2}. These two equivalent

lifting schemes are based on the paraphrasing
{ik}jhen = { Do Torth : Gk € 2,9 € {w, Ty} },
and

{6k} hen = { Dy Tk : j,k € Z,4) € {Dytp, DT} },
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respectively.

Let us return to the example on the Riesz wavelet n from (3.1). The canonical
dual {S‘lnj,k} is not a wavelet system generated by one function, hence we say that
{S71n;x} does not have wavelet structure. Since we can even say that {n;x} is not
a wavelet system generated by any finite number of functions, we should think of this
canonical dual as being very “far from” having wavelet structure. The notion of the
period of a wavelet frame in L?(R) is introduced as a measure of how “far from” we are;
it tells us something about how close to or how far from the canonical dual frame is to
having wavelet structure.

Definition 2. Suppose that ¥ = {¢1,...,%;} C L?(R) is a frame wavelet associated
with an integer dilation factor a, |a| > 2. The period of ¥ is the smallest integer p > 1
such that for all f € span{Tyy : k € Z,¢ € ¥},

TS f =S "Tpf  foralkeZ,

where S is the frame operator of the wavelet frame generated by W. If there is no such
p, we say that the period of ¥ is co.

We note that there is no dilation operator present in the definition above simply
because dilation commutes with the (inverse) frame operator. One can show that the
canonical dual of A(¥) has the wavelet structure generated by |¥| functions if, and only
if, the period of W is one. Moreover, in Paper [ we show the following result on the
relationship between the period of a wavelet frame and the number of generators of the
canonical dual.

Theorem 3.2 (Proposition 2.3 in Paper 1). Suppose that ¥ C L?*(R) is a frame wavelet
with an integer dilation factor a, |a| > 2. For any nonnegative integer M € N, the
following statements are equivalent:

(i) P(¥) | M, i.e., the period of ¥, denoted P(¥), divides M.
(ii) There exist ML functions ® = {¢1,...,¢nr} such that {D,;Thkd}jkez,ocd 1S
the canonical dual of {DaJTk¢}j,k€Z,w€W = {DajTMkw}j,lCEZ,dJE‘I/M: where

Uy i={Tpy :m=0,...,M —1,¢ € U}.

Hence, if the period P(¥) of a frame wavelet U is finite, then the canonical dual
frame is a wavelet system generated by P(V)-|¥| functions, and this is the least number
of generators. From Proposition 3.2 it is also obvious that any tight frame wavelet has
period one.

Returning to the Riesz wavelet n from (3.1), we know that (ii) is not satisfied for
any M € N, hence P(n) = oo. The following result is a refinement of Theorem 3.1 and
Remark 1.

Proposition 3.3 (Proposition 2 in [8]). Let M € N. If U is a frame wavelet and the
period of ¥ divides M, then V (V) is shift invariant by the lattice M7Z. In addition,
if ¥ is a Riesz wavelet, then the period of ¥ divides M if, and only if, V() is shift
invariant by the lattice MZ.
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From Remark 1 above we conclude that the space of negative dilates V() is not
shift invariant. In [18] this is verified by direct calculations. From the refinement in
Proposition 3.3 we conclude that V(n) is not even shift invariant with respect to any
sublattice of Z. This is verified by direct calculations in Appendix B.2.

We return to the main conclusion from the example of Daubechies [17] and Chui
and Shi [14]: the canonical dual frame of a wavelet frame need not be a wavelet system.
Since their example involved a non-biorthogonal Riesz wavelet, it has no alternate dual
wavelet frames as well, and one might ask if the existence of an alternate dual frame
with wavelet structure would imply wavelet structure of the canonical dual. In general,
very little is known about the canonical dual frame of a wavelet frame, and this question
deals with some fundamental interrelation aspects of the canonical dual and alternate
duals. The main result in Paper I is a negative answer to the question:

Theorem 3.4 (Theorem 3.1 in Paper |). For all J € N, there exists a frame wavelet
¥ € L?(R) such that:
(i) 15 is C*° and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by fewer than 27
functions,

(iii) there are infinitely many 1) such that v and ¢ form a pair of dual wavelet frames.

1/}0 0
14+
6¢1 61/)1
ol
T T 1 T T T ’5
1 1 —2 -1 12 1 1 3
2 4 2N oN 2N 2N 4 2 4

Figure 1: Sketch of the graph of a function ¢ = ¢)° + 1! satisfying the three conditions in
Theorem 3.4 with J =N —3 € N.

This claim (with J = 1) was asserted by Daubechies and Han [18], but the original
argument in [18] uses an incorrect formula for the frame operator of a wavelet system
owing to a simple change of sign mistake. This invalidates the original proof to the extent
that an easy remedy appears to be doubtful. Therefore, there was a need to provide
an alternative proof of Theorem 3.4. This was accomplished by Paper I. Instead of
trying to work directly with the frame operator as in [18], we use a less direct approach
using (the negation of) Proposition 3.3. The constructed function 1 satisfying the three
conditions in Theorem 3.4 is sketched in Figure 1.

3.2. Constructions of pairs of dual wavelet frames (Paper Il and Ill)

In the previous section we saw that duals and, in particular, the canonical dual of a
wavelet frame need not have wavelet structure. In Paper IT and I we therefore relegate
the canonical dual to the background and develop construction procedures for pairs of
dual (non-canonical) wavelet frames for arbitrary real, expansive dilations. This work
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was motivated by the existence of similar construction procedures for pairs of dual
Gabor frames [12] which naturally lead to the question whether corresponding methods
could be developed in the wavelet settings. We consider the one-dimensional settings
L%(R) in Paper II and the extension to L?(R™) in Paper III.

Christensen [12] uses characterizing equations for dual Gabor frames to construct
pairs of dual Gabor frames with generators given in a very explicit way. Consequently, in
Paper II and III we use characterizing equations for dual wavelet frames. The existence
of such equations was originally proved by Frazier, Garrigos, Wang, and Weiss [19]
in the dyadic setting. Later it was extended by Bownik [2] to the setting of integer,
expansive dilations and by Chui, Czaja, Maggioni, and Weiss [13] to the setting of real,
expansive dilations. A proof of Theorem 3.5 can be found in Section 4 of Paper IV.

Theorem 3.5 (Theorem 4 in [13]). Let A € GL,(R) be expansive and ¥ = {¢1,...,¢r},
® = {¢1,...,¢1} C L*(R"). Suppose A(¥) and A(®) are Bessel sequences in L*(R").
Then, A(V) and A(®) are dual frames if, and only if,

L
YN h(BIYH(BIE) =1 for ae. & (3.3)
1=1jeZ

L

S Y w(BIONBE(E+a) =0  forae €andalla€Z\{0}. (3.4)

=1 j€Z:a€eBIZ™

Characterizing equations for dual Gabor frames can be expressed in time domain
while we see that equations (3.3) and (3.4) are conditions in the Fourier domain. This
indicates that the construction of wavelet frames will take place in the Fourier domain
as opposed to the time domain constructions in [12].

The setup will be as follows. We consider wavelet systems in the general setting
with real, expansive dilation A € GL,,(R) and a lattice I in R", i.e.,

{DAJ T’ﬂb}ng;ygF 5

where the Fourier transform of ¢ has compact support. Our aim is, for any given real,
expansive dilation matrix A, to construct wavelet frames with attractive features and
with a dual frame generator of the form

b
¢ = c;iDyit) (3.5)
j=a
for some explicitly given coefficients ¢; € C and a,b € Z. The idea behind the con-
struction is simple: first, we make a number of assumptions of a function ¢ € L?(R™);
then, we introduce ¢ in such a way that conditions (3.3) and (3.4) hold and conclude
by Theorem 3.5 that ¥ and ¢ generates a pair of dual wavelet frames.
Our main findings in Paper II can be stated as follows.

Theorem 3.6 (Theorem 2.3 in Paper ll). Let d € N, a > 1, and ¢ € L*(R). Suppose
that 1; is a real-valued function with Supp?l)\ C [—ac, —ac_d} U [ac_d, ac} for some ¢ € Z,
and that

Z@Z(ajé) =1 forae £cR. (3.6)

JEZL
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Let b € (0,271a™¢]. Then the function v and the function ¢ defined by

d—1
o(x) = by(x) + 2b Z aplaIx) forx € R, (3.7)
j=1

generate dual frames { D Tykt}j ez and {Dgi Ty ¢} jkez for L*(R).

The principal advantage of having a dual generator of the form (3.7), or more gen-
erally of the form (3.5), is that it will inherit properties from v preserved by dilation
and linearity, e.g., vanishing moments, good time localization and regularity properties.
For a more complete account of such matters we refer to Paper II, but we remark that,
as a potential drawback, the wavelet frame generators will not have compact support
in the time domain leading to infinite impulse response filters.

Figure 2 shows an example of a pair of generators ¢ and ¢ in the Fourier domain con-
structed by Theorem 3.6. In Paper III we generalize and extend Theorem 3.6 to higher
dimensions; we refer to Corollary 2.5 in Paper III for a generalization of Theorem 3.6.

2.0 AT
1.5
1.0 -

0.5

0 ". T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 2: An example of a pair of dual generators ¢ (solid line) and ¢ (dotted line) in the
Fourier domain (Figure 2 from Paper II).

Next, we extend the one-dimensional result on constructions of dual wavelet frames
in Theorem 3.6 to higher dimensions. The extension is non-trivial since it is unclear how
to determine the translation lattice ' and how to control the support of the generators
in the Fourier domain.

In order to outline the construction procedure in higher dimensions we need to
introduce some notation. Let |-| = (-, ->*1/2 be a Hermitian norm associated with
B = A! as in (vi) in Proposition A.1 and let K € GL,(R) be the symmetric, positive
definite matrix such that (z,y), = y*Kz. Finally, let A := diag()\y,...,\,), where {\;}
are the eigenvalues of K, and let @ € O(n) be such that the spectral decomposition of

K is Q'KQ = A. With this setup we can state the construction as follows.



12 CHAPTER 1. INTRODUCTION

Theorem 3.7 (Theorem 3.3 in Paper Ill). Let A € GL,(R) be expansive, d € Ny and
¥ € L?(R™). Suppose that 1 is a bounded, real-valued function with suppt) C B(L.)\
B¢~9=Y(1,) for some c € 7, and that

> p(BiE) =1 forae &R (3.8)

JEZ
holds. Take T = (1/2)A°QV/AZ". Then the function v and the function ¢ defined by

d
¢(z) =d(T) |¥(x) +2Y |det A| 7/ (A7) | forz € R, (3.9)
j=0

generate dual frames {Dy; Ty} jezver and {DyiTi¢}jezer for L*(R™).

The construction of redundant wavelet representations in higher dimensions is usu-
ally based on extension principles [29]. By making use of extension principles one is
restricted to considering expansive dilations A with integer coefficients. On the other
hand, the methods developed in Paper II and IIT work for any real, expansive dilation.
The two papers contain several applications of Theorem 3.6 and 3.7. In Example 11.3
and II1.5 we construct pairs of dual wavelet frames generated by one smooth function
with good time localization. For constructions of generators of spline type with compact
support in the Fourier domain, we refer to Examples 11.2, TT1.1 and I11.4 (and Figure 2).

3.3. Affine and quasi-affine frames for rational dilations (Paper 1V)

Quasi-affine systems are little known cousins of the well-studied wavelet systems also
known as affine systems. Affine systems A(¢), A,Z") are dilation invariant, i.e., ¢ €
A() = Dy;¢ € A(W) for all j € Z, but not shift invariant. However, if the dilation A
has integer entries, then one can modify the definition of affine systems to obtain shift
invariant systems. This leads to the notion of quasi-affine systems

5 |det A2 p(Alz —k):j >0, keZ"
a = ; = A
Al(y) {W’C(“) { |det AJ (Al (x —k)):j <0, k € Z”}

which was introduced and investigated for integer, expansive dilation matrices by Ron
and Shen [29]. Despite that the orthogonality of the affine system cannot be carried
over to the corresponding quasi-affine system due to the oversampling of negative scales
of the affine system, it turns out that the frame property is preserved. This important
discovery is due to Ron and Shen [29] who proved that, for integer dilations, the affine
system A(¢)) is a frame if, and only if, its quasi-affine counterpart A7(¢)) is a frame
(with the same frame bounds).

Theorem 3.8 ([29]). Let A € GL,(Z) be expansive and ¥ C L?(R). Then, A(V) is a
frame with bounds C4,Cy if, and only if, AY(V) is a frame with bounds C1, Cs.

Such equivalence results are useful because quasi-affine systems are shift invariant
and thus much easier to study than affine systems which are dilation invariant. A proof
of Theorem 3.8 can be found in Proposition 3.10 in Paper IV.
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The goal of the work in Paper IV with Marcin Bownik is to extend the study of quasi-
affine systems to the class of expansive rational dilations. So, let A be a fixed expansive
dilation with rational entries. In [4] Bownik generalized the notion of a quasi-affine frame
for rational, expansive dilations which coincides with the usual definition in the case of
integer dilations. The main idea of Ron and Shen [29] is to oversample negative scales
of the affine system at a rate adapted to the scale in order for the resulting system to be
shift invariant. In order to define quasi-affine systems for rational, expansive dilations
one needs to oversample both negative and positive scales of the affine system (at a
rate proportional to the scale) which results in a quasi-affine system that in general
coincides with the affine system only at the scale zero. This can easily be seen in one
dimension where the quasi-affine system has a relatively simple algebraic form. Suppose
that a = p/q € Q is a dilation factor, where |a| > 1, p, g € Z are relatively prime. Then,
the quasi-affine system associated with « is given by

AI(p) = \P!w ’qrj T/J(GJ:UU - ijk) 1 3720, ke .
P gl 2 p(aiz —p'k): j<0, keZ

In the rational case it is much less clear than in the case of integer, expansive dilations
(where both systems coincide at all non-negative scales), whether there is any relation-
ship between affine and quasi-affine systems. Nevertheless, Bownik proved in [4] that
the tight frame property is preserved when moving between rationally dilated affine and
quasi-affine systems. This result has initially suggested that there is not much difference
between integer and rational cases.

In Paper IV it is shown that this belief is largely incorrect by uncovering substan-
tial differences between the theory of integer dilated and rationally dilated quasi-affine
systems. For any rational, non-integer dilation we give an example of an affine system
which is not a frame, but yet, the corresponding quasi-affine system is a frame. This
kind of example does not exist for integer dilations due to Theorem 3.8.

Offhand, the equivalence result in Theorem 3.8 can seem surprising since we are
dealing with two systems of functions that are quite different (at the negative scales
j < 0). The equivalence result suggests that we have some flexibility in how the low
frequency (5 < 0) part of the system is chosen. Recall that we oversample both neg-
ative and positive scales for rational dilations. Hence, the fact that the equivalence in
Theorem 3.8 does not hold for rational dilations suggests that we have less flexibility in
changing high frequency (j > 0) parts of the system.

To understand the broken symmetry between the integer and rational settings we
introduce a new class of quasi-affine systems indexed by the choice of the oversampling
lattice N\ (see Appendix A.2 for basic facts on lattices). In short, the quasi-affine system
A% () is defined to be the smallest shift invariant system with respect to a lattice
A, which contains all elements of the original affine system A(¢)). In order to make
this definition meaningful we also need to renormalize the elements of A% (¢) at a rate
corresponding to the rate of oversampling as it was done previously.

Definition 3. Let A € GL,(Q) be a rational, expansive matrix, and let A be a rational
lattice in R™, i.e., A = PZ" with P € GL,(Q). Suppose ¥ C L%(R") is a finite set.
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Define A% () the A-oversampled quasi-affine system by

A =U {I/\/(

JEZ

1
AN A=IZm)|

5T Da ¥ w € At AJZ")}

When A = Z" we drop the subscript A, and we say that A%(V) = A%, (¥) is the standard
quasi-affine system.

By definition A7 (¥) is shift invariant with respect to A. For illustration, let us
display the oversampled quasi-affine system in one dimensional case with generator
U = {¢} and oversampling lattice A = (pq)’Z for some J € Ny:

’p‘j/2 ’q’*HJ/? Yz —q’ k) j>J kel
ARW) = ¢ lal? (el — k) ~J<j<J kel
[Pl 2 g (el —pTR)  j < T ke Z

Now, our main result can be stated as follows.

Theorem 3.9 (Theorem 3.9 in Paper IV). Let A € GL,(Q) be expansive and ¥ C L%(R").
Then, the affine system A(V) is a frame for L*(R"™) with frame bounds Cy, Cy if, and
only if, the A-oversampled quasi-affine system A%(¥) is a frame for L?(R™) with uniform
frame bounds C1, Cs for all integer lattices A.

In the case when the dilation A is integer-valued, the class of A-oversampled quasi-
affine systems reduces to the standard quasi-affine system .49(¥) and its dilates. Hence,
the original result of Ron and Shen [29] follows immediately from Theorem 3.9. The
proof of Theorem 3.9 is influenced by the work of Hernandez, Labate, Weiss, and Wilson
[20, 21|, where the authors obtain reproducibility characterizations of generalized shift
invariant (GSI) systems including affine, wave packets, and Gabor systems. The key
element of these techniques is the use of almost periodic functions which was pioneered
by Laugesen [23, 24] in his work on translational averaging of the wavelet functional.
Using these methods Laugesen |24, Theorem 7.1| gave another proof of the equivalence
of affine and quasi-affine frames in the integer case. In this work we show that these
techniques can be generalized to treat rationally dilated quasi-affine systems as well.
Moreover, Laugesen [24] considered equivalence results for time-discrete wavelet systems
A(V) and time-continuous wavelet systems {Ds;T,V} ez zern. The A-oversampled
quasi-affine systems represent, in some sense, intermediate stages between these two
systems. If A is very sparse, the oversampled quasi-affine system A7 () will resemble
the time-discrete wavelet system. If A, on the other hand, is very dense, then A% (¥)
will be close to the time-continuous wavelet system.

In Paper IV we also introduce a particularly interesting subclass of generators where
the equivalence between affine and quasi-affine frames exhibits the largest degree of
symmetry. This is a class of diagonal affine systems for which the off-diagonal functions
t, defined below vanish.

Definition 4. For a given dilation matrix A and ¥ C L?*(R") we introduce the family
of functions {tq},czn» on R™ by:

tal) =3 > BIYYBI(E+a)  for £ R (3.10)

VeV jeZ:aeBIZ"
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We say that the affine system A(W) is diagonal if t,(€) = 0 a.e. for all « € Z™ \ {0}.

The class of diagonal affine frames is large enough to contain all tight affine systems,
but small enough to be contained in the class of affine frames having canonical duals with
affine structure. By Theorem 3.12 below we see that the class of diagonal affine frames
consists precisely of quasi-affine frames having a canonical dual quasi-affine frame.

Now, for diagonal generators ¥ we have “perfect” equivalence between affine and
quasi-affine frames as is seen from the following result. Theorem 3.10 is an extension of
[4, Theorem 3.4] on tight frames.

Theorem 3.10. Let A € GL,(Q) be expansive, ¥ C L?(R") and let Cy,Cy > 0 be con-
stants. Suppose that the affine system A(V) is diagonal. Then the following assertions
are equivalent:

(i) the affine system A(V) is a frame for L*(R"™) with bounds C1,Cs.
(i) the quasi-affine system A} (V) is a frame for L?(R™) with bounds Cy, Cy for some
integer lattice Ny C Z".
(iii) the quasi-affine system A}(V) is a frame for L*>(R™) with bounds Cy,Cy for all
integer lattices N C Z".
(iv)
<> ZW(B]{)P < for a.e. £ € R™.

Pev jeZ

In Section 4 of Paper IV, we investigate pairs of dual quasi-affine frames thus con-
necting to the theme of Paper II and III, compare Theorem 3.5 and Theorem 3.11. The
theory of rationally dilated quasi-affine frames parallels quite closely that of integer di-
lated systems. Hence, we have a perfect equivalence between pairs of dual affine frames
and pairs of dual quasi-affine frames, regardless of the choice of the oversampling lattice
A.

Theorem 3.11 (Theorem 4.2 in Paper IV). Let A € GL,(Q) be expansive. Suppose A(V)
and A(®) are Bessel sequences in L?(R™). Then the following assertions are equivalent:

(i) A(V) and A(®) are dual frames.
(ii) AR, (¥) and A} (®) are dual frames for some integer oversampling lattice Ay C
7"
(iii) A% (¥) and A} (®) are dual frames for all integer oversampling lattices N C Z".
(iv) ¥ and ® satisfy the equations (3.3) and (3.4).

In the integer case Theorem 3.11 was first shown by Ron and Shen [29, 30] with
some decay assumptions on generators ¥ and ®. Chui, Shi, and Stockler [15] proved
the same result without any decay assumptions, see also [2, Theorem 4.1]. Theorem
3.11 generalizes this result to the setting of rational dilations.

In Section 5 in Paper IV we characterize when the canonical dual frame of a A-
oversampled quasi-affine frame A} (¢) is also a quasi-affine frame. In the case of integer
dilations, such characterization is due to Bownik and Weber [8, Theorem 3]. Theo-
rem 3.12 generalizes this result to the case of rational dilations. It is remarkable that
the existence of the canonical quasi-affine dual frame is independent of the choice of
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the oversampling lattice A. Hence, if such canonical dual frame exists for some A-
oversampled quasi-affine system, then it must exist for all lattices A C Z".

Theorem 3.12 (Theorem 5.6 in Paper V). Let A € GL,(Q) be expansive. Suppose the
oversampled quasi-affine system .Ajl\o(\Il) is a frame for L>(R") for some integer lattices
No C Z". Then the canonical dual frame of A} (W) has the form A} (®) for some set
of functions ® C L*(R") with cardinality |®| = |¥| if, and only if, for all « € Z"™ \ {0},

ta) =3 > H(BIYYBEI(E+a) =0 (3.11)
v

eV jeZ:aeBIZ"

Moreover, in the positive case A} (V) is a frame for all integer lattices N C Z" and
its canonical dual frame is A} (®).

This line of research connects to the theory on the canonical dual of wavelet frames
which we considered in Section 3.1 (the survey on results in Paper I). We note that if
U generates a quasi-affine frame A{ (W) for some Ag C Z" whose canonical dual frame
has the form of a quasi-affine system, then W also generates an affine frame whose
canonical dual frame has affine structure; loosely speaking, this means that it is harder
for a quasi-affine frame to have a canonical dual with the same structure than for an
affine frame. This fact is immediate from Theorem 5.4 in Paper IV. Theorem 3.12 on
canonical duals of quasi-affine frames, therefore, provides a sufficient condition for a
wavelet frame having a canonical dual with wavelet structure:

Proposition 3.13. Let A € GL,(Q) be expansive and let ¥ C L2(R"). If t,(£) = 0 a.e.
for all « € Z*\ {0}, then the canonical dual frame of A(V) is of the form A(®) for some
set ® C L?(R") with |®| = |¥|.

Proposition 3.13 tells us, in other words, that the canonical dual of diagonal affine
frames has affine structure.

In the last section of Paper IV we show that, for any non-integer, rational dilation,
there exist quasi-affine frames A3 (¢) such that the corresponding affine system A(z))
is not a frame:

Theorem 3.14 (Theorem 6.1 in Paper IV). For each rational non-integer dilation factor
a > 1, there exists a function 1) € L*(R) such that A} (1) is a frame for any oversampling
lattice N C Z, but yet, A(1) is not a frame.

Despite that each system .A7(¢) is a frame, its lower frame bound drops to zero
as the lattice A gets sparser. Hence, this example does not contradict Theorem 3.9.
Moreover, in light of Theorem 3.11, none of the quasi-affine frames A% () can have a
dual quasi-affine frame.

We end this the survey of Paper IV by noting that it is not possible, in general,
to extend the notion of quasi-affine systems beyond rational dilations. Consider, for
example, a wavelet system in L?(R) with dilation factor a = m. The scale j = 0 part
{Tx}kez is Z-SI while the scale j = 1 part {D; T} }rez is 7Z-SI. Since Z + 77 is dense in
R and therefore not a lattice, we cannot unite the two scales in a A-SI system for any
lattice A in R.
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Appendix A. Some linear algebra

The following facts on expansive matrices and lattices in R™ will be used throughout
the thesis.

A.1. Expansive matrices

An expansive matrix is a real n x n matrix with eigenvalues |A\| > 1. Matrices of this
type are used as dilation matrices for wavelet systems in higher dimensions in this thesis.

If A is an expansive matrix, then so is the transpose B = A’. Proposition A.l is
a collection of equivalent conditions for a (non-singular) matrix being expansive. All
equivalences can be found in the literature. Since these equivalences often are stated
without proof, we present a proof or a reference to a proof of each of the equivalences.

Proposition A.1. For B € GL,(R) the following assertions are equivalent:
(i) B is expansive, I.e., all eigenvalues \; of B satisfy |A\;| > 1.
(i) p(B~1) <1, where p denotes the spectral radius.
(iii) limj oo B™7 =0
(iv) limj_o0 ||B77|| = 0 for some/all matrix norms ||-|.
(v) For any norm |-| on R™ there are constants A > 1 and ¢ > 1 such that

|Biz| > (1/c)N |z for all j € Ny,

for any x € R". Equivalently, |B~/z| < eA™7 |z|.
(vi) There is a Hermitian norm |- |, on R™ and a constant A\ > 1 such that

|Bix|. > M |z|,  forall j € Ny,

for any x € R".
(vii) |Biz — x| — oo for j — oo for all x € R™ \ {0} for some/all vector norms |- |.
(viii) € C A C BE for some ellipsoid € = {x € R" : |Px| <1}, P € GL,(R) and
A>T
(ix) € C BE® for some ellipsoid € = {x € R" : |Pz| < 1}, P € GL,(R).

Proof. The equivalence (i) < (ii) follows directly from the definition of p(B~1) while
(ii) < (iii) is a standard result. The implication (iii) = (iv) follows by continuity of the
matrix norm and (iv) = (ii) by p(B~1)? < ||B7|| — 0 for j — .

The equivalence (i) < (v) < (vi) is a result from [27]; a proof of (i) < (v) can
be found in [20, Lemma 5.2] and an approach to construct a Hermitian norm |-|, as
in (vi) can be found in |3, Lemma 2.2| and [28, Lemma 1.5.1]. We note that the only
direction that requires some work is (i) = (vi) since (vi) = (v) follows by equivalence
of norms on R" with ¢ = Cy/C1, where Cy |z| < |z|, < Ca|x|, and (v) = (iv) follows
by the estimate ||[B~7|| < ¢A™ for j > 0 (take y = B~z in (v)). This shows that the
sequence of norms ||B~7|| actually decays exponentially to zero.

Assume (v) holds. Then

B — x| > ||BIa| — |al| > [(1/e)¥ |2l — |zl| = |(1/e)¥ ~1|[2] for j >0,
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for A > 1 and ¢ > 1. Since |(1/¢)A — 1] — oo as j — oo, we have |Biz — z| — oo
for any x # 0 which in turn is statement (vii). Assume (vii) holds and let (i, v) be an
eigenvalue-eigenvector pair for B. Then

’ij — v‘ = ’,ujv — v‘ = ’,uj — 1‘ [v] .

Since by hypothesis v # 0, we must have [/ — 1| — 0o as j — oo which implies |p| > 1.
Since this must be true for any eigenvalue, we conclude that (i) holds.

The implication (i) = (viii) is Lemma 2.2 in [3]. Assume (viii) holds. Let P €
GL,(R) be such that £ = {x € R": |[Pz| < 1}. Since £ is an ellipsoid,

|Pz)* = 'K,

where K is a symmetric, positive definite matrix. Define the inner product by (z,y), =
'Ky, hence |z|, = |Pxz|. Take x € R"\ {0}, and let y = =/ |z|,. Thus y € € and
By € 0B(E). By Aé C B(E), we have A = A|y|, < |By|, and thus A |z|, < |Bz|,. For
x = 0 this inequality is immediate. This shows that (vi) holds.

The last equivalence (viii) < (ix) is trivial. O

A.2. Lattices in R»

A lattice I in R™ is a discrete subgroup under addition generated by integral linear
combinations of n linearly independent vectors {p;}I.; C R", i.e.,

r:{Z1p1+“‘+znpn:21a---vznEZ}'

In other words, a lattice is a finitely generated free abelian group of rank n. Yet, in
other words, it is a set of points of the form PZ" for a non-singular n x n matrix P.
Let I be a lattice in R™. If [ = PZ", we say that the matrix P € GL,(R) generates
the lattice I'. A generating matrix of a given lattice is only unique up to multiplication
from the right by integer matrices with determinant one in absolute value; in particular,
if [ = PZ" for some P € GL,(R), then also I = PSZ" for any S € SL,(Z).

We mainly follow the exposition in [9]. The determinant of I' is defined to be:

d(T) = |det P, (A1)

where P € GL,(R) is a generating matrix for I'; note that d(I') > 0 and d(Z") =1
The determinant d(I') is independent of the particular choice of generating matrix P
and equals the volume of a fundamental domain I of the lattice I', where

Ir=P(0,1)")={capr1+ 4+ cenpn: 0<¢<1lfori=1,...,n}

with p; denoting the ith column of a generating matrix P. Note that R"™ = Uycr (v +1r)
with the union being disjoint, and that the specific shape of I depends on the choice
of the generating matrix P.

Since a generating matrix P of a lattice [ is not unique, it is useful to have a
characterization of lattices in which P does not appear. We have the following result.

Theorem A.2 (Theorem L.Vl in [9]). Let I be a subset of R™. Then, I is a lattice if,
and only if, the following three conditions hold:
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(i) Ifx,y €T, then x £y €T,
(ii) T contains n linearly independent vectors,

(iii) There is a constant r > 0 such that 0 is the only point of I in B(0,r) =
{z:|z| <r}.

Suppose that [ C A, in other words, that I is a sublattice of some “denser” lattice
A. We define the indez of [ in A as
ar

D=an (A.2)

It is straightforward to verify that the index D is always a positive integer; the index D
is actually the number of copies of parallelotopes It that fits inside a larger parallelotope
Ip. If D is the index of T in A, we have from |9, §1.2.2],

QU

DANCT CA. (A.3)

Lemma A.3 (Lemma I.1 in [9]). The index of the sublattice I' of A\ is the order of the
quotient group N/T, i.e.,

IN/T| =D =d(T)/d(N), (A.4)
where |\/T| is the order of the quotient group N/T.
Let {p;}!; be generators of a lattice . Since {p;} is a basis in R", there exists a

unique (biorthogonal) basis {p;}7-, such that (p;, p}) = 6; ; fori,j =1,...,n. The dual
lattice of T is defined as

I—*:{lei_}_..._}_znp;';:zl,...,znGZ},

and the definition is independent of the choice of basis {p;}. Dual lattices are sometimes
called polar or reciprocal lattices.

The following result gives a representation of the dual lattice without reference to
generating bases or matrices.

Lemma A.4 (Lemma .5 in [9]). Let A = PZ" be a lattice in R"™. Then, the dual lattice
of I is

M={neR":(n,y)eZforyerl}
— (Pt)—lzn.

Furthermore, the determinants satisfy
d(rd(r) =1.

If I C A, then A* C T'*. We refer to 9] for further basic properties of lattices.
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Isomorphism theorems

Since lattices are groups, we can apply the isomorphism theorems. The second isomor-
phism theorem reads for lattices I and A in R"™:

r/(rnA) =T +A)/A (A.5)

Note that ' + A and ' N A are not necessarily lattices, e.g., 7Z + Z is dense in R, hence
not a lattice (it does not satisfy (iii) in Theorem A.2). For lattices I', A, © satisfying
I C A C © the third isomorphism theorem yields

(e/r)/(NT)=06/A. (A.6)

Rational lattices

In Paper IV we consider mostly rational lattices. By a rational lattice [ we understand a
lattice whose points have rational coordinates, or equivalently, a lattice whose generating
matrix P has rational entries. For a rational lattice I we define I, the integral sublattice
of [, by I = Z"NT, and the eztended integral superlattice of T by T+Z". By Theorem A.2
it is straightforward to verify that Z" NI and [+Z" are indeed lattices. Since I = [NZ"
is a sublattice of Z™ with index in Z" as

_ A e
equation (A.3) implies . .
anzrcrcr. (A.7)

This shows that any rational lattice ' has a integral sublattice of the form cZ", where
the constant ¢ € N can be taken to be ¢ = d(I') = vol (I) = |Z"/T|. Since we also have
|F/T| =d(I")/d(T) by Lemma A.3, the above calculations show that

|z /T| = d(r)|T /.
In a similar way, we have for the extended integral superlattice of [
(T +2ZM)/Z"| =d(T +Z™) " =vol (Iryzn) ' €N

and
(T +2Z™)/Z™ (T +Z™) C Z".

For two rational lattices ' and A the dual lattice of TNA and I + A are I + A* and
™ N A*, respectively.

Appendix B. The dual of a non-biorthogonal Riesz wavelet
We consider a Riesz wavelets with dyadic dilation A = 2 in L?(R) defined as

n =1+ eDytp 0<e<l, (B.1)

where ) is a generator of a wavelet orthonormal basis {1 := Dy Tt} rez. This
example was first considered by Chui and Shi [14] and Daubechies [16], see also Sec-
tion 3.1. For any € < 1 the function n will generate a wavelet Riesz basis. This can be
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realized by considering the wavelet system generated by the perturbation term Ds.
Obviously, the sequence {Dy; Ty Do)} = {Dy;Toxrt)} is a subsequence of the orthonor-
mal basis {1 }; ez, and hence a Bessel sequence with bound Cy < 1. Therefore, by
[11, Corollary 15.1.5], the sequence {n; 1} is a Riesz basis for any € € (0, 1) with bounds
(1+e/2)2,

In the following section we will show that the (canonical) dual of {n;:} is not a
wavelet system for any finite number of generators. Observe that the (canonical) dual
of the orthonormal basis {1;;} is the basis itself, hence it is, in particular, a wavelet
system generated by one function. Thus, by an arbitrarily small perturbation as in
(B.1), the structure of the dual changes completely. Likewise, the the space of negative
dilates V(1)) is shift invariant by Z while V' (n) is not shift invariant with respect to any
sublattice of Z. This is shown in the last section.

B.1. The structure of the dual

In [14] it is shown that the (canonical) dual of { Dy; Tj;n}; kez is not of the form {Dy; T ¢}
for any ¢ € L*(R). In the following we show that, in fact, the canonical dual {S~17; 5}

is not of the form
{Dyi Ty : j,k €Z,¢ € @}

for any finite set ® C L?(R) of generators.

The basis elements of the wavelet Riesz basis is 1,y = 9 + €12 for j,k € Z.
The dual basis can easily be calculated; in [11] it is found using an operator approach.
We use a different approach. As usual we let S = S, denote the frame operator of {n; }.
In order to find {S7!n;;} we evaluate the frame operator on 1, x for each j,k € Z:

Stie =Y (i M=),

l,2€Z

= Y Wik i) me+ D> Wk EWg1,2:) M
1,z€EZ 1,z€Z

=Mjk+E Z (T/fj,kﬂ/fl,z>?7l—1,z/2-

1€7,2€27,

For odd k the above calculations yield Sv;, = 7, . Since {n;} is a frame, the frame
operator is invertible, hence we find

STk = VjEZ k€L F1. (B.2)

Let n = sup,,cn,{2"|k} for k& € Z. For odd k we have n = 0, and for even, nonzero k
we have n = max{n € N: k/2" € 2Z 4+ 1} > 1. For even k # 0 the above calculations
show that Sv;x = 1,k +€n;j_1,1/2 and, by application of the inverse frame operator and
a rearrangement,

STk =ik —eST i1k ViEZLkE2L
Repeated usage of this equation gives
STMjk =ik — ST 1 k0
=k —e(Wj_1k2 — €S Nj24/4)
=tjp— Vi1 pjo+E (Vj_op/a— S M3 /8)-
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Continuing this way until the odd integer k/2", a final application of (B.2) yields

STk =ik — eVt pje + EWj ok — + (=€) Yj_prjem Vi€ Z k€ 2L\ {0},
(B.3)
where n = sup,en{2"|k}. For k =0, we have by calculations similar to the above

S0 =vj0 —etj—10+ -+ (=) Mbj_pi10 + (—€)"S Mj—no Vi€ Z,n €N,

which in the limit n — oo gives

(e 9]

S0 =Y (—e)"j—no  VjEZ, (B.4)

n=0

by the boundedness of the (dual) Riesz basis, i.e., sup; |S7n; k|| < oo. Summarizing
our findings:

Yik jEL ke +1,
Sil??j,k = Vjk —Vj_1 2+ (=€) psen  JE Lk €22\ {0}, (B.5)
m=0(—€)"j—m,0 jEZ k=0.
_ {%‘Je —etj_1k2 o+ ()" Yj_npen JE Lk ELN\A{O},
m=0(—€)"Vj—m.0 jEZk=0.

Remark 2. If ¢ > 1, we can in general only say that {n;} is a Bessel sequence. If n
in fact is a frame wavelet, then .S is invertible and we can calculate the canonical dual
frame explicitly as above. Note that the calculations are the same as for ¢ < 1 except
when k£ = 0. For k£ = 0 we have

S™njo=1/etji10 — 1/eS  nj410 Vj € Z,

hence in the limit
o0

STmio=—> (=) "Yjtno Vi€
n=1
We note that this only holds if S is invertible, that is, if {n;;} is a frame; S is well-
defined since {71} is a Bessel sequence.

The expressions for the dual basis elements in (B.5) for £ = 0 and for & # 0 are
apparently different from each other which implies, as we show below, that the dual
Riesz basis cannot have wavelet structure. In [14] it is shown that there is no ¢ € L?*(R)
such that Silnj,k = ¢, for all j,k € Z, and the argumentation is as follows. Assume
towards a contradiction that there exists a ¢ € L?(R) that generates the dual frame,
that is,

¢jk=9S"Tn;r  forall jkeZ.

Then, by (B.2) with j =0 and k = 1,

®0,1 = Vo1 or Tip =T,
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and therefore ¢ = 1. By (B.4) with j = 0, we have

V=g00=> (—&)"V_po=1+ Y (—&)"_nyo,
n=0 n=1
thus -
Z(—ﬁ)nl/f—n,o = 0.
n=1

This is contradicting the w-independence of the orthonormal basis {¢; 1 }. Recall that a
sequence { f;}72, in a Hilbert space is said to be w-independent if whenever Y 72, ¢ fx
is convergent and equal to zero, then necessarily ¢, = 0 for all k. This is a strong form
of linear independence. We conclude that the dual frame of {7, ;} cannot be generated
by a single function.

We extend this argument to P functions for P € N, that is, we show that the
dual frame of {n;;} cannot be generated by P functions for any P € N. Towards a
contradiction assume that the dual is generated by {¢o,¢1,...,¢p_1} C L*(R) with
P < o0, or by Proposition 3.2, that the period is P. By [8, Corollary 7], we then have
P = 2™ for some m € N.By our assumption we are lifting the duality to the translation
lattice PZ and pairing

{D2i Tpi(n), Dai Tpi(T1n), - -, Dai Tpi(Tp—1m)}jkez (B.6)
with
{D2i Tpi(¢0), Dai Tpi(91), - - - s Doi Trr(dp-1)}j kez (B.7)
or, equivalently (here we use that P = 2™), lifting the duality to scale m and pairing
{Dyi Ty,(D2mn), Do Ti(DamT1n), ..., Doi T (Do Tp—11) }j ke (B.8)
with
{DsiTi($0), Doi T(61), - - -, Doy Ti(p-1)} kezs (B.9)

where ¢; = Dom¢; for i € {0,1,..., P —1}. Since (B.6) and (B.8) are simply para-
phrases of {Dy;Tin}j kez, these (three) systems will have the same frame operator S.
By our assumption the P functions satisfy

Do Tpypdi = S~ Dy TpiTin, Vi keZ,i=0,...,P—1. (B.10)
Since dilation commutes with the frame operator, this reduces to
Tprdi = S~ TppTin, Vk € Z,

which is relation (B.10) on scale j = 0. In general, for canonical duals, we only need to
consider duality on scale 7 = 0. We conclude that our assumption is equivalent to the
existence of P = 2™ functions {¢y,...,¢p_1} satisfying

i =T_prS ' Tpryn  forall k € Z. (B.11)
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In particular, this means that the expression (B.11) of ¢; should be “independent” of
k € Z, but calculating for ¢ = 0 with £ = 0 and k& = 1 gives (using P = 2™.)

0=¢o—¢o=25""n—T omS 'Tymp

= Z(—ﬁ)nl/f—n,o —T_om (7/10,2"1 - 51/1—1,2771*1 + 527/1—2,2771*2 -t (—E)ml/f—m,l)
n=0

[e.e]

= > (=) p-no — (Yo,0 — €¥-1,0 + 220 — -+ + (=) " V_my0)

n=0
oo

= > (=) "V (B.12)

n=m+1

Again, this is contradicting the w-independence of the orthonormal basis {1;}. This
proves that the dual Riesz basis of {n;;} cannot be generated by any finite number of
functions.

So, we now know that the dual Riesz basis of {7;} has no wavelet structure in
the broadest sense possible: the dual is not a wavelet system generated by any finite
number of functions. This leads naturally to the question of how much of or which
parts of {S _177j,k} have wavelet structure. We specifically showed that we cannot unite
S0y and S~y p in a wavelet system. It is obvious that we cannot associate S~1; 0
to other parts of {S~'n;x} by wavelet structure due to the infinite series in (B.4). We
recall that for i € {0,1,..., P — 1} we need to satisfy equation (B.11) for the dual
generator ¢; to be well-defined. For any P = 2", we claim that we can satisfy equation
(B.11) for i = 1,2,..., P —1, that is, we can satisfy equation (B.11) except for the case
¢ = 0. This implies that for higher values of P a larger part of the dual frame will be
associated with a wavelet system; note that the conclusion from the previous paragraph
is that no value of P gives the entire dual frame wavelet structure. The claim is easily
verified by the following calculations. For odd ¢ =1,3,..., P — 1 we have

¢i = T_ompS ™ TompTin

—1
=T _9mpS™ No2mkti = T_omptbo2mpti = Yo,

and for even nonzero i = 2,4,..., P — 2 we have

¢i = T_omp (Yo 2mpri — EY_1 9m—1jqij2 + 6271Z)72,2m—2k+i/22 — o+ ()" omngiijon)
=0 —eY_1i2 + 621#72,2‘/22 = (=) Y ijan,

where n = max,en{2"|i} such that i/2" is odd; note that 2"~ "k is even for k € 7Z since
n < m. This proves the claim that equation (B.11) is satisfied for i # 0.

Let us consider the case i = 0. We saw in the calculations in (B.12) above that we
cannot satisfy (B.11) for k¥ = 0 and k& = 1 simultaneously which, in turn, showed the
non-wavelet structure of {S~'Dy;Tprn : j,k € Z}. This non-wavelet structure is not
only due to the terms involving infinite series, that is £ = 0, but also due to “most”
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other k € Z. This is seen by taking k =1 and &k =2 in (B.11)

0=y — o =T-omaS Tomon — T_om S~ Tymn
=100 — eP_1,0 4+ + (=)™ Ym0 + (=)™ 10
— (Yoo —e_104+ -+ (—€)"Y_mpo)

= (=)™ p__10,

showing that we cannot satisfy (B.11) for k = 1 and k = 2 with i = 0. We notice that
a part of the problematic set {S™1Dy,; Tprn} actually has wavelet structure in the sense
that for odd k € Z the set {S™1Dy;Tprn} takes form of a wavelet system

{$7'DyTown:j €2,k €2Z+1} = { ST Dy TopTon 1 j € Z,k € 2}
= {DZJTQPkG : .] € Zak € Z}’

for 6 = 4 om —e9)_1 gm-1 4+ -4 (=€) p_ps,1. On the other hand, for k = £2" (n € N)
the dual element S~ D,;Tpgn is a linear combination of ;) with m +n + 1 terms.
Since the number of terms depends on n (hence on k), it is apparent that these elements
cannot be united in one wavelet system.

Let us make these calculations more explicit and for this assume P = 4. The
i = 1,3 the dual sets {S™'1Dy;TprTin} and {S~™1D,;TprT3n} are wavelet systems
generated by ¢1 = o1 and ¢3 = g3, respectively. Likewise, for i = 2 the set
{S™1Dy; TpiTon} is a wavelet system generated by ¢o = thg 2 — etp_11 while (for i = 0)
the set {S™1Dy,; Tp,Tyn} is not a wavelet system.

Remark 3. Consider the particular case when 1 is the Lemarie’s wavelet, where v is a
C™ function with fast decay. Obviously, these properties are inherited by the dual basis
S7in,k for all j € Z,k € Z\ {0}. In [14] it is shown that S~'n;0 does not belong to
LP(R) for small p—1 > 0. This leads to the observation that the non-wavelet structure
of the dual is not only due to the “non-regular” elements of the dual basis.

B.2. The space of negative dilates
The space of negative dilates V' (n) of a frame wavelet 7 is defined as
V(n) =span{Dy;Txn:j <0,k € Z} = span(U Wj(n)),
7<0
where the subspaces W; are defined by

W;(n) = span{ Dy, Tyn : k € Z}.

Daubechies and Han [18] verify by direct calculations that the space of negative
dilates V(1) is not shift invariant. From the previous section we know that the period
of n is P(n) = oo hence, by Proposition 3.3, we can conclude that V() is not even shift
invariant with respect to any sublattice of Z. In the following we verify this by direct
calculations.
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We first show that Vj(n) is not Z-SI as is done in [18]. Let X & Y denote the
orthogonal direct sum of closed subspaces X, Y C L?(R). We define

Y :=span{Tor : k € Z}, (B.13)

and denote the orthogonal complement to Y in Wy(v) by Y€, i.e., Wy(v0) =Y @Y. Let
Vi(:) = Do V(-) for j € Z so that Vy(-) = V(-). Notice that (Dg; Tj1p, DonT,0)) = 0;.5,0k -
and Vp(V) = @;<oW;(¥). Since T LVy(V) and T19 LY we have Ty L (Vo(y) ®Y).
Every wavelet is associated with a GMRA, hence Vy(¢) is shift invariant. Therefore,
since obviously Dy-11 € Vp(v),

Dy i Ty jo9p = Ty Dy € Vo(3)).

By the relation
Dy;Tyn = Dy Tip + €Dqgjr1Topp,

we see that

By definition we have Dy—1mp € Vy(n). Now, let us consider a translate of this
function:

T1D2—177 = T1D2—1’l/1 + €T1D2—1D21’l/1 = TlDQ—lw + 8T1’l/} ¢ ‘/b(w) (o) Y.
—_———— ——

eVo () eye

Since Vp(n) is a subspace of V(1) @Y, this implies, in particular, that T3 Dy—1m ¢ V(7).
This shows non-shift invariance of Vj(n).

We extend this argumentation to show non MZ-shift invariance of Vy(n) for any
M eN.

Theorem B.1. Vj(n) is not shift invariant with respect to any sublattice of Z.

Before providing a direct proof of Theorem B.1, we analyze the argumentation of
Daubechies and Han above. It is obvious that we cannot use the relation Vy(n) C
Vo(¥)@Y from (B.14) to show non MZ-shift invariance of Vj(n) for M > 1 since Vy(¢)®
Y is 2Z-SI. Hence we need a closer estimate of V(n), but this is not straightforward
due to the complicated structure of Vj(n). By definition we have

Vo(n) = span | W;(n).
7<0

Recall that the basis elements of the wavelet Riesz basis are 1, = 1 x + €12 for
J.k € Z. Hence, on a fixed scale subspace Wj:(n) we have orthogonality between the
elements, in other words, for fixed j' € Z the elements in {n; ; : k € Z} are orthogonal
to each other. Furthermore, the elements of scale 7’ from the Riesz basis are orthogonal
to{njr:7€Z\{j — 1,7 +1},k € Z}, that is, to all other scales than the coarser j'—1
and finer j' +1 scale. In general, an element 7, 1 is orthogonal to all other elements of
the Riesz basis {n; 1} except one element for odd k and two elements for even, nonzero
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k. In spite of these many orthogonalities, the structure of Vj(n) is complicated, and this
is due to the interaction between the subspaces W;(n) and Wj;,1(n) on two consecutive
scales.

For J € Ny define the following closed subspaces of L?(R)

J
Y = @span {Dy-; Tos—iopth : k € Z}, (B.15)
j=0
and
Zj= @ span {D2—jT2ij(2k.+1)77 g=1,..., J} , (B.16)
keZ

where Zy := (). Further, let Z9 denote the following subspace of Z;
79 = @ span {D27jT2J—j(2k+1)77 g=1,..., J} .
keZ\{0}
For J = 0,1 and 2, the definitions read
Yo = span {Tok¥} ey -

Y1 = span {Dy-1Toptp }ycp @ SPAN{Tur ) } iz, »
Y, = Span {D2*2T2k1/1}kgz @ span {D2*1T4k1/1}kgz @ span {T8k¢}kez; )

and
ZO = ®7
71 = @ span {Dy-1Tok 1110},
k€EZ
Zy = @) span { Dy-1 Tyjer2m, Do—2Top 111} -
kEZ

Notice that Yy =Y (see (B.13)) and that Y and Z; are 27/71Z-SI.
In order to verify Theorem B.1 by direct calculations, we need the following two
lemmas.

Lemma B.2. For all J € Ny the following hold:
Vom) C V()@Y @ Zy. (B.17)

Proof. The orthogonality of the three subspaces are obvious from the definition and the
above. For J = 0 there is nothing left to show. Let J = 1. We have to show that

Vo(n) C Vor (1)@ (5pam { Dyt Toth e @W{T%w}kez)@(@ span{D2-1T2k+1n}),
kEZ

and we note that the space on the right hand side is 4Z-SI, but not shift invariant under
27 for m = 0,1. Suppose f € Vy(n). Then there are coefficients {c_;;} € (*(N x Z)
such that

f - Z Z Ci kM, = Z C_1,kN-1,k + Z C—2 kMN—-2k -+ Z Z Ci kM k-

J<0keZ kEZ keZ J<—2k€eZ
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Using ;1 = ¥k + €¥j41,2% and splitting the first sum for even and odd k yields

f= Z(C—l,% +ec o)1k +€ Z c—1,2k%0,4k + Z C_1,2k+17—1,2k+1

kEZ keZ kEZ
) captapt Y. D ciptinte D > Go1rok
keZ Jj<—2EKk€EZ j<—1keZ

with unconditionally convergence since {1;} is an orthonormal basis and the coeffi-
cients {c; 1} are in 2. The first two terms above belong to Y7, the third to Z;, and the
three last terms to V_1(¢), hence f € V_1(¢)) ® Y1 @ Z;. Similar calculations prove the
result for J > 1. O

Remark 4. Note that Vy(n) C V;(¢) for j > 1 trivially, but that Vy(n) and Vj(¢) for
J < 0 are unrelated in the sense that neither Vy(n) C V;(¢) nor Vy(n) D V;(¢) hold for
any j < 0. In particular, V;(v) ¢ Vo(n) C Vi(y) for j <O0.

The following fact is trivial.
Lemma B.3. V_;(¢) is 2/ Z-shift invariant.

Proof. 1t follows from the shift invariance of Vj(¢) using that f € V_;(¢) if, and only
if, _D2Jf € %(¢) and that Tk;DQJ = D2JT2Jk. |

Proof of Theorem B.1. By [8, Corollary 7] it suffices to show non shift invariance by
lattices of the form 277 for J € Ng. By definition Dy—s—11 € V(). We will show that
Ty1 Dy—s-1m = Dy-1-1Ty jom ¢ Vo(n). From the definition of  we directly have

151 Dg—g-1n = T57Dg—5-19 + €Dy 7119, (B.18)

where Ty5Dy—s-19) € V_;(¢0) by Lemma B.3 since Dy—s-19 € V_ ().

It is obvious that D, ;717 is orthogonal to the subspaces V_;(v¢) and Y, and
thus, in particular, to Ths Dy-s-1%, and by n;x = ¥, + €12k, to the functions
N—j,29-3(2k+1) for j #J—1,J. From N—j 273 (2k+1) = ¢—j,2H(2k+1) +5¢—j+1,2H(4k+2)
we see that

DZ*"lein—j,QJ*j(Zk-i-l) for j = 1, ey J and k 7é 0.

We conclude that D, ;119 is orthogonal to the subspace V_;(v) & Yy @& Z9. Thus
it follows that ThsDy-s-1m is in V_;(¢) @ Y; @ Z; if, and only if, Dy sT1 is in the
orthogonal complement of V_;(1)) ®Y; & Z% in V_; () @Yy & Zy, that is, Dy sT19) €
Z;0 2% =span{Dy-;Tos—n:j=1,...,J}

Now, assume that Dy-sT19 € Z; & ZS. Then there exist {ay,...,as} € C’ such
that

J
Dy-sTip =3 ;Do Tos—in
j=1

J J—1
= Z CYjD2—jT2ij¢ + Z €O[j+1D2—jT2ij¢,
j=1 =0



References 29

thus,

J-1

0= E()éll/JOQJ + Z(O&j + E()éj.i_l)l/J_j’Qij + (OéJ — 1)’1/1_J71
7j=1

and, by linear independence of the orthonormal basis {1;},
ea; =0, aj+eajpp=0forj=1,....J-1, a;=1.

Since € > 0, the first two equations implies a; = 0 for j = 1,...,J contradicting oy = 1.
We conclude that TysDy-y-1m is not in V_;(¢) ® Yy @ Z;. By Lemma B.2 it follows
that Ty Dy-s—17 is neither in V() since this is a subspace of V_ (1)) @ Yy @ Z;, hence
Vo(n) is not 27-SI. O

Remark 5. We note that the space of “negative dilates” of the dual frame {S™!n;} is
shift invariant since

m{s—lm,k i <0,k € Z} = Vo(¥),

and we see that there exists a orthonormal wavelet 1 which is associated with the
GMRA given by {Dgnspan {S~'n; : j <0,k € Z}}, ;. See also [5, Theorem 3.2
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1. Introduction

This paper explores the relationship between canonical and alternate dual frames of a
wavelet frame. One of the first results in this direction is due to Daubechies [9] and
Chui and Shi [7] who proved that the canonical dual of a wavelet frame need not have
a wavelet structure. Since their example involved a non-biorthogonal Riesz wavelet, it
has no alternate dual wavelet frames as well.

In general, if the canonical dual of a frame wavelet has a wavelet structure, then
it is quite likely that this frame wavelet has some other wavelet duals. However, the
existence of dual wavelet frames does not necessarily imply that the canonical dual must
have a wavelet structure. This claim was asserted by Daubechies and Han [10].

Theorem 1.1. There exists a frame wavelet 1 € L?(R) such that:
(i) ¥ is C* and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by a single function,
(iii) there are infinitely many 1) such that 1 and 1 form a pair of dual frame wavelets.

Unfortunately, the original argument in [10] uses an incorrect formula for the frame
operator of a wavelet system owing to a simple change of sign mistake. This invalidates
the original proof to the extent that an easy remedy appears to be doubtful. More
details about the nature of this problem can be found in Section 3.

Therefore, there is a need to provide an alternative proof of Theorem 1.1. We will
use a completely different approach motivated by [5]. Instead of trying to work directly
with the frame operator as in [10], we will use a less direct approach using the following
result of Weber and the first author [5].

Theorem 1.2 (Theorem 1 in [5]). Suppose that the canonical dual of a wavelet frame
{Yjr(x) = 21/24p(29x — k) : j,k € Z} has a wavelet structure, i.e., it is of the form
{0jr : J, k € Z} for some frame wavelet ¢. Then, the space of negative dilates

V() = Spam{ : j < 0, k€ Z} (1.1)
is shift invariant (SI).

The paper is organized as follows. In Section 2 we recall some basic facts about the
period of a wavelet frame. In particular, we explore the relationship between the period
and the number of generators of the canonical dual of a wavelet frame. In Section 3 we
give an explicit construction of a frame wavelet ¢ as in Theorem 1.1. We prove that its
corresponding space of negative dilates V(1) lacks shift invariance. Consequently, by
Theorem 1.2 we conclude that the canonical dual of the wavelet frame {w]-,k}j,kez is not
a wavelet system generated by a single function. In fact, we prove that our example can
be adjusted in such a way that the canonical dual can not be generated by arbitrarily
many generators, see Theorem 3.1.

Finally, we review basic definitions. A frame for a separable Hilbert space H is a
collection of vectors {f;};e7s, indexed by a countable set, such that there are constants
0 < C; < (5 < oo satisfying

CLIFIP< S A MP<CaollfI? forall feH.

JjeT
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If the upper bound holds in the above inequality, then {f;} is said to be a Bessel
sequence with Bessel constant Cy. The frame operator of {f;} is given by

S:H—MH,  Sf=3 (ffi)f

JjeJ

This operator is bounded, invertible, and positive. A frame {f;} is said to be tight if
we can choose C = (CY; this is equivalent to S = C11, where [ is the identity operator.
Two Bessel sequences {f;} and {g;} are said to be dual frames if

f=> (fg)f; foral feH.

JjEJ

It can be shown that two such Bessel sequences indeed are frames, and we shall say
that the frame {g;} is dual to {f;}, and vice versa. At least one dual always exists, it is
given by {S71f;} and called the canonical dual. Redundant frames have several duals;
a dual which is not the canonical dual is called an alternate dual.

Let f € L?(R). Define dilation operator D, f(x) = |a|1/2 f(az), translation operator
Tyf(z) = f(z —b), and modulation operator E.f(z) = > f(z), where |a] > 1, b,
¢ € R. The wavelet system generated by ¥ = {11,...,1r}, is defined as {¢; x } kezyew,
where v, = D, ;Tiyp. We say that ¥ and ® is a pair of dual frame wavelets if their
wavelet systems are dual frames. As stated above the canonical dual of a wavelet frame
generated by ¥ might not be a wavelet system generated by |¥| functions. In this case,
we say that the canonical dual of ¥ does not have the wavelet structure.

Given a frame wavelet W, the subspaces W;(¥) are defined by

W;(¥) =span{¢;x:k€Zp eV},  jEL (1.2)

By this definition we can write the space of negative dilates, introduced in Theorem 1.2,
as
V(¥) = span [ W;(¥).
§<0

If we have only one generator, that is L = 1, we shall write V() instead of V(¥).
Suppose that W C L?(R) is a closed subspace. We say W is MZ-SI, M Z shift invariant,
or shift invariant under MZ, M € R, if Ty;,W C W for all z € Z. In the case M =1,
we shall say that W is shift invariant, or SI.

For f € L'(R), the Fourier transform is defined by Ff(¢) = f(£) = [ f(x)e > dg
with the usual extension to L?(R). Given a measurable subset K C R, we define the
space f/Q(K ), which is invariant under all translations, by

LX(K)={f € L*R) : supp f C K}.

2. The period of a frame wavelet

Daubechies and Han [10] have introduced the notion of the period of a dyadic wavelet
frame in L?(R). Weber and the first author [5] extended it to a non-dyadic situation as
below.
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Definition 1. Suppose that ¥ = {¢1,...,¢y} C L?(R) is a frame wavelet associated
with an integer dilation factor a, |a| > 2. The period of ¥ is the smallest integer p > 1
such that for all f € span{Tyv : k € Z,¢ € ¥},

TS f=S""Tyf foralkeZ,

where S is the frame operator of the wavelet frame generated by W. If there is no such
p, we say that the period of ¥ is co.

We remark that our convention differs from the definitions in [5, 10|, where the period
is said to be 0 (and not oo) if no such p exists. The examples of non-biorthogonal Riesz
wavelets by Daubechies [9] and Chui and Shi [7] mentioned in the introduction have
period oo; while any tight frame wavelet has period 1.

Following [15], the local commutant of a system of operators U at the point f €
L?(R) is defined as

Crut) == {T € B(L*(R)) : TUf =UTf VYU eU}.

The wavelet system of unitaries is denoted by A := {D,Ty : j € Z,k € Z}. The
canonical dual of a wavelet frame A(Y) = {D,; T} kez,pew is given as

{S—lpaiji ik E€Ti= 1,...,L} :{Dajs—lTwi k€T = 1,...,L}
:{Damk’i:j,keZ,izl,...,L},

where S is the frame operator of A(¥), and {n*?} is a family of functions, not necessarily
with translation structure, indexed by {1, ..., L} xZ. The canonical dual takes the form
of a wavelet system generated by |¥| = L functions, i.e.,

{S’lDakawi:j,k €Z,i= 1,...,L} :{Daka(S*wi) k€L i= 1,...,L}
:{Daka¢i :j,kGZ,i:1,...,L},

precisely when T}, S~ !¢ = S~'T}) for all b € ¥ and k € Z; that is, precisely when
St e Cy({Ty : k € Z}) for all ¢ € ¥. Equivalently, the canonical dual of A(¥) has the
wavelet structure generated by |¥| functions if, and only if, the period of ¥ is one, c.f.
Proposition 2.3 below.

The following results from [5] will be used in the proof of Theorem 1.1. We restate
them here since they were incorrectly stated in [5]. We note that these results can be
thought as refinements of Theorem 1.2.

Proposition 2.1 (Proosition 2 in [5]). Let M € N. If U is a frame wavelet and the period
of ¥ divides M, then V(W) is shift invariant by the lattice MZ. In addition, if ¥ is a
Riesz wavelet, then the period of ¥ divides M if, and only if, V(W) is shift invariant by
the lattice MZ.

Corollary 2.2 (Corollary 5 in [5]). If ¥ is a frame wavelet and the period of ¥ divides
la|’ for some J >0, then D,;(V(¥)) is shift invariant.
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If the period P(V) of a frame wavelet W is finite, then the canonical dual frame
is a wavelet system generated by P(¥) - || functions, and this is the least number of
generators. In this case the wavelet structure of the canonical dual frame is altered since
it is based on the translation lattice P(W¥)-Z which is sparser than the original lattice Z.
Moreover, for any nonnegative integer M, the period of ¥ divides M if, and only if, the
canonical dual is a wavelet system generated by M - |¥| functions, see the proposition
below. The “only if” direction is implicitly contained in the proof of [5, Proposition 2].
For the sake of completeness we prove both directions here.

Proposition 2.3. Suppose that ¥ = {11,..., 9%} C L*(R) is a frame wavelet. For any
nonnegative integer M € N, the following statements are equivalent:

(i) P(¥) | M, i.e., the period of ¥, denoted P(¥), divides M.
(ii) There exist ML functions ® = {¢1,...,¢nr} such that {D,;Thkd}jkez,ocd IS
the ca,nonical dua,l Of {Daka:q/}}j,kEZ,wE\I/ = {DajTMkw}j,lCEZ,dJE‘I/M: Where

Uy i={Tpy :m=0,...,M —1,¢ € U}.

Proof. We note that the frame operator of {D,; Ty }; kez pecw equals the frame operator
of {D,iTmr}jkezwew,, since the two frames are setwise identical; we denote this
operator by S.

We first prove (i) = (ii). By assumption the period of W is finite, hence the definition
of the period yields the following equation.

TpwwS ' f =85 "Tpwyf forallk€Zand f € Wy(V). (2.1)

Since the period of ¥ divides M, we in particular have P(¥)Z D> MZ, and the above
equation gives us

TS~ f = S™ Ty f forall k € Z and f € Wy(¥).
Consequently, for each ¢ € W,
ST = ST T (Ton) = TanS™ (Tint)),

where k € 7Z is written as k = Ml +m for l € Z and m € {0,1,...,M — 1}. The last
equality in the above equation shows that S~! € Cr({Tmr : k € Z}) for every f € Wy,
so we arrive at (ii) by taking ® = S~ = {S7'T,,p :m =0,...,M — 1, € U}.

To prove the other direction, (ii) = (i), we assume that the canonical dual of the
system {D; Tavi}j kez,pew,, is generated by M L functions ® = {¢1,..., ¢z} Since
|Wnr| = ML, it follows that S™! € Cy({Thy, : k € Z}) for all ¢ € Uy, e,

STk (Tint)) = TS~ H(Tp) forall k€ Z, m € {0,...,M — 1}, € U. (2.2)
In this equation we replace k € Z by k + [ with [ € Z, whereby we obtain

STk (Tariem®) = TarkS ™ (Taniemt) forall kil e Z, me{0,..., M —1}, ¢ € U.
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Now since
Wo(V) =span{Trism® : L €Z, m € {0,...,M — 1}, ¢ € ¥},

we see that
S Tvnf =TS~ f  forall k€ Z, f e Wy(U), (2.3)

and conclude that the period of ¥ is at most M.

To complete the proof we need to show that the period of ¥ is a divisor of M.
Assume on the contrary that the period of ¥ is not a divisor of M. Then there are
q,7 € NU {0} such that M = qP(¥)+r and 0 < r < P(¥). We know that the period
of U is finite, so equation (2.1) is satisfied, and by from (2.1) and (2.3) we have

ST ey miksf = Trwyk+mi S~ f  for ki, ke € Z, f € Wo(V).
Taking k1 = —gk and ko = k for each k € Z gives us rk = P(V)k; + Mko. Therefore,
ST f =TS f  forallkeZ, feWy(b),
which contradicts the minimality of P(¥) since 0 < r < P(WV). O

Remark 1. In the dyadic case and when M is a power of two, Proposition 2.3 reduces
to [10, Proposition 2.1]. Indeed, if M = 27 for some J € N, then any dyadic wavelet
system of the form {Dy; T, ¢} kez,pco With translation with respect to the lattice MZ,
can be written as a wavelet system {Dy;Tj¢}) ez, sca’ using the standard translation
lattice Z and the same number of generators |®| = |®’|, see [10]. Corollary 7 in [5]
states that the period of a dyadic Riesz wavelet is either a power of two or infinite.
Hence, whenever a Riesz wavelet has finite period the canonical dual takes the form
{Dq;iTi¢} ) kez, pca for some family of functions @', where we note that the translation
is with respect to the lattice Z.

3. Canonical dual frames without wavelet structure

In this section we will prove Theorem 1.1 by giving an example of a wavelet frame in
L?(R) whose canonical dual does not have wavelet structure. To be precise, we will
construct a family of examples, indexed by J € N, such that the canonical dual cannot
be generated by fewer than 27 functions. In each of these examples the wavelet itself is
nice in the sense that it has compact support in the Fourier domain and fast decay in
the time domain, and it has nice alternate dual frame wavelets.

Our construction is motivated by the proof of [5, Theorem 2(ii)], where Weber and
the first author give an example of a frame wavelet 1 with compact support in the
Fourier domain whose canonical dual cannot be generated by one function. The Fourier
transform of ¢ is not continuous yielding poor decay in the time domain. Furthermore,
the space of negative dilates V() is not Z-SI (this is necessary in order to utilize
Theorem 1.2), but it is in fact 2Z-SI, hence the canonical dual must be generated by
at least two functions, c.f. Proposition 2.1. We modify this example so that 1) becomes
C and so that the space of negative dilates becomes non pZ-SI for p < 27 and p € N
for a chosen J € N. Hence, we have the following generalization of Theorem 1.1.
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Theorem 3.1. For all J € N, there exists a frame wavelet ) € L?(R) such that:
(i) ¥ is C* and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by fewer than 27
function,

(iii) there are infinitely many 1) such that 1 and v form a pair of dual wavelet frames.

Before providing the proof of Theorem 3.1, we will analyze the original proof of
Theorem 1.1 by Daubechies and Han [10]. The key role in the argument of [10] is
played by an explicit formula for the frame operator of a wavelet system.

Proposition 3.2. Suppose that U = {41,...,1%1} C L?(R) generates a wavelet system
which is a Bessel sequence. Let

D={feL*R):feL®R) and supp f C [-R,—1/R]U[1/R,R] for some R > 1}.

Then its frame operator S is given by

L
(O ST 1@OP+Y" > f(e+27Pq)t,(2P€)  forae E€R, (3.1)

I=1j€Z PEZ qe27+1

and for all f € D, where
L oo N
:ZZ OD(2(E+q)  forgeZ.
=1 35=0

Proposition 3.2 is implicitly contained in the book of Hernédndez and Weiss [16,
Proposition 7.1.19]. This result can be extended to higher dimensions and more general
dilations, see [4, 13, 14, 18|.

Initially, the problem with the argument of Daubechies and Han appears to be very
minor since the formula (2.6) of [10] lacks a negative sign which is present in f(£+277¢)
of (3.1). This mistake can be traced back to the proof of Lemma 2.3 in [14]. However,
this change of sign has profound effects for the rest of this paper. First, it affects
Lemma 3.1 in [10] by wiping out the negative signs in 277K; and 277K, of formula
(3.1). Consequently, it invalidates the proof of [10, Theorem 3.3]. To see this, consider
the example borrowed from the paper of Weber and the first author [5].

Example 1. Let 1, € L?(R) be given by

@b = X[~1,-bJU[b,1]

In [5] it is shown that 1)} is a biorthogonal Riesz wavelet whenever 1/3 < b < 1/2. In
fact, one can explicitly exhibit its dual biorthogonal wavelet ¢ as

ng = X[-1,-1/2)u[1/2,1] — X[—2+2b,—1]U[1,2—2b] "

We note that this fact is far from being obvious, since one can also show that ) is
not a frame wavelet when 1/6 < b < 1/3, see [5, Example 2]. While 1), is of a slightly
different form than the function considered in [10, Theorem 3.3], one could arrive at the
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conclusion that 1 is not a biorthogonal wavelet when b = 1/3 by following the same
argument as in [10]. This stands in a direct contradiction with the above mentioned
fact from [5]. In fact, this is how the change of sign mistake in [10] was uncovered by
the first author.

In order to prove Theorem 3.1 we need to show two lemmas.

Lemma 3.3. For every N > 4 and 0 < § < 2~N | there exists a frame wavelet 1 such
that ¢ € C°(R) and

() #0 < £e(-1/2,-1/4) U (1/2,3/4) (3.2)
U (—2—N+1 Y 5) U (2—N g, 0N+ 5)
PE) =PE—1)#0  for&e(1/2,3/4). (33)

Proof. Let 9" € L?(R) be a frame wavelet such that zﬁo € C°(R) and
QA0 = ge (-2 -5 27N +s)u (2N —5,27V +4),

where N >4 and 0 < 4 < 27N as in the assumption. Let ¢! € L?(R) be such that
Pl € C§°(R) has support in [~1/2,—1,4] U [1/2,3/4] and

PHE) =P (E—1)#£0  whenever £ € (1/2,3/4). (3.4)

For any such ¢! € L%(R) the sequence {Dy;Ti1)'} generates a Bessel sequence by [17,
Theorem 13.0.1] or by the proof of [8, Lemma 3.4].

Define 1) € L?(R) by ¢ = ¢)° + 9!, where ey! acts as a perturbation on the wavelet
frame generated by ¥ and ensures that v satisfies (3.3), see also Figure 1. Denote the
frame bounds of {D; T¥°} by C and Cy, and the Bessel bound of {Dy; T3} by Cp.
The function ei)! generates a Bessel sequence with bound £2Cy. Hence, for sufficiently
small e > 0, we have £2Cj < 1, and by a perturbation result [6, Corollary 2.7] or [12,
Theorem 3|, we conclude that 1) generates a wavelet frame. By our construction TZJ is in
C§°(R) and satisfies (3.2) and (3.3).

Finally, let us illustrate how one can construct two such functions ¢° and v!. For
N >4and 0 < § <27V, define the function 7 by

ﬁ = h5 * X[_Q—N+1’_27N}U[27N727N+1}, (3.5)

where hs(z) = 6~ h(x/8) with h € C§°(R), h > 0, [g h(z)dz = 1, and supph C [—1,1].
This yields 7 € C'*° with

() #£0 = e (-27V 527V 45)u (27N - 527N +0).
By |11l < 1 and the above, there exist constants C;,Cy > 0, such that

. 2
0<Cr <y ‘ﬁ(?g)‘ <Oy <2 forall € €R\ {0}
JEZ
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Moreover, for ¢ € 2Z 4 1,
tg(€) =D (N2 (E+¢)) =0 forall €R,
j=0

since 7)(27-) and 7(2/(- + ¢)) have disjoint support for all j > 0. We define ¥° as a
normalization of n by
(6)

PO = -
Yjenli(27€)]

for € € R\ {0}, (3.6)

and ¢°(0) = 0. Consequently, we have Zjez\zﬁo(%f)\? =1land t,(§) =0for £ € R
and ¢ € 2Z + 1. By [16, Theorem 7.1.6], ¥° generates a tight wavelet frame with
frame bound 1, and it has the desired properties. For the proof of the lemma the
last normalization step could be omitted since 7 itself generates a (non-tight) frame.
However, it is included since we later want to use the fact that the ¢/ can be chosen to
be a tight frame wavelet with frame bound 1.

¢0 0
14+
6¢1 61/)1
ot
T T - 1 T T T ’5
1 1 —2 -1 12 1 1 3
2 4 2N oN 2N 2N 4 2 4

Figure 1: Sketch of the graph of ¢ = 90 + i)'

The construction of the perturbation term 1! is straightforward. Let 0y := h) *
X[1/24,3/4—)] for some 0 < A < 1/8, where h is defined as above. Define 1! by
¢! = 05+T_16,. This makes ¢! a C* function with compact support in (—1/2,—1,4]U
[1/2,3/4], satisfying equation (3.4). This completes the proof of Lemma 3.3. O

Lemma 3.4. Suppose that a function 1 € L?*(R) satisfies (3.2) and (3.3) for some

N >4 and 0 < 6 < 27N, Then, the space of negative dilates V (¢) is not pZ-SI for any

p<2N=3 peN.

Proof. To prove this claim we will look at the subspaces W;(v) for j <0, defined by
W;(y) =span{ Dy Typ : k € Z},  j€ L.

First, consider a principal shift invariant (PSI) subspace Wy(v)) = span{Txv }rez. By
a result in [11], see also [3], this subspace can be described as

Wo(¥) = {f € L}(R) : f =1m for some measurable, 1-periodic m}.
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Hence, by (3.2) and (3.3) we have

Wo(v) = {f € L*(R) : supp f € [~1/2,~1/4]U[1/2,3/4] U K

~ ~

fle=1)=f© ae cel1/2,3/4]}, (3.7)
where K = [—2—N+1 5,27 Ny 5} U [Q—N 527Ny 5} .

Applying the scaling relation W;(v) = Dy Wy(1)) to (3.7) yields
W) = {f € L*(R) :supp f ¢ [-2771, —272| U [2771,3/2- 277! U VK,
fe—2)=f(&) ae €€ [21*1,3/2 : 21*1} } (3.8)

Therefore, each space W;(v), j € Z, can be decomposed as the orthogonal sum

Wi() =W)@W;,  where (3.9)

0_ 72 j
WP = L} K), (3.10)
Wl = {f € L2(R) : supp f C [—23’—1, —2]'—2} U [2]'—1,3/2 : 2]'—1} , (3.11)

fe—21)y=f(&) ae €c [27'*1,3/2 : 2]'*1] }

Using (3.9), it is possible to describe the space of negative dilates
V() =span( |J W;(®))
7<0

in the Fourier domain. However, such a description would be quite complicated owing
to interactions of the spaces VVJO and le at various scales 5 < 0.
Instead, we consider another space

V() = V(@) N L (=00, —27 MU 272, 00)).
By (3.10) and K C (—27N+2 27N+2) we have
WJQ C LA([—27 N+ o=+ for j < 0.

Likewise, by (3.11) we have

wlc

{P([—?NH, 2~ N+2)) for j < =N +2,
J

L2((—o0, =27 Nt U [27N+2 o)) for j > —N + 3.
Combining the last four equations with (3.9) yields

—1
V() = m(uo W; () N L2 (o0, 2N U 274, 00)) ) = span( U W),
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and further, by the orthogonality of the subspaces WEN+3, LW

~1
V)= @ w;.
j=—N+3
Consequently, by (3.11),
~1

VW) ={re®:swpfc U 2(-1/2,-1/40[1/2.3/4),

=—N+3
fle—271) = f(&) ae ce[27?3/2-272],
fe-27) = (&) aege|273/2.27],

= 2—N+i’;) = f(6) a.e.-g € [272,3/2. 272 L. (3.12)

Assume, towards a contradiction, that V (¢) is pZ-SI for some p < 2V =3 with p € N.
Then, V (v)) is pZ-SI as well. Define f € L?(R) by

f = XINU(IN—27N+3), where Iy = [2—N+2’ 3/2 ) 2—N+2].

Then f € T7(¢) and by our hypothes1s we have Torf € 17(1/)) for all k € Z. Equivalently,
using F Ty = E_j, F, we have Epf € FV (1)) for all k € Z. For k = 1, this implies

that B, f (&) = e¥™Px 1 u(ry—2-n+(€) € F(V(1)). By (3.12),

e2mip(§—27N*3) _ 2mipg for a.e. £ € Iy.

This can only be satisfied if o~ 2mip2 TN 1, which contradicts the hypothesis that
1 < p < 2N¥=3. This completes the proof of Lemma 3.4. O

Remark 2. A more detailed analysis shows that V(¢) is 2V ~2Z-SI, and it is not shift
invariant by any sublattice of Z strictly larger than 2V=2Z. Since we do not need such
precise assertion, we will skip its proof.

Finally, we are ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Take any J € N. Suppose that 1 is a frame wavelet as in Lemma
3.3 with N = J+3. By Lemma 3.4 and Proposition 2.1, the period of ¥ is at least 2V 73.
Hence, by Proposition 2.3, we need at least 2/ functions to generate the canonical dual
of {Dy; Tyb}j kez-

We have only left to show that the wavelet frame generated by 1 has infinitely many
alternate duals that are generated by one function. For this purpose it is convenient to
assume that ¢ = 90 4+ ey! is of the same form as in the proof of Lemma 3.3, i.e., ¢°
generates a tight frame with frame bound 1. Hence, the functions ¢ and 4° satisfy the
characteristic equations

ST (2Y0(2i€) =1,  ae £ER,
jez

Z E)0(27 (€ +q)) = 0, a.e. £ € R for odd ¢ € Z,



44 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAME

since ¢ = ¢° on supp?® and since &(23‘-)1,50(23‘(- +4q)) = 0 for all j > 0 and all odd
g. We conclude that {1&?7,6} is a dual frame of {1);}. Since {1&?7,6} is generated by one
function, it is apparent from the above that {1#]0.7 -} must be an alternate dual.

Any function ¢ € L?(R) defined by ¢ = Y0 + h, where
h € C*(R), supph C [-1/4,1/2], supp h N supp ¢° = 0, h(0) =0,

generates a Bessel sequence by [17, Theorem 13.0.1]. Since ¢ and ¢ satisfy the charac-
teristic equations above, such a ¢ is an alternate dual frame wavelet of . This example
demonstrates that we have infinitely many alternate duals, and completes the proof of
Theorem 3.1. U

We end by putting our example in a perspective with other known results.

Remark 3. Auscher [1] proved that every “regular” orthonormal wavelet ¢ € L?(R) is as-
sociated with an MRA. “Regular” means that |¢| is continuous and ¢ (¢) = O(|§|71/275)
as |[£] — oo for some § > 0, see [16, Corollary 7.3.16]. This fact does not hold for tight
frame wavelets. In fact, Baggett et al. [2] constructed a non-MRA C” tight frame
wavelet with rapid decay for any r € N. Moreover, their tight frame wavelet is asso-
ciated with a GMRA having the same dimension/multiplicity function as the Journé
wavelet. Once we allow non-tight frame wavelets we might lose even the GMRA prop-
erty. Indeed, the frame wavelet from Theorem 3.1 is an example of a non-GMRA C°
frame wavelet with rapid decay.
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Constructing pairs of dual
bandlimited framelets with
desired time localization in L%(R)
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Abstract. For sufficiently small translation parameters, we prove
that any bandlimited function 1, for which the dilations of its
Fourier transform form a partition of unity, generates a wavelet
frame with a dual frame also having the wavelet structure. This
dual frame is generated by a finite linear combination of dilations
of ¢ with explicitly given coefficients. The result allows a sim-
ple construction procedure for pairs of dual wavelet frames whose
generators have compact support in the Fourier domain and de-
sired time localization. The construction is based on character-
izing equations for dual wavelet frames and relies on a technical
condition. We exhibit a general class of function satisfying this
condition; in particular, we construct piecewise polynomial func-
tions satisfying the condition.
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1. Introduction

Let 1 € L?(R) be a function such that 1& is compactly supported and the functions
£ — 1[)(aj§), j € Z, form a partition of unity for some a > 1. We prove that for
sufficiently small translation parameter b the function v generates a wavelet frame
{a??p(a?x — bk) : j k € Z} with a dual wavelet frame generated by a finite linear
combination of dilations of 1. The result allows a construction procedure for pairs of
dual wavelet frames generated by bandlimited functions with fast decay in the time
domain where both generators are explicitly given.

The principal idea used in the proof of Theorem 2.3 comes from Christensen’s con-
struction of dual Gabor frames in [6]. Our construction is similar, but it takes place in
the Fourier domain. The proof of Theorem 2.3 and the construction procedure provided
by this theorem are based on the well-known characterizing equations for dual wavelet
frames by Chui and Shi [8].

Our aim is to provide a construction of a pair of dual frame generators ¢ and ¢ for
which the functions ¢ and ¢ are explicitly given in the sense that the functions or their
Fourier transform are given as finite linear combinations of elementary functions. To be
precise, the construction uses 1) as a starting point and defines the dual generator ¢ as
a finite linear combination of dilations of ¢ with explicitly given coefficients. This gives
us control of the properties of both generators as opposed to using canonical duals.

The construction of redundant wavelet representations is often restricted to tight
frames in order to avoid the cumbersome inversion of the frame operator. However,
in this paper we consider general non-tight, non-canonical, non-dyadic dual wavelet
frames. The construction of wavelet frames is usually based on the (mixed) unitary
or oblique extension principle |7, 9, 12, 13]. These principles lead to dual or tight
frame wavelets with many desirable features: compact support, high order of vanishing
moments, high smoothness, and symmetry/antisymmetry; in particular, explicitly given
spline generators are constructed from B-spline multiresolution analysis in [7, 9]. In
these and similar constructions one cannot do with fewer than two generators (see
[7, Theorem 9] and [9, Theorem 3.8] including the succeeding remark); in addition,
higher smoothness leads to more generators or larger support of the generators. Our
construction leads to frame wavelet with similar properties, the most notable difference
is that the generators have compact support in the Fourier domain, not in the time
domain.

Wavelet frames constructed by the unitary extension principle from a B-spline mul-
tiresolution analysis will always have one generator with only one vanishing moment
yielding a wavelet system with approximation order of at most 2; this problem is cir-
cumvented in the oblique extension principle. When multiple generators are needed
in our construction, all of these will share the same properties. In Examples 2 and 3
the constructed wavelet frames are generated by only one function, and in these cases
the smoothness of the generator does not affect the size of the support (that is, in the
Fourier domain).

Our construction is explicit, and it works for arbitrary real dilations, but as a draw-
back the wavelet frame generators will not have compact support in the time domain
leading to infinite impulse response filters. In the dyadic case an efficient algorithm
can be implemented by using the fast Fourier transform, see for example the fractional
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spline wavelet software for Matlab by Unser and Blu [3]. The idea is to perform the
calculation in the Fourier domain using multiplication and periodization in place of con-
volution and down-sampling. For this to work, we need the frequency response of the
filter coefficients (sometimes simply called filters or masks and often denoted by 7;, m;,
or H;), but we get this almost directly from our construction; the frequency response of
both high pass filters (decomposition and reconstruction) can be obtained from dilations
of 1& Note that this relies crucially on the fact that the dual generator ¢ is defined as
a finite linear combination of dilations of ¢ with explicitly given coefficients.

The paper is organized as follows. In Section 2 we prove the main result of this
article, Theorem 2.3. The theorem contains a technical condition on partition of unity,
and we address this problem in Example 1 where we explicitly construct functions that
satisfy the condition. A note on the terminology: the functions in the “partition of
unity” are not assumed to be non-negative, but can take any real value. In Exam-
ple 2 we give an example of a pair of smooth, fast decaying, symmetric generators
with the translation parameter being 1. The construction of dual wavelet frames using
Theorem 2.3 often imposes the translation parameter to be small, e.g., smaller than
1. Consequently, we want methods to expand the range of the translation parameter,
and this is the topic of Section 2.2. In Section 3 we show that the representation of
functions provided by Theorem 2.3 with the explicitly given dual frame is advantageous
over similar representations using tight frames or canonical dual frames. In Section 4
we present another application of Theorem 2.3 with generators in the Schwartz space.
However, the construction in this example is less explicit than in the first example. We
end this paper with some remarks on constructions of pairs of dual wavelet frames for
the Hardy space.

We end this introduction by reviewing some basic definitions and with an observation
on the canonical dual frame. A frame for a separable Hilbert space H is a collection of
vectors {fj}jes with a countable index set J if there are constants 0 < C7 < C < 00
such that

CoLIfIP < DD WL < CallfIP - forall feH,
Jjeg
If the upper bound holds in the above inequality, then { f;} is said to be a Bessel sequence
with Bessel constant C. For a Bessel sequence {f;} we define the frame operator by

S:H—H, Sf:Z(f,fj>fj-

JjEJ

This operator is bounded, invertible, and positive. A frame {f;} is said to be tight if
we can choose C1 = (Cb; this is equivalent to S = C1I where [ is the identity operator.
Two Bessel sequences {f;} and {g;} are said to be dual frames if

F=> {fanf; Vfen.
JjeJ

It can be shown that two such Bessel sequences are indeed frames. Given a frame {f;},
at least one dual always exists; it is called the canonical dual and is given by {S~1f;}.
Only redundant frames have several duals.
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For f € L?*(R), we define the dilation operator by D, f(z) = a'/?f(az) and the
translation operator by Ty f(x) = f(x — b) where 1 < a < oo and b € R. We say that
{D,iToit)}j kez is the wavelet system generated by 1 where a > 1 and b > 0. In the
following we use the index set (j, k) € Z x Z whenever a sequence is stated without index
set. If {D, i Tye} is a frame for L%(R), the generator 1 is termed a framelet or frame
wavelet. For f € L'(R) the Fourier transform is defined by f(&) = [g f(x)e 2% dx
with the usual extension to L?(R). Given a measurable set K C R we define the Paley-
Wiener space L?(K), which is invariant under all translations, by L?(K) = {f € L?*(R) :
supp f C K}.

2. Construction of dual wavelet frames

Our main result, Theorem 2.3, is obtained from the following result by Chui and Shi [8].
The result is stated in the last two lines of Section 4 on page 263 in their article.

Theorem 2.1. Let a > 1, b > 0, and RTINS L?*(R). Suppose the two wavelet sys-
tems { Dy Ty} jrez and {D,i Tyt }jrez form Bessel families. Then {D,; Ty} and
{D,iTyp} will be dual frames if the following conditions hold

S p(@i)i(aie) = b ae. £ €R, (2.1)
JEZ

~

PEVY(E+q) =0 ae. E€R for 0 q € b 'Z. (2.2)

The conditions (2.1) and (2.2) are also necessary when a > 1 is such that o/ is
irrational for all positive integers j, see [8, p. 263]. For this reason the above conditions
are often refereed to as characterizing equations for such irrational dilations. The result
in Theorem 2.1 follows from the general result of characterizing equations for dual
wavelet frames [8, Theorem 2].

The next result, Lemma 2.2, gives a sufficient condition for a wavelet system to be
a Bessel sequence. Its proof can be found in [5, Theorem 11.2.3].

Lemma 2.2. Let a > 1, b > 0, and f € L?(R). Suppose that

Cy=— sup Z ’f(ajg)f(ajé—i—k:/b)’ < oo

1
b €€l j kez

Then the affine system {D,; Ty, f} is a Bessel sequence with bound Cs.

Theorem 2.1 and Lemma, 2.2 are all we need to prove our main result, Theorem 2.3.
The main result contains the technical condition (2.3) on . In the example following
the proof of the main result, Example 1, we explicitly construct functions satisfying this
condition.

Theorem 2.3. Let n € N, a > 1, and 7 6 L3(R). Suppose that ¥ € L®(R) is a
real-valued function with supp ) C [—a®, —a®"] U [a®~",a’] for some ¢ € Z, and that

> ip(a?¢) =1 forae £€R. (2.3)

JEZL
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Let b € (0,271a™¢]. Then the function v and the function ¢ defined by

n—1
o(x) = bip(x) + 2b Z aIP(az) forx €R, (2.4)
j=1

generate dual frames {D; Typ)}j kez and {Dy; Ty} j xez for L3(R).

Proof. By assumption the function ¢ is compactly supported in R\ {0}; the same holds
for ¢ since, by the definition in (2.4) and the linearity of the Fourier transform,

DE) = () + 25 B(ale).

j=1

An application of Lemma 2.2 shows that the functions 1 and ¢ generate wavelet Bessel
sequences.

To conclude that ¢ and ¢ generate dual wavelet frames we will show that condi-
tions (2.1) and (2.2) in Theorem 2.1 hold. By a’-dilation periodicity of the sum in
condition (2.1) it is sufficient to verify this condition on the intervals [—a, —1] and [1, a].
On these two intervals, only finitely many terms in the sum (2.3) are nonzero since
1& has compact support; in particular, only the terms j = c—n,c—n+1,...,c—1
contribute which follows from the support of the dilations of v

supp(a~"™) C [~a", ~1] U [1,a"],
supp ¥ (a°"L) € [—a" Y, —1/a) U [1/a,a™ Y],

and continuing to
supp¢(a® ') C [~a, —a " U a7 a].
For [¢| € [1,a], by the assumption, we have

1= (T o) ) ( 5 Wf))Q (2.5)

jEZ. j=c—n
= [Bas=") + D@ -+ Bla )]
P(a°E) [ "€) + 20(aHE) + oo + 2001
(@ E) [D(aTHE) + 200 + -+ 2007
.

_l’_
Zu?(aﬂg (a¢) = Zw $(d’€),

]GZ

hence ¢ and ¢ satisfy condition (2.1).
To realize that ¥ and ¢ satisfy equation (2.2) as well, we note supp (- +q) C
B(Fg,a°) and supp¢ C [—a®, —a® 2T U [ac~2" T o] C B(0,a) where B(z,r) =



52 PAPER Il. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L?(R)

[x — 7,z + r| denotes the closed ball with center at x and radius r. The two functions
above will have disjoint support modulo null sets whenever |¢g| > 2a°. Consequently,
by choosing the translation parameter b < 271a~¢, the two functions in condition (2.2)
will have disjoint support for all ¢ € b='Z\ {0} since min [b='Z \ {0}| = 1/b > 2a°, and
the condition will be trivially satisfied. O

Whenever n = 1 in Theorem 2.3 above, we have ¢ = by by equation (2.4), thus ¢
generates a tight frame with bound b. In this case, i.e., n = 1, the choices of ¢ are very
limited since functions ¢ satisfying the conditions in Theorem 2.3 with n = 1 must be
of the form ¥ = yqcg, where S = [-1,—1/a] U [1/a,1]. As a consequence, interesting
constructions using Theorem 2.3 are restricted to n > 1. For n > 1, the dual frames
generated by ¥ and ¢ will be non-canonical.

The important thing to note about the definition of ¢ in (2.4) is that ¢ will in-
herit properties from v that are preserved by linearity and dilation, e.g., ngb will have
compact support because 1& has this property. This holds also for properties such as
smoothness, symmetry, fast decay, and vanishing moments up to some order. If ¢ (or
1[1) can be written in terms of elementary functions, the same will hold for ¢ (or é)
These observations naturally lead to a review of the properties generally possessed by
the dual generators we construct. As mentioned above, all non-trivial applications of
Theorem 2.3 involve n > 1, n € N. We will furthermore assume that ¢ € L2(R) is
even, explicitly given, and, when mentioned, a C"-function for some r € NU {0}. In
this situation the resulting pair of dual generators has the following properties:

e Explicit and similar form: 1& and g% are of similar form, e.g., piecewise polynomial
of the same order (see Example 2) unlike the situation for the canonical dual (see
Section 3). A similar construction procedure for tight frames gives “less” explicitly
given generators (see Section 3).

e Compact support in Fourier domain of both ¢ and ¢.

e Fast decay in time domain. For ¢ € Cj(R) the generating function 1 will satisfy
lim, | #"p(x) = 0, that is, ¥(z) = o(x™") as |r| — co. The dual generator ¢
has the same properties.

e High order of vanishing moments. In general for ) e C§(R) the generator ¢ will
have vanishing moments up to order » € NU {0} since

_dmy

0=
agm

(0) = (—27Tz')m/Rxmw(w)dx form=20,...,r.

And again, the same holds for the dual generator ¢.
e Symmetry: 1/3 and ngb are even and real functions and so are 9 and ¢.

e Frequency overlap between scales for increased stability and non-semiorthogonali-
ty: For all j,k € Z thereis a j' # j and a k" € Z so that (D,; Ty, D, Ty1p) # 0.
The same holds for the dual generator ¢.
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e Generalized multiresolution structure [1] (see also Section 2.3). The two generators
can be associated with the same GMRA with identical core subspace, the Paley-
Wiener space L?(K) with K = Ujo(a’ supp)) C [—a®~1,a¢"1], hence both
generators can be associated with the same scaling function. These types of dual
wavelet frames are called sibling frames in |7]. Furthermore, the GMRA provides
arbitrarily large approximation order [10].

To make Theorem 2.3 applicable, we need to show how to construct functions that
satisfy the technical condition (2.3) in the theorem. It is important that this construc-
tion is explicit because one of the key features of the theorem is that the dual generator is
explicitly given in terms of dilations of ¢. In Example 1 we construct a dyadic partition
of unity, that is, we construct a function g € L?(R) satisfying

Zg(?@“) =1 forae z€R. (2.6)
JEZ
This corresponds to condition (2.3) for dyadic dilation a = 2; a generalization of the
construction to arbitrary real dilation parameter a > 1 is straightforward (replace every

occurrence of “2” with “a”). As we shall see a very general class of functions satisfy the
condition (see also Example 3).

Example 1. For any m € Z, any ¢ > 0 smaller than or equal to 2™ /3, and a bounded
function f on [2™ — §,2™ + §] satisfying f(2™ — ) = 0 and f(2™ + 0) = 1, we define

f(z) x € B(2™,0),

() = 1 z € (?m +6,2m 1 —25) @7
1— f(z/2) z € B(2™!,26),
0 otherwise.

Any such hy € L?(R) will be continuous if f is continuous, and it will satisfy:

Z h1(2j.%') =

JEZ.

1 for x>0,
0 forz<0.

We use the same approach to construct hy € L*(R) satisfying:

Z h2(2j.%') =

{0 for x > 0,
JEZ

1 for xz <0,

and define g = hy 4 ho. This gives us the dyadic partition of unity almost everywhere.

The function f above could be chosen as any polynomial satisfying f(2™ — §) = 0
and f(2"™ + 9) = 1; this will make g continuous. If we also let the polynomial f satisfy
/2™ —46) = f(2™ +6) =0, then g € CY(R). Continuing this way, we can make g as
smooth as desired while still keeping g piecewise polynomial.

In the next example we apply the ideas from the above example to Theorem 2.3 and
construct dual wavelet frames with dyadic dilation and translation parameter b = 1;
actually, any b € (0, 1] can be used, but we take b = 1 for simplicity.
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Example 2. Let f be a continuous function on the interval [1/4,1/2] satisfying f(1/4) =
1 and f(1/2) = 0. For example f can be any of the functions below:

flz) = (2.8a)
flx) = (24x — 8z +1)(2z — 1)?, (2.8b)
f(z) = —16(3202° — 19222 + 42z — 3)(2z — 1)3, (2.8¢)
f(z) = 32(44803: — 384023 + 12802% — 1922 + 11)(2z — 1)*, (2.8d)
f(z) =3+ Scosm(da —1). (2.8e)

In definitions (2.8b) and (2.8e) the function f satisfy f'(1/4) = f/(1/2) = 0, in definition
(2.8¢) this also holds for the second derivative, and in (2.8d) even for the third derivative.
As in Example 1 define ¢ € L?(R) by:

A — @l for [l € [1/8,1/4],
PO =) for €€ (1/4,1/2], (29)

0 otherwise.

This way 1) becomes a dyadic partition of unity with supp ¢ C [—1/2,—1/8]U[1/8,1/2],
so we can apply Theorem 2.3 with ¢ = —1, n = 2, and b = 1. Following Theorem 2.3
we define the dual generator ¢ € L?(R) by:

2[1 = f(4gh] for [§] € [1/16,1/8],

sl o e s/,
%8 =1 1ge) for [€] € (1/4,1/2]. (210)
0 otherwise.

whereby ¢ and ¢ generate dual frames {Dy; T} kez and {Dy;Ti¢};j ez for L*(R).
The translation parameter in these wavelet systems is set to b = 1, and each wavelet
frame is generated by only one function.

Suppose we let 1) € L?(R) be piecewise polynomial as defined by equations (2.8a)
0 (2.8d). Then ¢ € C"(R) with r = 0,1,2,3, respectively. Further, the generators
1) and ¢ will be real and even, and 1& and qg will be piecewise polynomial and have
compact support with suppe) C [—1/2,—1/8]U[1/8,1/2] and supp ¢ C [—1/2,—1/16]U
[1/16,1/2]. We have a greater number of vanishing moments and faster decay than
indicated by the review of properties above: 1 and ¢ will have r + 1 vanishing moments
and decay as O(z~""2) as |z| — oo, e.g., using (2.8b) we have 9, ¢ € C1(R), and ¢
and ¢ with vanishing moments up to order 2, and ¢(z) = O(z~3) and ¢(z) = O(z~3),
see Figures 1 and 2. The explicit form of ¢ and hence ¢ are easily found; in general,
they are finite linear combination of sine and cosine of the form sin(2rax)/(7z)™ and
cos(2max)/(mx)™ for integer n > 2+ r and a € Q.

We end the example with some notes on the numerical aspects and the multireso-
lution structure. We claim that C1 = 1/2 and Cy = 1 are frame bounds for {Dy;Tj1)},
that C; = 7/2 and Cy = 5 are frame bounds for the dual frame {D,;T¢}, and that
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08.

0.6

Figure 1: A pair of dual generators ¢ (solid line) and ¢ (dotted line) in the time domain with
f asin (2.8b).

this holds for any f from equations (2.8); even more, the frame bounds hold for any f
satisfying 0 < f(x) <1 for x € [1/4,1/2]. To prove the claim observe that

ZZWW H(2E+k) =0, forEeR,

k#0j€EZ

by the support of 1[1 This reduces the frame bound estimates in [5, Theorem 11.2.3] to

\5\6[1/4 1/212‘

where C; and Cy are a lower and upper frame bound of {Dy; Ty}, respectively. For
|€] € [1/4,1/2] we have, by the definition (2.9),

D[P = FUIED* + (L= f(IED)* = 1 —2f(I€]) + 2£ (€],

JEZL

~ . 2
Cr=sup  S|d(e)|
1§1€(1/4,1/2] je7,

and thus,

Ci= min 1 -2z +22>=1/2, Cy= max 1—2z+ 2%

z€[a,B] z€|a,

with a = miny jy<z<i1/2 f(2) and B := maxyjycz<i/o f(x). Since 0 < f(z) < 1 for
x € [1/4,1/2], we have a = 0 and 8 = 1, hence Co = 1, and this proves the claim for
{Dq;Typ}; similar calculations will show the claim for the dual frame. In particular,
we see that the condition number C/C7 does not depend on the smoothness of the
generators, and that the condition number of the dual frame {Dy;Tj¢} is smaller than
the condition number of {D,;T;®} and the condition number of the canonical dual
frame.
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Figure 2: A pair of dual generators ¢ (solid line) and ¢ (dotted line) in the Fourier domain
with f asin (2.8b).

The core subspace of the GMRA is the Paley-Wiener space Vy = L?([—1/4,1/4]).
The function € L?(R) defined by % = X[-1/4,1/4] is a generator for Vp, that is,
span{Tin}iecz = Vo, and {Txn}rez is a tight frame with frame bound 1 for V. We
note that this frame contains twice as many elements as “necessary” in the sense that
{Toxn}kez and {Tor11n}rez are orthogonal bases for V. Obviously, we can take the
refinable symbol Hy € L?(T) to be the 1-periodic extension of Hy = X[~1/8,1/8] SO that
1(28) = Ho(&)n(§) for £ € R; note that the choice of Hy is not unique, and by letting
Ho = X[—3/8,1/4)U[1/8,1/8)U[1/4,3/8) We obtain a quadrature mirror filter since Ho(0) = 1
and |Ho(&)? + |Ho(¢ + 1/2)|? = 1. The refinable symbol Hy is sometimes called a low
pass filter or mask. As wavelet symbol (high pass filter) for the decomposition H; and
reconstruction H, we can take Hy = ¢(2:) and H, = ¢(2-) extending them to 1-periodic
functions; these symbols obviously satisfy ¥(2€) = Hy(€)A(€) and ¢(2¢) = H,.(€)7i(€).

2.1. An alternative definition of the dual generator

The following result resembles Theorem 2.3, but it gives an alternative way of defining
¢; note the change from 1 (a~7z) in (2.4) to 1 (a’x) in (2.11). The result follows from
the symmetry of the calculations in (2.5).

Proposition 2.4. Let n € N and a > 1. Suppose ¢ € L?(R) is as in Theorem 2.3. Let
be (0,a¢(1+a"1)"!]. Then the function ¢ and the function ¢ defined by

n—1
o(x) = byp(x) + 2b Z ap(a’x) forxz € R (2.11)
j=1
generate dual frames {D,; Typ)}j rez and {Dy; Typ}j xez for L3(R).

Proof. The functions 1[1 and ¢ satisfy condition (2.1). This follows from calculations
similar to those in (2.5): We start by factoring out 1(a®"1¢) instead of ¥ (a® "¢),
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then ¢ (a"2¢) and continue in a similar way. To see that condition (2.2) is satis-
fied, we note that supp ¢ C [—a“t=L —ac™"] U [a¢™", a¢T" 1] since supp ¢(a~"t1)
[—act1 —ac~ U [a*L, a“T" 1], The two functions in (2.2) will have disjoint support
modulo null sets whenever |q| > a¢ + a“t"~! = a¢(1 +a™1). O

The choice of the translation parameter b is more restrictive in Proposition 2.4 than
in Theorem 2.3 since the support of ¢ defined by (2.11) is larger than when defined
by (2.4). Note that b € (0,a=“(1 +a"~!)71] can be replaced by the simpler, but more
restrictive, b € (0,a”¢7"] in the case a > 2.

2.2. Expanding the range of the translation parameter

The construction of dual wavelet frames from Theorem 2.3 often imposes the translation
parameter b to be small, e.g., b < 1. Hence, it would be interesting to know in which
cases we can take b = 1. For the sake of simplicity let a = 2 for a moment, and assume
that 1 satisfies the assumptions of Theorem 2.3. Obviously, we can take b = 1 if the
support of ¢ is contained in [—1/2,1/2], that is, if ¢ < —1; this is exactly what we used
in Example 2. If ¢ > 0, we need, in order to achieve b = 1, to apply Theorem 2.3 to
1&(26“-) in place of . This dilated version of ¥ will still be a dyadic partition of unity
and supp ¢)(2°T1.) € [=1/2,1/2]. Moreover, we have the following result.

Corollary 2.5. Let n € N and a > 1. Suppose ¢ € L*(R) is as in Theorem 2.3. Let
b€ (0,27 'a=¢]. Then the function 1 := Dyt and the function ¢ := Dy, where ¢ is
defined as in (2.4), generate dual frames {D,; Ty} ; kez and {Dy;T,d}j kez for L*(R).

Proof. The result basically follows from an application of the identity
DyTyy, = Ty Dy, (2.12)

and the fact that dilation preserves the frame property and the duality of (wavelet)
frames since it is a unitary operator on L?(R). By assumption {D,; Tyxt} and {D,_; Tyr ¢}
are dual frames for b € (0,27 2a~¢]. The identity (2.12) yields,

DyD,iTyryp = Do Ty (Dy)),

hence {D,; Tkzﬁ} is a frame as a unitary image of a wavelet frame where ¢ = Dyip. The
same conclusion holds for {D,; T.¢}. For all f € L*(R), we have

f=Dy(Dif) = > {f, DyD s Tokd) DyDos Tt = > { f, Doy Ty ) Doy Ti),
7,kEZ 7,kEZ

and conclude that duality is preserved. O

Another approach (for obtaining b = 1) makes use of multigenerated wavelet sys-
tems. In the following result the constructed dual wavelet frames are generated by m
functions again sharing the properties of the starting point function 4; in particular, if
1) has vanishing moments up to some order, then so will every function in the generator
sets U and .
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Corollary 2.6. Let n € N and a > 1. Suppose ¢ € L*(R) is as in Theorem 2.3. Let
m e Nandb e (0,27 am|. Then the functions ¥ = {¢, Ty, 0, . .., T(m—1)4/m¥} and
the functions ® = {¢, Ty /1, &, - - -, T(m—1)p/m®}, Where ¢ is defined as in (2.4), generate
dual frames {Daj Tbkw}j,kGZ,dJE\P and {Daijk¢}j,k€Z,¢€‘i> for L2(R)

Proof. Let m € N. For b so that 0 < b/m < 271a~¢, the functions ¢ and ¢, where ¢ is
defined as in (2.4), generate dual frames {D,; Ty /m¥}jrez and {Dgi Ty jm®}j ez for
L*(R). Note that (m='Z) /Z = {0,1,...,m — 1}, and define:

© = {4, Thym®, Topjm®s s Ton-1ypym¥ }

It follows immediately that {Daij/mkw}j,kEZ = {Daijkw}j,kEZ,wG\I/- Similarly, we
have for ¢ that {D,; Ty)mi ¢} jkez = {Dai Tok®}j ez gcd, Where

d— {gb, Ty jm®, Topjm®; - - - ,T(m,1)b/m¢} .

We conclude { D, Tokt}j kezpew and {Dy; Tord}j kez s are dual frames for L?(R) for
b/m < 2 'a=¢, that is, for b < 27 1a"°m. O

It follows from the corollary that, in the dyadic case, we can always obtain b = 1 by
using 2¢t! generators.

2.3. On the generalized multiresolution structure

We end this section with a closer study of the GMRA structure of ¥ and ¢. To this
end, let ¢ € L%(R) satisfy the assumptions in Theorem 2.3. We consider the subspaces
Wf(iﬁ) :=38pan{D, Ty : k € Z}. Let ¥ = Dyp be the generator of frame {D,; Ty},
see Corollary 2.5. From the identity Ty, = Dy-1T} Dy we have WE(v) = Dyp-1 W (1))
where W} (1)) = 5pan { D,s Ti) : k € Z}. By [10, Theorem 2.14],

W) = {f e L’(R): f = mzz for some measurable, 1-periodic m}

and further, using supp ¢ C [—1/2,1/2],

Wo (1) = {f € L*(R) : supp f C supplZ} = [*(suppe)),

hence W () = L?(supp 1&) by the above, and by dilation, W]b(zp) = L?(a? supp 1&) We
conclude that the space of negative dilates, also called the core subspace, associated
with ¢ is given by

Vo(v) = m(U W;’W)) = L2(K)’ K = U (aj SUPI”&) C [—acfl,acfl} )

7<0 j<0

which is a subspace invariant under all translations. It is straightforward to see V() =
Vo(4); we will denote this space by Vp. A function n € L?(R) is said to generate Vp if
span {Tpxn} ez = Vo, and we have that n generates Vj if, and only if, supp7 = K (see
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[10]). If we further require {Tpx7n},c5 to be a frame for Vg, then 7) cannot be continuous
hence n will be poorly localized in time. This drawback follows from a result in [2];
indeed, the sum Y ,c7 |7((€ + k)/b)|* reduces to |7(£/b)|* for € € [~1/2,1/2] since
b <2 1a=¢ implies ba~! < 1/(2a) < 1/2 — ¢ for some € > 0 hence supp(-/b) = bK C
[~ba®1 ba®"1] € [~1/2+¢,1/2 —¢]. Now, the conclusion follows from [2, Theorem
3.4]. We note that the constructed wavelet frame will not necessarily be a frame for
a fixed dilation level subspace W;(1) of L?(R). This situation is similar to that of
the unitary and oblique extension principles, but in contrast to frame multiresolution
analysis.

3. Dual frames versus tight frames

In Theorem 2.3 we explicitly construct the dual frame. One might ask why we do not

use the canonical dual frame, or why we do not use the characterizing equations for tight

frames to formulate a similar construction procedure of tight frames. In the following

we will show that these approaches have some disadvantages compared to Theorem 2.3.
For a wavelet frame {D; Tyr1)}; ez, the canonical dual frame is given by

{S_lDaijkl/J :j,]{? c Z} = {Dajs_lTbklb : ],k < Z},

where S is frame operator of {D,;Tyr1)}j kez- In general the canonical dual need not
have the structure of a wavelet system, and this is one reason to avoid working with
canonical dual frames. However, as we show below, the canonical dual of all wavelet
frames considered in this paper will be of wavelet structure, hence the canonical dual
could be used in the synthesis process in the frame wavelet transform. The problem
with this approach is that it is difficult to control which properties the canonical dual
frame inherits from the frame since the application of the inverse frame operator can
destroy desirable properties. We give an example of this issue in the following.

Let ¢ € L*(R) be as in the assumptions of Theorem 2.3. Then ¢)(&)4)(€ + b=1k) =0
for k € Z \ {0}, and consequently, by [11, Proposition 7.1.19] in the dyadic case and
a simple generalization of parts of the proof of the proposition in the general case, the
associated frame operator is the Fourier multiplier given by

519 = (] )i torac.cemr, (31)
JEZL

for all f € L?(R) with 7 < Zjez|zﬂ(aj§)|2 < (5 and C1,Cy as frame bounds for
{D,iTy)}. Since S is a Fourier multiplier, it commutes with all translations, that is,
ST, =1T,5 for all r € R, and the same holds for the inverse frame operator, hence the

canonical dual takes the form
{DuTow(S710) 5k € 2},

which is a wavelet frame generated by S~1+. Moreover, the canonical dual generator is
given by

3) for a.e. £ € R, (3.2)

- (
S 1 -5
v ZjeZW(a]f”Q
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Since suppt C [—a® —a® " U [a“ ", ac] for some ¢ € Z and n € N, we conclude, by
equation (3.2), supp S~y = supp ¢ and

= )
S—1g(&) = S
v Z\j|<n(¢(aj§))2

This implies, among other things, that 1& and ﬂ will have the same regularity.
But it also implies that choosing 1& to be piecewise linear will not make the canonical
dual generator S~11 piecewise linear (in the Fourier domain, that is) owing to the
denominator in (3.3). This is unlike the situation in Example 2 where a piecewise
polynomial 1/1 by Theorem 2.3 gave a dual generator qﬁ piecewise polynomial of the same
order, e.g., a piecewise linear ¢ gave a piecewise linear qS. In general the denominator in
(3.3) makes the expression for the canonical dual generator “less” explicit. The price we
pay for using the non-canonical dual is a slightly larger support (in the Fourier domain)
of the dual generator.

Since the construction of wavelet frames by Theorem 2.3 is based on characterizing
equations for dual wavelet frames, it would be natural to look for a similar way of
constructing tight frames from their characterizing equations. In a naive approach to
such a construction one would need to choose ¢ € L?(R) so that ¢ is real and the
family & — (@@(aj €))?, j € Z, form a partition of unity and to choose a sufficiently small
translation parameter (so that all terms in the series in the so-called “t,-equations”
become zero owing to disjoint support). Following the ideas from Example 1 we take
¥ € L*(R) as (extending ¢ to an even function):

f€) ¢ € B(a™,9),
5 1 € (a™+d,am —ad),

Vo = \/1— FEJa)? ¢ e B(a™,af),

£€[0,00)\ [@™ —6,a™ ! +ad] .

for a.e. £ € R. (3.3)

for any m € Z, any § > 0 smaller than or equal to a/3, and a bounded function
fon [a™ —6,a™ + ] satisfying f(a™ — ) = 0, f(a™ +6) = 1, and |f| < 1. The
important thing to note with this approach is that 1/3 does not inherit properties from
f in opposition to the situation in Example 1, e.g., taking f to be linear does not make
1& piecewise linear because of the square root in the expression above; moreover, it is
well known that the property of being a smooth (non-negative) function need not be
preserved when taking square roots.

4. Another application of Theorem 2.3

In Examples 1 and 2 we constructed dual wavelet frames in a rather explicit way. The
following construction is less explicit. In the first part of the example below we construct
a C'* function on R with compact support satisfying the technical condition (2.6), and
in the second part we apply Theorem 2.3 to the constructed function.

Example 3 (Part I). Let f € C*°(R) be defined as

e Vr > 0,

= T
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and choose positive constants R > r > 0 so that
3>0: |J2[r+06,R—-6]=10,00), (4.1)
JEZ

holds, e.g., take r = 1/8 and R = 1/2. We define fi(z) = f(x —r)f(R — z) for x € R,
hence supp f1 C [r, R] and f; € C§°(R), and we introduce a symmetric version of fi,
denoted fo, in order to get a dyadic partition of unity of the negative as well as the
positive real line.

fi(x)  for x >0,

fi(=z) for z <O0. (4.2)

falz) = {
The function w will be used to normalize fo:

w(zx) = ng(ij).

JEL

For a fixed x € R this sum only has finitely many nonzero terms. Obviously, w is a
2/-dyadic periodic function and, by (4.1) and the definition of fi, it is also bounded
away from 0 and oo:

de,C >0:c<w(z)<C forall ze€R\{0},

hence we can define a function g € C§°(R) by

_ fol@)
w(z)

This g will be a dyadic partition of unity; the calculations are straightforward:

Zg(ij) _ Z f2(2]:
jaz w@

JET

g(x) for x € R\ {0}, and, g¢(0)=0. (4.3)

1) fo2x) _ > ez f2(2x) _
z) _]-E% w(z) >kez fo(2kx)

The construction of g looks indeed less explicit than the piecewise polynomial partition
of unity in Example 1 primarily because g is normalized by an infinite series w. This
situation improves by noticing that, in practice, the series w reduce to a finite sum since
suppg = supp fo2 C [-R, —r] U [r, R]. For example, if we let » = 1/8 and R = 1/2, we
can do with three terms g(z) = fQ(x)/Z]l:_l f2(27x) for all x € R\ {0}.

Remark 1. 1. Note that the mirroring step (4.2) introducing fs also makes g sym-
metric. But it is obvious from the example that we can carry out the construction
for the positive part of the real line only to get a dyadic partition of the unity on
the positive real line, and, then, by the same approach (but with different choices
of r and R), for the negative real line. This way g will not be symmetric.

2. In place of f one could choose any function in C§°(R) having the same support as
J- Inplace of fi one could take any characteristic function f1 = x[gn gn+1] for some
n € N convolved with a smooth hs € C§°(R) for a sufficiently small § > 0, where
hs(z) = 6~ h(6~1x), and supph C [~1,1], h > 0, [hdp = 1, and h € C°(R).
Then supp hs C [—6,d] and supp hs x f1 C [2" — §,27T1 4 §].
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Example 3 (Part 1l). We take r = 1/8 and R = 1/2 in Example 3 and set ¢) =
fg/Z}zf1 f2(27-) where fo is given by (4.2), hence

(/8- 'oe-1/2)7!
e(l/s—srle(g—l/m*l+§<1/8—2a)*1e<2§—1/2)*1 £ (1/8,1/4),
A 1 §= 1/47
»(E) = o(1/8-9" 1 (e-1/2) ! 1/4.1/2
e(1/8—€/2)7Lo(g/2-1/2)71 | o(1/8-8) L o(6—1/2) 1 56( / ’ / )’
0 £€R+\(1/851/2)’
and symmetrically for the negative real line. Applying this to Theorem 2.3 with n = 2,
¢ = —1, and b = 1 yields a pair of dual wavelet generators with ¢,¢ € C®(R),

where ¢ is defined as in (2.4), and suppv C [—1/2,—1/8] U [1/8,1/2] and supp ¢ C
[-1/2,—1/16] U [1/16,1/2]. The generators are smooth, rapidly decaying, symmetric
dual framelets with vanishing moments of infinite order. It is clear that both belong to
the Schwartz space, but it is also clear, from the equation above, that 1) and ¢ are not
explicitly given in the time domain.

5. The Hardy space

A similar construction procedure for dual wavelet frames holds for the Hardy space
H?R) = {f € L*[R) : supp f C [0,00)}. The result in Corollary 2.1 can easily be
transformed from L?(R) settings to the Hardy space H?(R). Indeed, we only need to
replace the right hand side b in equation (2.1) by bx([9,00)(&)- In [4, Theorem 1.3] such a
transformation is carried out for a similar result on tight wavelet frames [8, Theorem 1].
The analogue version of Theorem 2.3 for the Hardy space is as follows. Let n € N and
a > 1. Suppose for 1) € H?(R) that 9 is a real-valued function with supp¢) C [a®"™ af
for some ¢ € Z and that

Z@(ajf) = X[0,00)(§) forae. &R
JEZ

Let b € (0,a7¢); actually, we could even let b € (0,a™¢(1 —a~2""1)~1]. Then 1 and
¢ defined by (2.4) generate dual frames for H?(R). We note that, in the Hardy space,
the choice of translation parameter becomes less restrictive than for L2(R). This owes
to the fact that 1& and qg have smaller support since they are zero on the negative real
line.
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Abstract. Given a real, expansive dilation matrix we prove that
any bandlimited function ¢ € L?(R"), for which the dilations of
its Fourier transform form a partition of unity, generates a wavelet
frame for certain translation lattices. Moreover, there exists a dual
wavelet frame generated by a finite linear combination of dilations
of ¢ with explicitly given coefficients. The result allows a simple
construction procedure for pairs of dual wavelet frames whose gen-
erators have compact support in the Fourier domain and desired
time localization. The construction relies on a technical condition
on v, and we exhibit a general class of function satisfying this
condition.
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1. Introduction

For A € GL,(R) and y € R", we define the dilation operator on L?(R") by D f(x) =
|det A|1/2 f(Az) and the translation operator by T, f(z) = f(x —y). Given a n x n real,
expansive matrix A and a lattice of the form I = PZ" for P € GL,(R), we consider
wavelet systems of the form

{DAJ T’ﬂb}ng;ygF 5

where the Fourier transform of ¢ has compact support. Our aim is, for any given real,
expansive dilation matrix A, to construct wavelet frames with good regularity properties
and with a dual frame generator of the form

b
¢ = ¢;Dyith (1.1)
Jj=a

for some explicitly given coefficients ¢; € C and a,b € Z. This will generalize and
extend the one-dimensional results on constructions of dual wavelet frames in [16, 19]
to higher dimensions. The extension is non-trivial since it is unclear how to determine
the translation lattice I and how to control the support of the generators in the Fourier
domain. This will be done by considering suitable norms in R"” and non-overlapping
packing of ellipsoids in lattice arrangements.

The construction of redundant wavelet representations in higher dimensions is usu-
ally based on extension principles [7, 8, 10, 11, 12, 13, 15, 17, 18|. By making use of
extension principles one is restricted to considering expansive dilations A with integer
coefficients. Our constructions work for any real, expansive dilation. Moreover, in the
extension principle the number of generators often increases with the smoothness of the
generators. We will construct pairs of dual wavelet frames generated by one smooth
function with good time localization.

It is a well-known fact that a wavelet frame need not have dual frames with wavelet
structure. In [21] frame wavelets with compact support and explicit analytic form are
constructed for real dilation matrices. However, no dual frames are presented for these
wavelet frames. This can potentially be a problem because it might be difficult or even
impossible to find a dual frame with wavelet structure. Since we exhibit pairs of dual
wavelet frames, this issue is avoided.

The principal importance of having a dual generator of the form (1.1) is that it will
inherit properties from ¢ preserved by dilation and linearity, e.g., vanishing moments,
good time localization and regularity properties. For a more complete account of such
matters we refer to [16].

In the rest of this introduction we review basic definitions. A frame for a separable
Hilbert space H is a countable collection of vectors { f;}jes for which there are constants
0 < C7 < (9 < oo such that

CLIAIP < ST AP < CollfIP forall feH.
JjET
If the upper bound holds in the above inequality, then { f;} is said to be a Bessel sequence
with Bessel constant C. For a Bessel sequence {f;} we define the frame operator by

S:H—H, Sf:Z(f,fj>fj-

JjeJ
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This operator is bounded, invertible, and positive. A frame {f;} is said to be tight if
we can choose C'; = (Cs; this is equivalent to S = C1I where [ is the identity operator.
Two Bessel sequences {f;} and {g;} are said to be dual frames if

F=2 (fonf; Vfen
JjeJ
It can be shown that two such Bessel sequences are indeed frames. Given a frame {f;},
at least one dual always exists; it is called the canonical dual and is given by {S~! fit.
Only a frame, which is not a basis, has several duals.

For f € L'(R™) the Fourier transform is defined by f(&) = [gn f(z)e~2™&2)dg with
the usual extension to L2(R").

Sets in R™ are, in general, considered equal if they are equal up to sets of measure
zero. The boundary of a set E is denoted by OF, the interior by E°, and the closure
by E. Let B € GL,(R). A multiplicative tiling set E for {B’ : j € Z} is a subset of
positive measure such that

[R"\ UjezB/(B)| =0 and |BI(B)NBY(E)| =0 forl#j. (1.2)

In this case we say that {B/(F):j € Z} is an almost everywhere partition of R", or
that it tiles R™. A multiplicative tiling set E is bounded if E is a bounded set and
0 ¢ E. By B-dilative periodicity of a function f: R™ — C we understand f(z) = f(Bx)
for a.e. z € R", and by a B-dilative partition of unity we understand ;.5 f(Biz) =1,
note that the functions in the “partition of unity” are not assumed to be non-negative,
but can take any real or complex value.

A (full-rank) lattice ' in R™ is a point set of the form I = PZ" for some P € GL,(R).
The determinant of I is d(I') = |det P|; note that the generating matrix P is not unique,
and that d(I) is independent of the particular choice of P.

2. The general form of the construction procedure

Fix the dimension n € N. We let A € GL,,(R) be expansive, i.e., all eigenvalues of A
have absolute value greater than one, and denote the transpose matrix by B = A’. For
any such dilation A, we want to construct a pair of functions that generate dual wavelet
frames for some translation lattice. Our construction is based on the following result
which is a consequence of the characterizing equations for dual wavelet frames by Chui,
Crzaja, Maggioni, and Weiss [6, Theorem 4].

Theorem 2.1. Let A € GL,(R) be expansive, let [ be a lattice in R", and let ¥ =
{1,...,r}, U = {41,..., 0} C L*(R"). Suppose that the two wavelet systems
(Dy Tty - j €2,y €T, 1 =1,...,L} and {Dy;Toiy : j € Z,y €T,1=1,...,L} form
Bessel families. Then {Dy; T4y} and {Dy;T\)y} will be dual frames if the following
conditions hold

L ~
SN T (BIYy(BI€) = d(T) a.e £ €R", (2.1)

=1 j€Z

L -
S & +7) =0 a.e. € R™ fory € T\ {0}. (2.2)
=1
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Proof. By ¢ = Biw for j € Z, condition (2.2) becomes
L .
qu (Bw)y(Biw+7v) =0 a.e. weR" for vy e\ {0}. (2.3)

We use the notation as in [6], thus A(A,T) = {a € R" : 3(j,7) €Z x* : a = By}
and Ixr(a) = {(j,7) €ZxT* : a = B7Jy}. Since Inr(a) C Z x (I \ {0}) for any
a e A(A, TN\ {0}, equation (2.3) yields

1 LS = A '
an S D hi(Blw)y(Bi(w+ By)) =0 ae weR"
(M) (:7)€lar(a) =1

for a #£ 0. By I4r(0) = Z x {0}, we can rewrite (2.1) as

7

‘ -

L
Z& Blwyy(Bi(w+ B~ 7)) =1 ae. weR",

U

M,

77) r(o)

using that B~7y = 0 for all j € Z. Gathering the two equations displayed above yields

1 Lo .
an > Zw (Blw)iy(Bi(w + B7i7)) = 640 a.e. w € R,
(31)€lar(a) =
for all @ € A(A,T). The conclusion follows now from [6, Theorem 4]. O

The following result, Lemma 2.2, gives a sufficient condition for a wavelet system to
form a Bessel sequence; it is an extension of [3, Theorem 11.2.3] from L?(R) to L2(R").

Lemma 2.2. Let A € GL,(R) be expansive, I' a lattice in R", and ¢ € L*(R"). Suppose
that, for some set M C R" satisfying Ujcz B'(M) = R™,

Cr= g Y B(BIEGBIE +7)| < o (2.4)

M) een 57, et

Then the wavelet system {Da; T, ¢} jcz ~cr is a Bessel sequence with bound Cy. Further,
if also

C1 = g ot (Z |B(B¢) ’ -3 ’Qs(Bﬂg)gE(Bjuw)}) >0, (25)

JEZ ~elM\{0}
holds, then {Dy;Ty$}jez,~er is a frame for L?(R™) with frame bounds Cy and Cs.

Proof. The statement follows directly by applying Theorem 3.1 in [5] on generalized
shift invariant systems to wavelet systems. In the general result for generalized shift
invariant systems [5, Theorem 3.1], the supremum/infimum is taken over R"™, but be-
cause of the B-dilative periodicity of the series in (2.4) and (2.5) for wavelet systems, it
suffices to take the supremum /infimum over a set M C R™ that has the property that
UiezB! (M) = R™ up to sets of measure zero. O
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Theorem 2.1 and Lemma 2.2 are all we need to prove the following result on pairs
of dual wavelet frames.

Theorem 2.3. Let A € GL,(R) be expansive and ¢ € L2(R™). Suppose that v is a
bounded, real-valued function with suppy C U?ZOB_j(E) for some d € Ny and some
bounded multiplicative tiling set E for {B? : j € Z}, and that
> p(BiE) =1 forae £ R (2.6)
JEZL
Let bj € C for j = —d,...,d and let m = max {j : b; # 0} and m = —min {j : b; # 0}.
Take a lattice I in R™ such that

d m+d
(UB7(®B)+7)n U BY(E)=0 forally e\ {0}, (2.7)
=0 j=—m
and define the function ¢ by
¢(z) =d(T) Y bjldet A| 7 y(Az) forz € R™ (2.8)
Jj=—m

Ifbg=1and b; +b_; =2 for j =1,2,...,d, then the functions 1 and ¢ generate dual
frames {Da; Ty¥}jezqner and {Da; Ty} jezqer for L*(R™).

Proof. On the Fourier side, the definition in (2.8) becomes

Since 1& by assumption is compactly supported in a “ringlike” structure bounded away
from the origin, this will also be the case for (;AS This property implies that ¢ and ¢ will
generate wavelet Bessel sequences. The details are as follows. The support of 1& and (i
is
d m+d
supp ) C U BI(E), supp ¢ C U B7(E). (2.9)

Jj=0 Jj=—m

Note that 0 < m,m < d. The sets {B7(E) : j € Z} tiles R", whereby we see that
]suppq,z?(Bj-) n B*d(E)\ =0 forj<O0andj>d, (2.10)
and,
] supp ¢(B7) N B*d(E)\ =0 forj<-mandj>m+d. (2.11)

Since m,m > 0, condition (2.7) implies that Q/A)(ij)qﬁ(Bﬂf +7) =0 for j > 0 and
v € I*\ {0}. Therefore, using (2.10), we find that

>3 [RGB + )| = > (B(Be)) <o forge BUE).

JEL yer* 7=0
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An application of Lemma 2.2 with M = B~%E) shows that ¢ generates a Bessel
sequence. Similar calculations using (2.11) will show that ¢ generates a Bessel sequence;
in this case the sum over v € ' will be finite, but it will in general have more than one
nonzero term.

To conclude that ¢ and ¢ generate dual wavelet frames we will show that condi-
tions (2.1) and (2.2) in Theorem 2.1 hold. By B-dilation periodicity of the sum in
condition (2.1), it is sufficient to verify this condition on B~%(E). For ¢ € B~4(E) we
have by (2.10),

G - g S
= $(&) [bo(€) + bid(BE) + - + batk(BYY)]
+(BE) [bath(€) + bt (BE) + -+ + ba 1(BIE)] + -+
+(BYE) [boath(€) + -+ + b1 (BYTE) + botr(BYE)]

and further, by an expansion of these terms,

d
Z H(BIE)D(BE)
J1=0
d
Z B]fﬂz bj—1+ bi_)P(BIE)D(BLE).
j=0 7,1=0
j>l

Using that bg = 1 and bj_; +b_; =2 for j # [ and j,l =0,...,d, we arrive at

d

Zw Bi¢)p(BI€) = Z (B¢)* + Z 2)(B?€)(B'€)
JGZ j=0 J,Z=ZO
i>

- <i0¢(315>)2 ~(

exhibiting that 1 and ¢ satisfy condition (2.1). R R
By (2.9) we see that condition (2.7) implies that the functions ¢ and (- + ) will
have disjoint support for v € I'* \ {0}, hence (2.2) is satisfied. O

Remark 1. The use of the parameters b; in the definition of the dual generator together
with the condition b_; 4+ b; = 2 was first seen in the work of Christensen and Kim [4]
on pairs of dual Gabor frames.

We can restate Theorem 2.3 for wavelet systems with standard translation lattice
Z" and dilation A = P~*AP, where P € GL, (R) is so that = PZ"™. The result
follows directly by an application of the relations Dy, Dp = DpDy; for j € Z and
DpTpy, = Ty Dp for k € Z™, and the fact that Dp is umtary as an operator on L2(R").
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Corollary 2.4. Suppose ), {b;}, A and T are as in Theorem 2.3. Let P € GL,(R) be such
that T = PZ", and let A = P~ AP. Then the functions ¢ = Dptp and ¢ = Dp¢, where
¢ is defined in (2.8), generate dual frames {D 3, Tk }jez kezn and {D 5, Tk¢}jez kezn

for L*(R").

The following Example 1 is an application of Theorem 2.3 in L?(R?) for the quincunx
matrix. In particular, we construct a partition of unity of the form (2.6) for the quincunx

matrix.

Example 1. The quincunx matrix is defined as

1
A:<1

-1

1 )
and its action on R? corresponds to a counter clockwise rotation of 45 degrees and a
dilation by v2Isxs. Define the tent shaped, piecewise linear function g by

1)
1.00
0.75 + J5

J3
0.50 Jy
J1
0.25 +
Jo
1 i
0.25 0.50 0.75 1.00 1

g(xlax2) =

where the sets J; are the triangular domains sketched in Figure 1. Note that the value
at “the top of the tent” is g(1/2,1/2) = 1. Define ¢ as a mirroring of g in the x; axis

—1+ 2z + 229,
21,

2y,

2 —2x,

2 — 2xo,

0

( )
for (x1,x9) € Jo,
(1, 22)
( )
)

for (z1,x9) € J5,

otherwise,



72 PAPER Ill. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L?(R")

and the zo axis:

9(517 ) for (51752) € [0700) X [0700)7
o g@—g)  for (6,6) € [0.00) x (~00.,0).
PELE) =00 e 6)  for (61,62) € (—00,0) x [0,00).
g(=&1,—&) for (&§1,&) € (—00,0) X (—0,0)

Since the transpose B of the quincunx matrix also corresponds to a rotation of 45
degrees (but clockwise) and a dilation by v/2I5y9, we see that diez Y(BIiE) = 1.

We are now ready to apply Theorem 2.3 with E = [—1,1]*\ B~ 1([-1,1]?) = [~1, 1]\
I and d = 2; the set F is the union of the domians J4 and J; and their mirrored versions.
We choose b_g = b_1 =0 and by = by = 2d(I'), hence m = 0 and ™ = 2. Therefore,

m+d

LdJ ), U B7(E)c[-1,1]7,
j=0

jf—m

that shows that we can take [ = 222 or I = 1/272, since ([—1,1)> +~) N [-1,1]* =0
whenever 0 # v € 2Z2. Defining the dual generator according to (2.14) yields

¢(x) = (1/4)p(x) + (1/4) (A z) + (1/8)¢(A™%x); (2.12)

using that d(T') = 1/4, and we remark that ¢ is a piecewise linear function since this is
the case for 1& The conclusion from Theorem 2.3 is that ¢ and ¢ generate dual frames
{Dai Tyjob}jkez and {Dy; Ty 29} j kez for L?(R?).

The frame bounds can be found using Lemma 2.2 since the series (2.4) and (2.5)
are finite sums on F; for {DAka/Qw} one finds C; =4/3 and Cy = 4.

When the result on constructing pairs of dual wavelet frames is written in the
generality of Theorem 2.3, it is not always clear how to choose the set E and the lattice
. In Example 1 we showed how this can be done for the quincunx dilation matrix and
constructed a pair of dual frame wavelets. In Section 3 and Theorem 3.3 we specify how
to choose E and I for general dilations. The issue of exhibiting functions 1 satisfying
the condition (2.6) is addressed in Section 4.

In one dimension, however, it is straightforward to make good choices of E¥ and I as
is seen by the following corollary of Theorem 2.3. The corollary unifies the construction
procedures in Theorem 2 and Proposition 1 from [16] in a general procedure.

Corollary 2.5. Let d € Ng, a > 1, and ¢ € L?(R). Suppose that ¥ is a bounded,
real-valued function with suppe C [—a®, —a® %1 U [ac~%1, a¢] for some ¢ € Z, and
that

Zzﬁ(ajf) =1 forae £€R. (2.13)
JEZ
Let bj € C for j = —d,...,d, let m = —min{j : {b; # 0}}, and define the function ¢
by

d
x) = Z bjalp(aIz) forz €R. (2.14)

j=—m
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Let b e (0,a¢(1+a™)7Y. If bp = b and bj +b_; = 2b for j = 1,2,...,d, then ¢ and
¢ generate dual frames {D ,; Tyr1)}j rez and {D ;i Tyr¢}j pez for L?(R).

Proof. Tn Theorem 2.3 for n = 1 and A = a we take F = [—a®, —a"!JU [acflaac] as the
multiplicative tiling set for {a’ : j € Z}. The assumption on the support of ¥ becomes

d
SUPPTZJ C U a*j(E) — [_ac, _acfdfl] U [acid*l,ac].

§=0
Moreover, since
d ' 2d '
Ua(E) cl-a%a], | a?(E)C[-at™, a7,
§=0 j=—m

and
([=a al +7) N [-a®T™,a“T™] =0 for |y] > a®+ a“™™ = a®(1 + a™),

the choice I = b=1Z for b=1 > a®(1 4 a™) satisfies equation (2.7). This corresponds to
F=0bZfor0<b<a1+am)"L. O

The assumptions in Corollary 2.5 imply that m € {0,1,...,d}; we note that in case
m = 0, the corollary reduces to [16, Theorem 2|.
3. A special case of the construction procedure

We aim for a more automated construction procedure than what we have from The-
orem 2.3, in particular, we therefore need to deal with good ways of choosing E and
. The basic idea in this automation process will be to choose E as a dilation of the
difference between I, and B~!(I,), where I, is the unit ball in a norm in which the
matrix B = A’ is expanding “in all directions”; we will make this statement precise in
Section 3.1. This idea is instrumental in the proof of Theorem 3.3.

3.1. Some results on expansive matrices

We need the following well-known equivalent conditions!' for a (non-singular) matrix
being expansive.

Proposition 3.1. For B € GL,(R) the following assertions are equivalent:
(i) B is expansive, I.e., all eigenvalues \; of B satisfy |A\;| > 1.
(ii) For any norm |-| on R™ there are constants A > 1 and ¢ > 1 such that

|Biz| > 1/eN || for all j € Ny,

for any x € R".
(iii) There is a Hermitian norm |- |, on R™ and a constant \ > 1 such that

|Biz|, > N |z|,  forall j € N,

for any x € R".

!See Proposition A.1 in Chapter 1 for a more extensive list of equavalent conditions and a proof.



74 PAPER Ill. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L?(R")

(iv) € C A C BE for some ellipsoid €& = {x € R" : |Pz| <1}, P € GL,(R) and
A> 1

By Proposition 3.1 we have that for a given expansive matrix B, there exists a scalar
product with the induced norm |- |, so that

|Bz|, > M|z|, forxeR",

holds for some A > 1. We say that |- |, is a norm associated with the expansive matrix
B. Note that such a norm is not unique; we will follow the construction as in the
proof of [2, Lemma 2.2], so let ¢ and A be as in (ii) in Proposition 3.1 for the standard
Euclidean norm with 1 < A < |\ for ¢ = 1,...,n, where \; are the eigenvalues of
B. For k € N satisfying £k > 2Ine¢/In A we introduce the symmetric, positive definite
matrix K € GL,(R):

K=I14+ (B YB14+...4(B"B* (3.1)

The scalar product associated with B is then defined by (z,y), = 2! Ky. It might not
be effortless to estimate ¢ and A for some given B, but it is obvious that we just need to
pick k € N such that B‘K B — \>K becomes positive semi-definite for some A > 1 since
this corresponds to (K Bz, Bx) > A2 (K, x), that is, |[Bz|? > A2 |z for all 2 € R".

We let I, denote the unit ball in the Hermitian norm |- |, = |K'/2.| associated wth
B, i.e.,

ILi={zeR": |z|, <1} = {xGR" KV 22| < 1} = {xGR":xthg 1}, (3.2)
and we let O, denote the annulus
O, =1I1.\ B™'(L,).

The ringlike structure of O, is guaranteed by the fact that B is expanding in all direc-

tions in the |- |, norm, i.e.,

I, C A\, C B(I,), A>1, (3.3)

which is (iv) in Proposition 3.1. We note that by an orthogonal substitution I, takes the
form {z € R™ : 172 + - -+ + p, 72 < 1} where p; are the positive eigenvalues of K and
x = Q% with @ € O(n) comprising of the ith eigenvector of K as the ith column. The
annulus O, is a bounded multiplicative tiling set for {B7 : j € Z}. This is a consequence
of the following result.

Lemma 3.2. Let B € GL,(R) be an expansive matrix. For x # 0 there is a unique
j € 7Z so that Bix € O,; that is,

R*\ {0} = | J B/(O.) with disjoint union. (3.4)
JEL
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Proof. From equation (3.3) we know that {B!(I.)}cz is a nested sequence of subsets
of R™, thus

Bl(I*) \ Blil(I*) = Bl(O*)a leZ,
are disjoint sets. Since |[B~z| < A7/ |z, and |Biz|, > M |z|, for j > 0 and A > 1, we
also have

l
U B™0.) =B L)\ B(L)={z cR": |B 2|, <1 and [B'a|. > 1]
m=—I1+1

3{xeR":)ﬁlm*§1and)\l\xl*>1}:{xeR":)\*l<]w\*g)\l}.
Taking the limit [ — oo we get (3.4). O

Example 2. Let the following dilation matrix be given

3 -3
A:(l 0). (3.5)

Here we are interested in the transpose matrix B = A’ with eigenvalues p; 0 = 3/2 +
i7v/3/2, hence B is an expansive matrix with lp1,2] = V3 > 1. The dilation matrix B is
not expanding in the standard norm |- |, in R", i.e., Iy ¢ B(I3), as shown by Figure 2.
In order to have B expanding the unit ball we need to use the Hermitian norm from

A
5 \\\ SN\
7] \\ N \\\
NN
\ \\
a4 \
* \ \
N

Figure 2: Boundaries of the sets s, B(I3), B%(I3), and B?(I5) marked by solid, long dashed,
dashed, and dotted lines, respectively. Note that I \ B(I3) is non-empty, and even
I\ B?(Iy) is non-empty.

(iii) in Proposition 3.1 associated with B. In (3.1) we take k¥ = 2 so that the real,
symmetric, positive definite matrix K is

K=I+(BY)B '+ (B 2B 2= Ggg 186//39> ’
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and let (x,7), := 2'Ky. The choice k = 2 suffices since it makes B'K B — \2K semi-
positive definite for A = 1.03 and thus

|Bx|, > Azl , T € R2,

holds for A = 1.03.
Figure 3 and 4 illustrate that B indeed expands the Hermitian norm unit ball I, in
all directions. We also remark that the Hermitian norm with £ = 1 will not make the

Figure 3: The unit ball I, in the Hermitian norm |-|, associated with B and its dilations
B(I.), B%(I,), B3(I.). Only the boundaries are marked.

dilation matrix B expanding in R"; in this case we have a situation similar to Figure 2.

3.2. A crude lattice choice

Let us consider the setup in Theorem 2.3 with the set E = B¢(O,) for some ¢ € Z,
where the norm |-|, = [K/?.| is associated with B. Let u be the smallest eigenvalue
of K such that ¢ = /1/p is the largest semi-principal axis of the ellipsoid I, i.e.,
¢ = maxger, |z|y. Then we can take any lattice ' = PZ", where P is a non-singular

matrix satisfying
1

1P]l2 < R
A%y (1 + [[Am]ly)

as our translation lattice in Theorem 2.3. To see this, recall that we are looking for a
lattice I'* such that, for v € ' \ {0},

supp ¢ Nsupp (- £ ) = 0. (3.7)

For our choice of E we find that supp ¢ C B¢ ([,) and supp v C B¢(1,). Since

(3.6)

B, < BV aly < B, 0 forany 2 € L,
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:‘\

Figure 4: A zoom of Figure 3. Boundaries of the sets I., B(l.), B%(L.), and B3(I,) marked
by solid, long dashed, dashed, and dotted lines, respectively.

and similar for B°z, we have the situation in (3.7) whenever |y|, > (]| A¢[|, 4[| A°T2||,).
Here we have used that for the 2-norm ||A||, = || B||,. For z € Z" we have

|2ly < 1P[l2 [(P) " 2l2 = || Pll2 [(P) " 22,
therefore, by |z], > 1 for z # 0, we have

1

> —— for z € Z \ {0}.
2 [Pl

e

Now, by assuming that P satisfies (3.6), we have
Yy = (P 2le 2 1/|[Pll2 = £]| A%y (1 + [[A]ly) = 1([|A°]l, + | A“T2],)

for 0 # v = (PY)~lz € (P!)~1Z" = I'*, hence the claim follows.

A lattice choice based on (3.6) can be rather crude, and produces consequently a
wavelet system with unnecessarily many translates. From equation (3.6) it is obvious
that any lattice [ = PZ™ with || P|| sufficiently small will work as translation lattice for
our pair of generators ¢ and ¢. Hence, the challenging part is to find a sparse translation
lattice whereby we understand a lattice I with large determinant d(I') := |det P|. In
the dual lattice system this corresponds to a dense lattice ' with small volume d(I'*)
of the fundamental parallelotope I+ since d(IN)d(l"™) = 1. In Theorem 3.3 in the next
section we make a better choice of the translation lattice compared to what we have
from (3.6).

Using a crude lattice approach as above, we can easily transform the translation lat-
tice to the integer lattice if we allow multiple generators. We pick a matrix P that sat-
isfies condition (3.6) and whose inverse is integer valued, i.e., Q := P~ € GL,(Z). The
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conclusion from Theorem 2.3 is that {Dy;Tg-15}jezkezn and {DyiTy-1,0} jez.vezn
are dual frames. The order of the quotient group Q~'Z"/Z" is |det Q|, so let {d; :
i=1,...,|det Q|} denote a complete set of representatives of the quotient group, and
define

U= {Tyv:i=1,...|detQ|}, ®={Tyé:i=1,...,|detQ|}.

Since {DyiTg-140} jezkezr = {DaiTi}jez kezn yew and likewise for the dual frame,
the statement follows.

3.3. A concrete version of Theorem 2.3

We list some standing assumptions and conventions for this section.

General setup. We assume A € GL,(R) is expansive. Let |-|, = (-, ->*1/2 be a

Hermitian norm as in (iii) in Proposition 3.1 associated with B = A! and let K €
GL,(R) be the symmetric, positive definite matrix such that (z,y), = y'Kz. Let
A = diag(A1, ..., A\n), where {)\;} are the eigenvalues of K, and let @ € O(n) be such
that the spectral decomposition of K is Q'K Q = A.

The following result is a special case of Theorem 2.3, where we, in particular, specify
how to choose the translation lattice I'. Since we in Theorem 3.3 define I', it allows for
a more automated construction procedure.

Theorem 3.3. Let A, K,Q, A be as in the general setup. Let d € Ny and 1 € L?(R™).
Suppose that v is a bounded, real-valued function with supp i) C B¢(I1,) \ B~1(1,)
for some ¢ € Z, and that (2.6) holds. Take I = (1/2)A°Q\/AZ". Then the function 1
and the function ¢ defined by

d
¢(z) =d(T) |¥(x) +2Y |det A| 7/ (A7) | forz € R, (3.8)
j=0

generate dual frames {Dy; T} jcz~er and {Dy;Tyd}jez~er for L2(R™)
Remark 2. Note that d(I) = 27" |det A|° (A1 --- A\p)'/? and VA = diag(v/ A1, ..., VL)

Proof. The annulus O, is a bounded multiplicative tiling for the dilations {B’ : j € Z}
by Lemma 3.2, hence this is also the case for B¢(O,) for ¢ € Z. The support of 1& is
suppe € BS(I,)\ B Y(I,) = U;l:OBC_j(O*). Therefore we can apply Theorem 2.3
with £ = B%(Oy), bj = 2 and b_; = 0 for j = 1,...,d so that m = 0 and m = d.
The only thing left to justify is the choice of the translation lattice . We need to
show that condition (2.7) with m = 0 and m = d in Theorem 2.3 is satisfied by
M = 2B°QA~'/27". By the orthogonal substitution z = Q& the quadratic form z'Kx
of equation (3.2) reduces to

MTT 4+ A2,

where )\; > 0, hence in the & = Q'z coordinates I, is given by

I}z{iﬂe}R":(1/93/1)\_1)2+---+<1/%;)\_n>2<1}
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. . . . . . L
which is an ellipsoid with semi axes NoERE \/—n Therefore, in the T coordinates,

(.f* +y)NL =10 for 0 £~ € oAN~127n,
or, in the x coordinates,
(I, +y)NI, =0  for 0+~ e 2QA" 27",
By applying B¢ to this relation it becomes
(BE(L) +7)NB(L) =0  for 0#~ €™ =2BQAY/?2", (3.9)

whereby we see that condition (2.7) is satisfied with m = 0 and '* = 2B°QA~Y/27Z".
The dual lattice of T'* is T = 1/247¢QAY?Z™. Tt follows from Theorem 2.3 that ¢ and
¢ generate dual frames for this choice of the translation lattice. O

The frame bounds for the pair of dual frames {D; Ty} jez ver and {Da; T, 0} jez yer
in Theorem 3.3 can be given explicitly as

1 do 2 1 d .2
Cy=—-——— inf E B’ Cy=— E B’
and
Ci=— inf §d: WBio)), = —— §d: W:23)
P cenion) (é( 5)) AT cepeton, )= (é( 5)) ’

respectively. The frame bounds do not depend on the specific structure of I', but only
on the determinant of I'; in particular, the condition number Cy/C} is independent of
r.

To verify these frame bounds, we note that equation (3.9) together with the fact

supp v, supp ¢ C B¢(1,) imply that
DED(E+7) = ¢E)p(E+7) =0 forae ¢ €R"and vy €™\ {0}.

Therefore, by equations (2.10) and (2.11) with £ = B¢(0,), m = 0 and = d, we have

>3 i B]§+7‘—Z‘¢B]§‘ i( Bﬂs)
JEZ vel* j=0

and
> 3 [pmoime | = X ool - i (46",

JEL el j=—

for ¢ € B°~%(0,). The stated frame bounds follow from Lemma 2.2.
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Example 3. Let A and K be as in Example 2. The eigenvalues of K are A\ = (26 +
21/65)/9 ~ 4.7 and Ay = (26 — 2v/65)/9 ~ 1.1. Let the normalized (in the standard
norm) eigenvectors of K be columns of Q € O(2) and A = diag(\1, \2), hence Q'KQ =
A. By the orthogonal transformation x = Q& the Hermitian norm unit ball I, becomes

. 2 - 2
= - g T2
I = x€R2:< )+< )<1 C I
. { 1/vVA1 1/vV22
which is an ellipse with semimajor axis 1/y/A2 ~ 0.95 and semiminor axis 1/v/A; ~ 0.46.
Since A~1/2 = diag(1/v/A1,1/v/Az), we have

‘(1:*—1—7)01:* =0 for 0 # v € 2A71/2722.

By the orthogonal substitution back to x coordinates, we get
|(Ie +7)N 1| =0 forO;éyeQQA—l/QZQ_

Suppose that v is a bounded, real-valued function with supp ¢ C Be(I,)\ B4 (I,)
for ¢ = 1 that satisfies the B-dilative partition (2.6). Since ¢ = 1 we need to take
M =2B'QA~Y/272 and T = 1/2A"1QA/?7Z2, see Figure 5 and 6.

° \
-6 -4 Y \\x%\i . 4 6
: . AN J \\
MEONN N )
. . \ \

Figure 5: The dual lattice [* = 2B°QA~'/2Z2 for ¢ = 1 is shown by dots, and the boundary
of the set B¢(I,) by a solid line. Boundaries of the set B¢(I,) translated to several
different v € I'* \ {0} are shown with dashed lines. Recall that supp,supp¢ C

B¢(1,), hence supp ¢ Nsupp (- +~) = 0 for v € I*\ {0}.

3.4. An alternative lattice choice

Let the setup up and assumptions be as in Theorem 3.3, except for the lattice ' which
we want to choose differently. As in Section 3.2 the dual lattice I'* needs to satisfy (3.7)
for v € I\ {0}. We want to choose " as dense as possible since this will make the
translation lattice I' as sparse as possible and the wavelet system with as few translates
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Figure 6: The translation lattice I = (1/2)A°QAY/2Z2 for ¢ = 1.

as possible. Since supp &,suppq@ C B¢(1,), we are looking for lattices '™ that packs
the ellipsoids B¢(I.) +~, v € ['*, in a non-overlapping, optimal way. By the coordinate
transformation & = A~1/2Q'B~¢z, the ellipsoid B¢(I,) turns into the standard unit ball
Iy in R™. This calculations are as follows.

B(L) = {Bz: |2l <1} = {z: [K'2B 2} <1}

2
=
2

= {o: (#.072Q'KQA ) <1} =La:(af <1},

= {m | K2BeBeQA 24

and we arrive at a standard sphere packing problem with lattice arrangement of non-
overlapping unit n-balls. The proportion of the Euclidean space R™ filled by the balls is
called the density of the arrangement, and it is this density we want as high as possible.

Taking I' as in Theorem 3.3 corresponds to a square packing of the unit n-balls Io+ k&
by the lattice 2Z", i.e., k € 2Z". The density of this packing is V27", where V,, is the
volume of the n-ball: Vo, = 7"/(n!) and Vo, 1 = (22"in!z")/(2n + 1)!. This is not
the densest packing of balls in R™ since there exists a lattice with density bigger than
1.68n27" for each n # 1 [9]; a slight improvement of this lower bound was obtained
in [1| for n > 5. Moreover, the densest lattice packing of hyperspheres is known up to
dimension 8, see [20]; it is precisely this dense lattice we want to use in place of 2Z" (at
least whenever n < 8).

In R? Lagrange proved that the hexagonal packing, where each ball touches 6 other
balls in a hexagonal lattice, has the highest density 7/4/12. Hence using PZ? with

2 0
e (1)
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instead of 2Z? improves the packing by a factor of

V12 4/V12 = 2/V/3.
/22

It is easily seen that this factor equals the relation between the area of the fundamental
parallelogram of the two lattices |det 2I2x2| / |det P|. In Figure 5 we see that each ellipse
only touches 4 other ellipses corresponding to the square packing 2Z"; in the optimal
packing each ellipse touch 6 others. In R? Gauss proved that the highest density is
7/4/18 obtained by the hexagonal close and face-centered cubic packing; here each ball
touches 12 other balls.

4. Dilative partition of unity

With Theorem 3.3 at hand the only issue left is to specify how to construct functions sat-
isfying the partition of unity (2.6) for any given expansive matrix. In the two examples
of this section we outline possible ways of achieving this.

4.1. Constructing a partition of unity

As usual we fix the dimension n € N and the expansive matrix B € GL,,(R). In the ex-
amples in this section we construct functions satisfying the assumptions in Theorem 3.3,
that is, a real-valued function g € L?(R") with suppg C B¢(I,) \ B~ 4~1(I,) for some
¢ € Z and d € Ny so that the B-dilative partition

> g(B7¢) =1 forae. £ €R", (4.1)
JET
holds.

In the construction we will use that the radial coordinate of the surface of the ellip-
soid OB/ (1), j € Z, can be parametrized by the n — 1 angular coordinates 6y, ... ,60,_1.
The radial coordinate expression will be of the form h(f, ... ,Gn_l)*l/Q for some posi-
tive, trigonometric function h, where h is bounded away from zero and infinity with the
specific form of h depending on the dimension n and the length and orientation of the
ellipsoid axes.

We illustrate this with the following example in R*. We want to find the radial
coordinate r of the ellipsoid

{x eR*: (m1/€1)2 + (x2/€2)2 + (x3/€3)2 + ($4/€4)2 = 1}, l; >0,i=1,2,3,4,

as a function the angular coordinates 61, 0 and #3. We express x = (1, 29, 3, 74) € R*
in the hyperspherical coordinates (r,61,02,63) € {0} UR4 x [0, 7] x [0,7] x [0,27) as
follows:

r1 = rcosf, L9 = rsin b cos Oy,
r3 = rsin # sin 65 cos O3, x4 = 7 sin 01 sin O, sin 5.
Then we substitute x;, i = 1,...,4, in the expression above and factor out r2 to obtain
r2f(61,02,03) = 1, where
f(01,05,03) = £72 cos® 01 + €52 sin” B cos? Oy (4.2)

+ L3 sin? 0 sin? O3 cos? O3 + £, ? sin? 0; sin O, sin? 0.
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The conclusion is that 7 = (61, 0o, 03) = f(01,602,63)" /2.

Example 4. For d = 1 in Theorem 3.3 we want g € C§(R") for any given s € NU {0}.
The choice d = 1 will fix the “size” of the support of g so that supp g C B¢(I,)\ B¢ 2(L)

for some ¢ € Z. Now let 1y = r1(61,...,0,-1) and r9 = 7r9(01,...,0,—1) denote the
radial coordinates of the surface of the ellipsoids B¢~ (I,) and dB¢(I,) parametrized
by n — 1 angular coordinates 64, ...,0,_1, respectively.

Let f be a continuous function on the annulus S = B¢(O,) satisfying f‘ch—l(I*) =1
and flppe(s,) = 0. Using the parametrizations 71, o of the surfaces of the two ellipsoids
and fixing the n—1 angular coordinates we realize that we only have to find a continuous
function f : [r1,72] — R of one variable (the radial coordinate) satisfying f(r1) = 1 and
f(r2) = 0. For example the general function f € C°(S) of d variables can be any of the
functions below:

T —T

£@) = F0 00, Op) = 2 (4.33)
— )2

f((L‘) = f(n O1,... 7971—1) = ﬁ(z(r - Tl) + 1o — T1)7 (4-3b)

f(x) = f(T', 91’ o 79n71) = % + %COSTI‘(:QiTTII), (43C)

where r = |z| € [r,72], 01,...,0h—2 € [0,7], and 6,1 € [0,27); recall that r; =
r1(01,...,0n,—1) and ro = ro(01,...,0,_1). In definitions (4.3b) and (4.3c) the function
f even belongs to C'*(S).

Define g € L%(R) by:

1— f(Bx) forx e B Y(I,)\ B 2(L,),
g(x) = ¢ f(x) for x € B4(I,) \ B¢ (I,), (4.4)

0 otherwise.

This way g becomes a B-dilative partition of unity with suppg C B(L.) \ B*"2%(1,), so
we can apply Theorem 3.3 with ¢ = g and d = 2.

We can simplify the expressions for the radial coordinates r1, o of the surface of the
ellipsoids dB¢1(I,) and dB¢(I.) from the previous example by a suitable coordinate
change. The idea is to transform the ellipsoid B¢~1(I,) to the standard unit ball I by
a first coordinate change & = AY2Q!B~¢t1z. This will transform the outer ellipsoid
B¢(I,) to another ellipsoid. A second and orthogonal coordinate transform & = Q!z
will make the semiaxes of this new ellipsoid parallel to the coordinate axes, leaving
the standard unit ball /s unchanged. Here ), comes from the spectral decomposition
of A7'1B71 ie., A7'B~! = Q'A/Q,. In the & coordinates r; = 1 is a constant and
ro = f~1/2 with f of the form (4.2) for n = 4 and likewise for n # 4.

In the construction in Example 4 we assumed that d = 1. The next example works
for all d € N; moreover, the constructed function will belong to C§°(R™).

Example 5. For sufficiently small § > 0 define A;, Ay C R™ by

Ay = B 47Y(I,) + B(0,9),
Ay +B(0,6) = B(1,).
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This makes Ay \ A a subset of the annulus B¢(I,)\ B¢~9~1(1,); it is exactly the subset,
where points less than § in distance from the boundary have been removed, or in other
words

Ax\ A1 4+ B(0,8) = BS(I,) \ B Y(1,).

For this to hold, we of course need to take § > 0 sufficiently small, e.g., such that
A1 C rA; C As holds for some r > 1.

Let h € C§°(R™) satisfy supph = B(0,1), h > 0, and [hdy = 1, and define
hs = 6~?h(6~!). By convoluting the characteristic function on A\ A; with hs we
obtain a smooth function living on the annulus B¢(I,)\ B*~471(L,). So let p € C§°(R™)
be defined by

P =hs * XaA
and note that suppp = B°(I,) \ B¢~%"1(I,) since supp hs = B(0,). Normalizing the
function p in a proper way will give us the function g we are looking for. We will
normalize p by the function w:

w(x) = Zp(Bjx).
JEZL
For a fixed x € R™\ {0} this sum has either d or d+ 1 nonzero terms, and w is therefore
bounded away from 0 and oo:

de,C>0:c<w(x) <C forall z € R"\ {0},

hence we can define a function g € C§°(R™) by
g(x) = —Z for z € R"\ {0}, and, ¢(0)=0. (4.5)

The function g will be an almost everywhere B-dilative partition of unity as is seen by
using the B-dilative periodicity of w:
: p(Bz) p(Blz) 1 j
Zg( ?) Z w(BIx) Z w(x) w(z) Zp( 7)
JEL JEZ

JEZ JEZ.

Since p is supported on the annulus B¢(1,) \ B~4~1(1,), we can simplify the definition
in (4.5) to get rid of the infinite sum in the denominator; this gives us the following
expression

d
g(x) =p(x)/ > p(B'z)  forzeR"\{0}.
j=—d
We can obtain a more explicit expression for p by the following approach. Let r| =
r1(01,...,0n,—1) and 79 = ra(61,...,0,—1) denote the radial coordinates of the surface

of the ellipsoids 9B¢~?~1(I,) and B¢(I,) parametrized by n — 1 angular coordinates
01,...,0,_1, respectively. Finally, let p € C§°(R™) be defined by

p(x) =n(|z| —r1)n(re — |z|), with ry =7r1(01,...,0,—1) and ro = ro(b1,...,0,-1)
where 61, ...,0,_1 can be found from z, and

{e_l/“*’ z >0,

€Tr) =
n(z) 0 x <0.
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PAPER IV

Affine and quasi-affine frames for
rational dilations

Marcin Bownik! and Jakob Lemvig

Abstract. In this paper we extend the investigation of quasi-
affine systems, which were originally introduced by Ron and
Shen [20] for integer, expansive dilations, to the class of ratio-
nal, expansive dilations. We show that an affine system is a frame
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1. Introduction

Quasi-affine systems are little known cousins of well-studied affine systems also known
as wavelet systems. Let A be an expansive dilation matrix, i.e., n X n real matrix with
all eigenvalues |A| > 1. The affine system generated by a function ¢ € L?(R") is

A@W) = {$j1(x) = |det AP/ (Alz — k) : j € Z, k€ 2"} (1.1)

The affine systems are dilation invariant, but not shift invariant. However, if the dilation
A has integer entries, that is AZ™ C Z", then one can modify the definition of affine
systems to obtain shift invariant systems. This leads to the notion of a quasi-affine
system

~ i/2 Jop ) e i > n

Ji) — {%k(x) ::{|detA|A Y(ATz k) g >0, keZ } 12
|det A w(AT(x —k)) :5 <0, keZ"
which was introduced and investigated for integer, expansive dilation matrices by Ron
and Shen [20]. Despite that the orthogonality of the affine system cannot be carried
over to the corresponding quasi-affine system due to the oversampling of negative scales
of the affine system, it turns out that the frame property is preserved. This important
discovery is due to Ron and Shen [20] who proved that the affine system A(¢) is a
frame if, and only if, its quasi-affine counterpart A49(¢)) is a frame (with the same frame
bounds). Furthermore, quasi-affine systems are shift invariant and thus much easier to
study than affine systems which are dilation invariant.

The goal of this work is to extend the study of quasi-affine systems to the class
of expansive rational dilations. Let A be an expansive dilation with rational entries,
that is AQ™ C Q™. The first author [3] generalized the notion of a quasi-affine frame
for rational, expansive dilations which coincides with the usual definition in the case of
integer dilations. The main idea of Ron and Shen [20] is to oversample negative scales
of the affine system at a rate adapted to the scale in order for the resulting system to be
shift invariant, i.e., ¢ € AY(¢Y) = Tpp € A4(¢Y) for all k € Z™. In order to define quasi-
affine systems for rational expansive dilations one needs to oversample both negative
and positive scales of the affine system (at a rate proportional to the scale) which
results in a quasi-affine system that in general coincides with the affine system only at
the scale zero. This can easily be seen in one dimension where the quasi-affine system
has a relatively simple algebraic form. Suppose that a = p/q € Q is a dilation factor,
where |a| > 1, p,q € Z are relatively prime. Then, the quasi-affine system associated
with a is given by

B ‘p]jﬂ]q‘_jl/}(ajw—quk)i 1>0, ke
Al() = { P g2 (ade — pik):  j<0, keZ | (13)

In the rational case it is much less clear than in the case of integer, expansive dilations
(where both systems coincide at all non-negative scales), whether there is any relation-
ship between affine and quasi-affine systems. Nevertheless, the first author proved in
[3] that the tight frame property is preserved when moving between rationally dilated
affine and quasi-affine systems. This result has initially suggested that there is not much
difference between integer and rational cases.
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In this work we show that this belief is largely incorrect by uncovering substantial
differences between the theory of integer dilated and rationally dilated quasi-affine sys-
tems. For any rational, non-integer dilation we give an example of an affine system
which is not a frame, but yet, the corresponding quasi-affine system is a frame. This
kind of example does not exist for integer dilations due to the above mentioned result
of Ron and Shen.

To understand the broken symmetry between the integer and rational case we in-
troduce a new class of quasi-affine systems indexed by the choice of the oversampling
lattice A C Z™. In short, the quasi-affine system A% (¢) is defined to be the smallest
shift invariant system with respect to a lattice A, i.e., ¢ € A% (¥) = Thg € AX(¥) for
A € A, which contains all elements of the original affine system .A(¢). In order to make
this definition meaningful we also need to renormalize the elements of A7 (1)) at a rate
corresponding to the rate of oversampling as it was done previously. Again, this is best
illustrated in one dimension. We take A = (pq)’Z for J € Ny since this particular choice
gives the oversampled quasi-affine system A7 (¢/) a nice algebraic form:

/2 |2 el — g7 TRy s > T ke
Ajw) =1 Jaf”> v(aiz — k) : “Isjshkez g (4
P2 a7 R e pR) s j <~ K e

see Example 3. Then our main result can be stated as follows.

Theorem 1.1. The affine system A(¢) is a frame for L*>(R") if, and only if, every A-
oversampled quasi-affine system A} (¢) is a frame with uniform frame bounds for all
ANCzZm™.

In the case when the dilation A is integer-valued, the class of A-oversampled quasi-
affine systems reduces to the standard quasi-affine system A%(1)) and its dilates, see
Example 2. Hence, the original result of Ron and Shen [20] follows immediately from
Theorem 1.1. The proof of Theorem 1.1 is influenced by the work of Hernandez, Labate,
Weiss, and Wilson [13, 14], where the authors obtain reproducibility characterizations
of generalized shift invariant (GSI) systems including affine, wave packets, and Gabor
systems. The key element of these techniques is the use of almost periodic functions
which was pioneered by Laugesen [17, 18] in his work on translational averaging of
the wavelet functional. Using these methods Laugesen [18] gave another proof of the
equivalence of affine and quasi-affine frames in the integer case. In this work we show
that these techniques can be generalized to treat rationally dilated quasi-affine systems
as well.

In the next part of the paper we investigate more subtle frame properties of quasi-
affine systems. We characterize when the canonical dual frame of a A-oversampled
quasi-affine frame A} (¢) is also a quasi-affine frame. In the case of integer dilations,
such characterization is due to the first author and Weber [5]. Theorem 1.2 generalizes
this result to the case of rational dilations. It is remarkable that the existence of
the canonical quasi-affine dual frame is independent of the choice of the oversampling
lattice A. Hence, if such canonical dual frame exists for some A-oversampled quasi-affine
system, then it must exist for all lattices A C Z".
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Theorem 1.2. Suppose the quasi-affine system "4;1\0 (1) is a frame for L?>(R") for some
lattice Ag C Z". Then, the canonical dual frame of A} (¢) is of the form A} (¢) for
some ¢ € L*(R") if, and only if, for all « € Z" \ {0},

tal) = > B(BIYYBI(E+a)) =0. (1.5)

jE€Z:a€BIZL™
In this case, A}(¢) is the canonical dual frame of A} (¢) for all lattices N C Z".

We also investigate pairs of dual quasi-affine frames. Here, the theory of rationally
dilated quasi-affine frames parallels quite closely that of integer dilated systems. Hence,
we have a perfect equivalence between pairs of dual affine frames and pairs of dual
quasi-affine frames, regardless of the choice of the oversampling lattice A.

Theorem 1.3. Suppose that A(v)) and A(¢) are Bessel sequences in L*(R™). Then the
following are equivalent:

(i) A(¢) and A(¢) are dual frames,
(i) AR, (¢) and A} (¢) are dual frames for some oversampling lattice Ny C Z",
(iii) A% (¢) and A} (¢) are dual frames for all oversampling lattices A C Z™.

Theorem 1.3 points at a location of the broken symmetry in the equivalence between
affine and quasi-affine frames in the rational non-integer case. If such non-equivalence
exists, then it can only exhibit itself for quasi-affine frames which do not have a dual
quasi-affine frame. The last section of this work is devoted to showing that such phenom-
ena does indeed exist. For any non-integer rational dilation factor we give an example
of a quasi-affine frame A} (¢)) such that the corresponding affine system .A(¢)) is not a
frame.

Theorem 1.4. For each rational non-integer dilation factor a > 1, there exists a function
¢ € L?(R) such that A%(y) is a frame for any oversampling lattice N C Z, but yet,
A(v) is not a frame.

Despite that each system A7 (¢) is a frame, its lower frame bound drops to zero
as the lattice A gets sparser. Hence, this example does not contradict Theorem 1.1.
Moreover, in the light of Theorem 1.3, none of the quasi-affine frames A% (1) can have
a dual quasi-affine frame.

We end this introduction by reviewing some basic definitions. A frame sequence is a
countable collection of vectors {f;};es such that there are constants 0 < C; < Cy < 00
satisfying, for all f € span{f;},

2 2 2
CrllFI* < D2 Kh MNP < CallfII-
JjeJ

If span{f;} = H for a separable Hilbert space H, we say that the frame sequence
{fj}jes is a frame for H; if the upper bound in the above inequality holds, but not
necessarily the lower bound, the sequence {f;} is said to be a Bessel sequence with
Bessel constant C. For a Bessel sequence {f;}, we define the frame operator of {f;}
by

S:H—MH, Sf=> ([

JjeJ
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If {f;} is a frame, this operator is bounded, invertible, and positive. A frame {f;} is
said to be tight if we can choose Cy = Cb; this is equivalent to S = Cy1, where [ is
the identity operator. If furthermore C; = Cy = 1, the sequence {f;} is said to be a
Parseval frame.

Two Bessel sequences {f;} and {g;} are said to be dual frames if

f:Z(f,gj>fj for all f € H.
JjeET
It can be shown that two such Bessel sequences indeed are frames, and we shall say
that the frame {g;} is dual to {f;}, and vice versa. At least one dual always exists, it
is given by {S71f;} and called the canonical dual.

Let f € L*(R") for some fixed n € N. The translation by y € R" is T, f(z) =
f(z — y); dilation by an n x n non-singular matrix B is Dpf(z) = |det B|'/? f(Buz).
These two operations are unitary as operators on L2(R"). Let U = {41,... 91} C
L?(R™) and let A be a fixed n X n expansive matrix, i.e., all eigenvalue A of A satisfy
|A| > 1. The affine system of unitaries A associated with the dilation A is defined as
A={DyT,:j€Z,k € Z"}, and the affine system A(¥) generated by ¥ is defined as

AW) ={Yjr:j €L,k el Y€V},

where ¢, = D 4; T2 for j € Z,k € Z"". We say that ¥ is a frame wavelet if A(V) is a
frame for L?(R™), and say that ¥ and @ is a pair of dual frame wavelets if their wavelet
systems are dual frames. The transpose of the (fixed) dilation matrix A is denoted by
B = Al

Following [12], the local commutant of a system of operators U at the point f €
L?(R") is defined as

CrU) == {T € BU*R"): TUf =UTf YU eU}.

For f € L'(R™), the Fourier transform is defined by

FIO=F©) = [ sy

n

with the usual extension to L2(R"). We will frequently prove our results on the following
subspace of L%(R")

D= {f e L*(R™) : f € L(R™) and supp f is compact in R™ \ {O}}, (1.6)

and extend the result by density arguments.

2. Generalized shift invariant systems, lattices and oversam-
pling

In this section we review some fundamental properties of lattices, shift invariant systems,
oversampling of shift invariant systems, mixed dual Gramians, and generalized shift
invariant systems.
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2.1. Lattices in R"

A lattice I in R™ is a discrete subgroup under addition generated by integral linear
combinations of n linearly independent vectors {p;}I.; C R", i.e.,

F={z1pr+ 4 zupn:21,...,2n € L}.

In other words, it is a set of points of the form PZ™ for a non-singular n X n matrix P.
Let I be a lattice in R™. If [ = PZ", we say that the matrix P € GL,(R) generates the
lattice I'. A generating matrix of a given lattice is only unique up to multiplication from
the right by integer matrices with determinant one in absolute value; in particular, if
= PZ" for some P € GL,(R), then also = PSZ" for any S € SL,(Z). The
determinant of T is defined to be:

d(T) = |det P|, (2.1)

where P € GL,(R) is a generating matrix for I'; note that d(I') > 0 and d(Z") = 1.
The determinant d(I') is independent of the particular choice of generating matrix P
and equals the volume of a fundamental domain I of the lattice I', where

Ir=P(0,1)")={apr1+ 4+ enpn:0<¢<1lfori=1,...,n}

with p; denoting the ith column of a generating matrix P. Note that R” = Uycr (v +1r)
with the union being disjoint, and that the specific shape of I depends on the choice
of the generating matrix P.
Suppose that [ C A, in other words, that I is a sublattice of some “denser” lattice
A. We define the indez of [ in A as
d(r)
D= m (2.2)
The index D is always a positive integer; it is actually the number of copies of paral-
lelotopes Ir that fits inside a larger parallelotope In. If D is the index of T in A, we
have from [6, §1.2.2],
DANCT CA, (2.3)

and, from [6, Lemma I.1],

#{A/T} = D = d(1)/d(N), (2.4)

where #{A/I'} is the order of the quotient group A/I'. As illustrated in the following,
these simple relations are often very useful. Suppose I is a rational lattice, i.e., the points
of the lattice have rational coordinates or, equivalently, the entries of a generating matrix
P are rational. In this situation we define f, the integral sublattice of T', by Fr=2"n r,
and the extended integral superlattice of I by I' + Z". Using the characterization of
lattices in [6, Theorem IT1.VI], it is straightforward to show that these point sets actually
are lattices. Thus I = [N Z" is a sublattice of Z™ with index in Z" as

d(n)

D:am)

=d(r),
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and consequently, - -
d(f)z" cFcr. (2:5)

This shows that any rational lattice ' has a integral sublattice of the form cZ", where
the constant ¢ € N can be taken to be ¢ = d(I') = vol (I) = #{Z"/T'}. Since we also
have #{I'/T'} =d(I')/d(T), the above calculations show that

#{Z" T} = #{r/T}d(T).
In a similar way, we have for the extended integral superlattice of [
#{(T+2™)/Z"} = d(T +2Z") "t =vol (Iryz») ' €N
and
#H(T+zZ™/2"} (T +7Z") CZ".
The dual lattice of T is given by

M={nekR":(n,v)eZforyerl}, (2.6)

thus if I = PZ", then * = (P!")~!'Z". The determinants of dual lattices satisfy the
following relation

a(ryd(r-) =1.
If I € A, then A* C I'*. For rational lattices I and A the dual lattice of T N A and

M+ A are '™ + A* and ™ N A*, respectively. Dual lattices are sometimes called polar or
reciprocal lattices. We refer to [6] for further basic properties of lattices.

2.2. Shift invariant systems

Definition 1. Suppose that I is a (full-rank) lattice in R", i.e., [ = PZ"™ for some n x n
non-singular matrix P. A closed subspace W C L?(R") is said to be shift invariant (SI)
with respect to the lattice I' or simply '-SI, if f € W implies T, f € W for all v € T
Given a countable family ® C L2(R™) and a lattice I we define the I'-SI system E'(®)
and the '-ST subspace ST(®) by

EN®)={T,¢0:pc®,yeT}, S(®)=-spanE"(D).

We will need the following result on oversampling of shift invariant frame sequences;
in case the frame sequence is actually a frame for all of L?(R"™) assertion (i) below
reduces to [14, Theorem 3.3]. Our proof is more elementary than [14, Theorem 3.3] and
is included to illustrate how well behaved shift invariant systems are under oversampling.

Proposition 2.1. Let I, be lattices in R" and ®, ¥ C L?*(R"™) countable sets of the
same cardinality. Suppose that T C I’ and S"(®) = ST(®). Then the following asser-
tions hold:

(i) If E"(®) is a frame sequence with bounds Cy,Cy, then

1
#{r /Ty

is a frame sequence with bounds C4, Cs.

E"(®)



94 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONS

(ii) Suppose that ST(®) = ST(¥) = ST(W). If E"(®) and E'(V) are dual frames for
ST(®), then
1

#{r Ty

are dual frames for S™(®).

E"(®) and WE“(@)

Proof. To prove (i) assume that there are constant C7,Co > 0 such that

CLIfFIP < DS KA TP < CollfIIP forall fe ST (D).

ped ~vel

Let {di,...,dq} be a complete set of representatives of the quotient group I'"/I'. For
each d., r=1,...,q, we then have

CLIfI? < DS WTog £, T48)> < Co || P forall f € ST(®)

ded vel

using the isometry of the translation operator, i.e., ||[T_4, f|| = ||f]|, and the I"-SI of
ST(®) = ST(®). Adding these ¢ inequalities yield

q
gCr 1P < D0 DD I Tan ) < aCa | fI?,
ped r=1~el
and thus,
CLlfIP <Y S I a  PTe) P < Gl £

ped ~vel”’

Since ¢ = #{I"'/T'}, assertion (i) is proved.
Let ® and ¥ be indexed by Z, i.e., ® = {¢;},c7 and ¥ = {¢;},.7. By our assumption
we have

F=3 S (f.Tyéi)Tyb;  forall feS(®)=5"(D),

1€ yel

hence, in particular,

A1 =303 (T (T )

i€ yer

Using the same techniques as in the proof of (i) we arrive at

F=3" SN (fa i) VP forall f e ST(@) = ST(@).

1€ yel!

By (i) the sequences q*1/2Er/((I>) and ¢~ /2E"(¥) are Bessel sequences, and (ii) is
proved. O

As an immediate consequence of Proposition 2.1 we have the following useful fact
for SI frame sequences spanning all of L?(R"™).
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Corollary 2.2. Let I be a lattice. If E"(®) is a frame for L?(R") with bounds C{,Cs,
then, for any superlattice [ of T, i.e., T C I,

1
#{r /Ty
is a frame for L?*(R™) with bounds C{, Cs.

E"(®)

Corollary 2.2 is [14, Theorem 3.3] stated in terms of lattices rather than in terms
of lattice generating matrices. In the matrix version the condition I C " becomes the
less transparent, but equivalent, condition C™'RC € GL,(Z), where [ = CZ" and
"= R™'CZ" for R,C € GL,(R), i.e., E"(®) = {Tcr¢: k € Z",¢ € ®} and E(®) =
{Tp-1cpp: k€L ¢ € D}

2.3. Oversampling Sl systems
Following [3] we introduce the notion of oversampling a SI system by a rational lattice.
Definition 2. Let I, A be rational lattices in R", i.e., lattices with generating matrices

in GL,(Q). Suppose ® C L?(R") is a countable set. Define O}\(®), the oversampling of
E"(®) by a rational lattice A C Q, as

1
ON®) = EHA(#{/\/(A E (I)) '

By definition O}(®) is always SI with respect to A, and if A C T, no oversampling
occurs, and the oversampled system O\(®) = E'(®). Moreover,

1

#{N(ANT)
1

- {#{A/mm M}i/2

B #{/\/(A N r)}1/2 de[AH\mr)] ta (E ((ID)) ’

O,r\(fb)z{ }1/2qu§:q§€c1>,wer+/\}

Tyrbi6 € .de ANy er)

where the union runs over representatives of distinct cosets of the group A/(ANT).
Indeed, the penultimate equality is a consequence of the fact that by choosing represen-
tatives of cosets of (I + A)/I in A, we also have representatives of A/(ANT). Likewise,
choosing the representatives of cosets of (I + A)/A to be in I yields representatives of
I/(ANNT), hence

! U T.(B\®). (2.7)

ON@) =
" i UVAUNRLD) S W.

2.4. Mixed dual Gramians

Let A be a lattice in R™, and let Ip« denote a fundamental domain of A*. Define the
isometric, isomorphism J between L?(R™) and L?(Ip«, £2(A*)) by

T = CN), THO={J+N}, . for fe’®).  (28)
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Sequences of the form J f(&) are called fibers of £2(A*) parametrized by the base space
¢ € Ip-. Let {fi},c7 and {g;},c7 be countable collections of functions in L?(R"). By
generalizing [1, Theorem 2.3], we have that E/\{f;}) is a frame (or Bessel sequence) in
L2(R™) if, and only if, {d(A*)Y2T f;(€)}ier is a frame (or Bessel sequence) in £2(A*)
for a.e. £ € In~ with bounds being preserved. From this fact it is straightforward to
verify that EN{f;}) and F\{g;}) are dual frames if, and only if, {d(A\*)/2T fi(€)}iez
and {d(A*)Y/27g;(€)}ier are dual frames for a.e. £ € Iy-.

Now, assume that EN{f;}) and E/\{g;}) are Bessel sequences. For a fixed £ € I-
set t; = d(N)V2T fi(€) and u; = d(AN)Y2 T g;(€) for i € T. The synthesis operators for
the fibers {t;} and {u;} are defined by

T: (1) — (N), T(a)) = citi,
€T

U: 62(1) — 62(/\*), U({e}) Zczu,,
€L

respectively. The analysis operators are the adjoint operators, and one finds

T"(a) = {la,t)}l ez, U'a) = {(a,ui)}ier,

for a = {ax},cpn- € £2(N*). The fibers {t;} and {u;} being dual frames in £*(A*) means
in terms of the analysis and synthesis operators that

TU* = IZQ(/\*), or, UT* = IZQ(/\*),

where Ip2(p+ is the identity operator on £2(A*). This fact is obvious.

The mixed dual Gramian G = G(¢) is defined as ~C~¥ = UT*. In the standard basis
{er}reps of £2(A*) the mixed dual Gramian acts by (Gey, e;) = ez ti(k)ui(l), so

G = < (N> file+k)g (§+l)> . (2.9)
k,leN*

i€l

By the above, the SI systems E/\{f;}) and E/\{g;}) are dual frames if, and only if,
é(f) = 152(/\*) for a.e. £ € Ip«.

The following result is a generalization of [3, Lemma 2.5]. Lemma 2.3 says that the
mixed dual Gramian of a pair of oversampled SI systems is in one part a rescaling of
the original mixed dual Gramian, whereas in the other part it has zero entries.

Lemma 2.3. Let ' and A be lattices, and let ¥ = {1);},.; and ® = {¢;},.; be countable
sets in L?(R™). Suppose O\(¥) and O)\(®) are Bessel sequences. Then the mixed dual
Gramian of O\(V) and ON\(®) is given for k,l € A* as

A(T) iz Vi€ + k)gi(€+1) ifk—1eT*NA,

(2.10)
0 ifk—1e A \T*

G(&)y = {

Proof. We paraphrase the oversampled systems ONW) and O\(®) using (2.7) which
yields

1
ON®) = ENV'), where ¥'= [ { quf} ,
der/(ANI)] #{A/(A n r)}1/2
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and

ON®) = EN®'), where @ = [ {#{/\/(l\lﬂ r)}l/sz@}.

de[lr/(ANI)]
Hence, by (2.9),

A(N) G () = SN S T+ R)Tags (€ +1)

#{A/ A n r } 1€Z de[l/(ANI)]

_; e—27rzk l,d)
_#{/\/(/\ﬂr)}< > ) )Zwl§+k¢2(§+l)

dellr /(Anl 1€
Using Lemma 3.6 and #{ /(AN T)}/#{N/(ANT)} = d(N)/d(T) = d(T*)/d(A*) this
yields (2.10). O

2.5. Generalized shift invariant systems

Generalized shift invariant system were introduced and studied in the work of Hernan-
dez, Labate, and Wilson [13], and independently by Ron and Shen [23].

Definition 3. For a collection of functions {g,},cp, a generalized shift invariant (GSI)

system is defined as
U E™(gp) (2.11)
peEP
where {I',} p is a countable collection of lattices in R™. The I',-ST system E(g,) is
said to be the pth layer of the GSI system.
Letting ® = {gp},cp and ' =T, for each p € P in (2.11) for a GSI system, we

recover the ST system E'(®). Moreover, a GSI system is SI if there exists a (sparse)
lattice I' so that [ C T, for each p € P. Furthermore, if C, € GL,(R) is chosen such
that [, = CpZ" for each p € P, then the GSI system in (2.11) takes the form

{Tcpkgp keZpe 73} . (2.12)

We will use the following results about GSI systems from [13|. Here, we state the
results from [13] in terms of lattices in R™ rather than in terms of (2.12) and matrices
{Cp}. The reason behind this convention is that a matrix C) satisfying I, = C,Z" is
not unique and most of our conditions simplify when stated in terms of lattices rather
than matrices.

Theorem 2.4 (Theorem 2.1 in [13]). Let P be a countable set, {gp} p a collection

of functions in L?(R") and {Tp},cp a collection of lattices in R". Assume the local
integrability condition (LIC)'

L(f) = / [F6+m)| d(T) 3P de < o0 forall feD.  (2.13)
perer* supp f

Then the GSI system U,cpE'7(g,) is a Parseval frame for L*(R") if, and only if,

> d(M)gp(€)ip(E + ) =00 forae £ €R” (2.14)
peEP

for each a € Ujeply,.
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The fact that LIC, in general, is necessary can be found in [4, Example 3.2|. Recall
the relation between the determinants of dual lattices d(I';) = 1/d(I").

Proposition 2.5 (Proposition 2.4 in [13]). Let P be a countable set, {gp},,p a collection

of functions in L*(R") and {Tp},ep a collection of lattices in R". Assume that the LIC
given by (2.13) holds. Then, for each f € D, the function

= > > [Tuf Tigp)” (2.15)

pEP kel

is a continuous function that coincides pointwise with the absolutely convergent series

Z Z wp 27rz ma:)’ (2.16)

pEP merly

where

p(m) = d(T5) | O F (€ +m) 3@ ap(¢ +m) de. (2.17)

The function w in (2.16) is an almost periodic function. In case the GSI system
from Proposition 2.5 is a -SI system for some lattice I', the function w is actually
-periodic, and can thus be considered as a regular Fourier series on the fundamental
parallelopiped Ir.

Proposition 2.6 (Proposition 4.1 in [13]). Let P be a countable set, {gp},,p a collection
of functions in L*(R") and {Tp},ep a collection of lattices in R™. If the GSI system
UpepE"#(gy) is a Bessel sequence with bound Cy > 0, then

S 1391 /d(Ty) < Cp for ae. £ € R (2.18)
pEP

The following result is a generalization of Proposition 5.6 in [13]. The result states
that the local integrability condition for affine systems .A(¢) is equivalent with local
integrability of a Calderon sum (2.19), hence the name of the condition.

Proposition 2.7. Let A € GL,(R) be expansive and 1 € L>(R"). Then,

S liBe| € L@\ {0)), (2.19)

JEZ.

if, and only if,

=3 % [ A€+ B et 417 D) de
supp f

JEZ meZ™
=> > / £+ BIm)2|p(BTIE)2de < oo forall feD.  (2.20)
JEL meEL™ SUpr

In the proof of Proposition 2.7 we use the following elementary lattice counting
lemma.
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Lemma 2.8. Let B € GL,(R) be expansive and R > 0. Then, there exists C > 0 such
that

#{(+B'Z"YnB(0,R)} < Cmax(1,|det B|™?)  foranyjeZ, £ €R". (2.21)

Proof. Since the matrix B is expansive, there exists J € Z such that

B(0,v/n) C B7/(B(0,R))  forall j <.J. (2.22)
For the same reason, once J is fixed, there exists Ry > 0 such that

BT/ (B(0,R)) C B(0,Ry)  forall j > J. (2.23)
Let

Ki={keZ":¢+BkeB(0,R)} ={kcZ": B7¢+ke B’/ (B(,R))}.

Using (2.22) and (2.23)

U (B¢ +k+0,1]") € B7(B(0,R)) + B(0, V/n) C {QB_j(B(O’R)) forj < J,

B(0,Ry + v/n) for j > J.

kJEKj
Thus,
: 2R)" |det B|™7 for j < J.
w16, = | (Bg+ kot o1 < { BRI BUT or g < 1
keK; cn(Ro ++/n)" for j > J,
where ¢, = |B(0, 1)|. This immediately implies (2.21). O

Proof of Proposition 2.7. Assume (2.19). Let f € D and choose R > 1 such that

suppr{§€R":%<\§]<R}.

Since the matrix B is expansive, there exists a constant K € N such that, each trajectory
{BI¢} ez hits the above annulus at most K times. Thus,

#{jez:¢ecB(suppf)} <K
On the other hand, by Lemma 2.8 we have that, for any £ € R",
#{(¢ + B'Z™) nsupp f} < Cmax (1, |det B| 7).

Combining the last two estimates

L(f) < Zufugocmax(udetm—j)/ || ae

JEZ supp f
<IIfI%C B de + | fIC )| a
ey [ e acr e s /B s G
<IARC ) 2 wef ae+1fiRek [ fiel de <.

supp
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The last inequality is a consequence of (2.19) and ¢ € L?(R™).
Conversely, if L(f) < oo for all f € D, then in particular by choosing f = xg for a
compact set £ C R™\ {0} we have

P 2 _ A 9 N
/Eje%‘lb(B 5)‘ d¢ E%/E‘z/z(B 5)‘ dé < L(f) <

Since the set E was arbitrarily chosen, the validity of (2.19) follows. O

Remark 1. One should add that (2.19) and thus (2.20) hold if, and only if, the Bessel-like
condition holds on the dense subspace D,

Z Z ‘(f, 'l/}j7]g>’2 < 00 for all f € D. (2.24)

JEL keLn

Indeed, this fact is a consequence of [2, Lemma 3.1] which holds for real expansive
dilations.

3. Oversampling affine systems into quasi-affine systems

In this section we show that the frame property is preserved when going from affine to
quasi-affine systems. To characterize under what conditions we can also go from quasi-
affine to affine systems, we introduce a new family of oversampled quasi-affine systems.
We then show that an affine system is a frame if, and only if, the corresponding family
of quasi-affine systems are frames with uniform frame bounds.

3.1. Properties of quasi-affine systems

For a rational lattice A we introduce the notion of a A-oversampled quasi-affine system.

Definition 4. Let A € GL,(Q) be a rational, expansive matrix, and let A be rational
lattice in R™, i.e., A = PZ" with P € GL,(Q). Suppose ¥ C L?(R") is a finite set.
Define A% () the A-oversampled quasi-affine system by

= JoR " (Duw).
JEZ

When A = Z" we often drop the subscript A, and we say that A(¥) = A%, (V) is the
standard quasi-affine system.

By definition A} (V) is SI with respect to A. Note that we need to assume that
the dilation A and the lattice A are rational in order to guarantee lattice structure of
ATIZ™ 4 N for each j € Z. If N = Z", we recover the usual quasi-affine system, i.e.,
AL (T) = A%(T), introduced in [3].

We will use the following notation throughout this paper. The translation lattice
for the affine system at scale j € Z is denoted by I'; = A7JZ"; its A-sublattice is
.= A97Z"N A and its A-extended superlattice is K; = A=I7"™ + A. Note that K; is
the translation lattice for the A-oversampled quasi-affine system at scale j € Z. Finally,

for J € N, let '
My= (T = () 4z",
ljl<J lil<J
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and note that M is an integral lattice. Summarizing, we will use the following lattices
together with their dual lattices:

rj=A>72", M =Bz, (3.1)

T, =A7Z"NA, I =BizZ" + N, (3.2)

K; = A79Z" + A, Ky = BIZ" N \*, (3.3)

My = () A'Z", 5= + Bz"=B77"+...+B'Z" (3.4)
1< l71<J

Let U,® C L%R") be finite sets. For j € Z and f € L?(R") define the affine
functionals

Ki(f) = > (Lol?, NEO) =Y Ki(f)= Y, faf, (35
gEBATIZ(D ;) JEL geAT)
and quasi-affine functionals
K (h= " > KLel NSO =Y KL= > ol (36)

ge0A™I(D ;W) ez QEAZ(‘I’)

Whenever unambiguous, we drop the reference to the set of generators and simply write
N(f) and Ni(f).

Before going deeper into our investigation we illustrate the notion of a quasi-affine
system in a few specific situations.

Example 1. Let J € N and consider the quasi-affine system obtained by oversampling
with respect to My = ﬂ|j|SJAjZn introduced above. Since A77Z"™ + My = A77Z™ and
ATIZP N My = My for |j| < J, we see that

Ofa, # (D W) = A M (M /My 2D 45 0) = EAT(Dy0),  (3)
for |7| < J. Hence with this oversampling lattice, the scales |j| < J for the affine system

A() = | BA(Dy0)
JEL

and the M j-oversampled quasi-affine system

= U 0if, (D)
JEZ

coincide.

Example 2. Suppose A € GL,(Z) is integer valued. Let A = A!Z™ for some | € Z. Then
the A-oversampled quasi-affine system is just a dilated version of standard quasi-affine
system (1.2). To be precise, we have the following relation:

Alizn (W) = D41 (A1(T)). (3.8)
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To see this note that

Alzr, < —l,

ATIZN 4+ N= A7 + A7 = ) ,
ATIZn, >,

and that

n/A—=jyn a(z" ;
H#{AL" AT} = d(Ag'Jrl%") - |det,141'+l\’ J<-i

ln ln —Jn —
HALZ [(AZ" ALY} {#{AZZ”/AZZ”}:L J= -l

whereby we have

—ign lgn .
A= U FTOUDY Y 5 200,8)
)=z j<—

Recall that

A1) = | B7H (D) U | B (|det AP/2D 4y w)
720 J<0

and the validity of (3.8) follows by D 4T}, = T4, D 4 and a change of variables.

Example 3. The quasi-affine system has a relatively simple algebraic form in one di-
mension. Suppose a = p/q € Q is a dilation factor, where |a| > 1, p,q € Z are relatively
prime. Let A C Z be a lattice. For simplicity, we assume that A = p”1¢”2rZ for some
J1,Jo € Ny, € N, where pq and r are relatively prime. Then, the quasi-affine system
A% (V) associated with a is given by

ARY) = {jp : Gk €Z, p € U}
Here, for ¢ € L?(R) and j,k € Z, we set

a2 1g| Y22 (o e — ¢ Tk) if 5> T,
Dixn(x) =4 |al? Y(aiz — k) if —Jy <j<.J, (3.9)
a2 |02 aie — pi Tk if § <~

Note that the above convention for @j,k in the case when A = Z becomes the rationally
dilated quasi-affine system (1.3) introduced by the first author in [3]. In particular, if
the dilation factor a is an integer, this is the original quasi-affine system of Ron and
Shen [20]. To show (3.9) note that

, , —i(gi7, N+igl2p7) = =i gmin(GJ2) 7 for i > 0
aiJZ—{—A:CLi']Z—{—leqJQTZ: p (q +p q 'T ) p q ‘ OI']'_
¢ piz +pJ1qJ2—Jrz) — qﬂpmln(_J’Jl)Z for j <0
p~Iq27  for j > Js,
=<a7 for — J; <j< o,
p g7 for j < —Ji.
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Hence, one needs to oversample at a rate |q|j*‘]2 if j > Jy (or |p|7‘]17j if j < —J1)
to obtain the quasi-affine system A% (%) from the affine system A(¥). Note that in
the intermediate range —J; < j < Jo, no oversampling is required and both systems
coincide at these scales. Also note that the choice J; = J5 corresponds to oversampling
by Mj,, see Example 1.

Remark 2. Let A be a rational lattice, and consider the A-oversampled quasi-affine
system A% (¥). By definition this system is A-SI. Take a rational superlattice A" of A,
i.e., A C N. Then the further oversampled system A%, (¥) is obviously A’-SI; moreover,
it can be written in term of A} (V) as

L U Ta(Aw).

AL (W) = —
NI

By Corollary 2.2 we have the following useful result for oversampled quasi-affine
frames:

Lemma 3.1. Let A € GL,(Q). Suppose AN C N for rational lattices N,N'. Then if
A% (¥) is a frame for L?(R™) with bounds Cy,Cs, then A%, (¥) is a frame for L*(R")
with bounds Cq, Cs.

3.2. Affine and quasi-affine systems as GSI systems

Since affine and quasi-affine systems are GSI systems, the results from Section 2.5 can
be applied to these systems, see [13, 14]. We restate some of these results in terms of
lattices in R™. The quasi-affine system A% () introduced above can be expressed as a
GSI system (2.11) by taking P ={(j,{): j € Z,l=1,...,L} and

Mp=Tun=A7Z"+A (3.10)
9p(x) = gy (@) = #{N(NOVATIZ)} V2D 4000 () (3.11)

for all p € P.
By applying Proposition 2.6 to affine and quasi-affine systems we immediately have
the following result, see also [3, Proposition 4.5].

Proposition 3.2. Suppose that ¥ C L?(R™) and that either of the following holds:

(a) A€ GL,(R) is expansive and A(V) is a Bessel sequence with bound Cy,
(b) A € GL,(Q) is expansive and A} (V) is a Bessel sequence with bound Cy for some
rational lattice A.
Then,

SN [(BIE)P < o for ace. € € R (3.12)

Ve jeZ

For the A-oversampled quasi-affine systems we have the following result on the quasi-
affine functional wj defined below.
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Proposition 3.3. Let A € GL,(Q) be expansive, ¥ = {¢1,...,%1} C L*(R"), and let
A be a rational lattice. Suppose that each 1) € ¥ satisfies condition (2.19). Then, for
each f € D, the N-periodic function

wil@) = > [Taf.9) ZZ > [Tuf diTiD g, (3.13)
geEAYW) I=1j€Z keK;

where d; = #{N/(NN ATIZ")}~1/2 and K; is given by (3.3), is a continuous function
that coincides pointwise with the (A-periodic) absolutely convergent series

ZZ > bja(p)emibert (3.14)

=1 jGZuEK*

where

bia() = [ FOFE+n) biBIRBT €+ ) e (3.15)

Proof. The result follows by an application of Proposition 2.5 to quasi-affine systems. In
order to apply Proposition 2.5 we need to verify the LIC condition (2.13) for quasi-affine
systems, i.e., that

L
=YY% [ e+ wP B <00 (316)

=1 ]EZMEK*

holds for f € D. Since each i € W satisfies condition (2.19), Proposition 2.7 tells us
that the LIC condition for affine systems is satisfied, i.e., that L(f) < oco. Finally, the
estimate in (3.16) follows by

L
NS S [ e BmR (B0 de = () < o
I=1jEZ meZ" supp f

where we have used that K; C BJZ™ for all j € Z. Consequently, the expression in
(3.15) follows directly from (2.17) by

|det A~ |
#{N/(NOATTZm)}

1/d(K}) = d(K;) =

O

Proposition 3.4 below states a similar result for affine systems. The result is a
generalization of [14, Proposition 2.8|, where the Bessel condition on A(V) is relaxed
by (2.19). Proposition 3.4 is a direct consequence of Propositions 2.5 and 2.7.

Proposition 3.4. Let A € GL,(R) be expansive and ¥ = {¢1,...,1;} C L?*(R").
Suppose that each ¢ € ¥ satisfies condition (2.19). Then, for each f € D, the function

w(x)= Y (Tuf.9) ZZ " WTf, Das T (3.17)

gEAD) I=1 jEZ keZr
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is an almost periodic function that coincides pointwise with the absolutely convergent

series
LYY Y culmenima, (3.18)

=1 jEZmEZn

where

¢ja(m / F©F(E + Bim) (BB + Bim)) e, (3.19)

Remark 3. As noted in [14] the sum over j € Z in Proposition 3.4 can be replaced by a
sum over a smaller set j € J C Z. The same holds for Proposition 3.3.

The series representing w and wj are very similar. By a change of variables, (3.14)
becomes

L
@) =33 3 cum)eriBma (3.20)

I=1 jEZ meZrNB—IA*
where the coefficients ¢;;(m) are given by (3.19). Since Z" N B™/A* C Z" for all j € Z,
we can consider the series for wji in (3.20) as the series representing w in (3.18) with
some coefficients set to zero; exactly those coefficients c;;(m) for which m € Z"\ B=IA*.
We stress that this connection holds without any assumptions on the rational lattice A,
e.g., there is no assumption on A being integer valued.

3.3. From affine to quasi-affine systems

The frame property carries over when moving from affine to A-oversampled quasi-affine
systems for any rational lattice A. This statement is the main result of this section and
is contained in Theorem 3.5.

Theorem 3.5. Let A € GL,(Q) be expansive, ¥ C L?>(R"), and let A be any rational
lattice in R™. If the affine system A(V) is a frame for L*(R") with frame bounds
Cy,Ca, then the N-oversampled quasi-affine system A%(V) is a frame for L*(R™) with
frame bounds C7, Cs.

The following lemma, which is needed in the proof of Theorem 3.5, is a consequence
of [15, Lemma 23.19].

Lemma 3.6. Suppose K, M are lattices in R"™ such that K C M. Then, for m € K*,

1 meM*
27TZ md ) (321)
#{M/K} de[zM:/K] {0 m e K*\ M*.

The proof of Theorem 3.5 relies on the following key result on translational averaging

of affine functionals.

Lemma 3.7. Let A € GL,(Q) be expansive, ¥ C L?(R"), and let A be an integral
lattice in R™. For each J € N define

My= () AZ"
l71<J
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Suppose the affine system A(¥) is a frame for L?(R™). Then

1
NU(F) = 1i N(T, f D, 3.22
/\(f) Jl_{%o #{(M] + /\)/MJ} de[([\ﬂﬁ;\)/Mﬂ ( df) or f S ( )

where D is given by (1.6), N by (3.5) and N} by (3.6).
Proof. Let W = {41,...,v¢1}. For f € D, by (3.20),

NR(F) ZZ > clm), (3.23)

=1 jE€EZ meZrNB~JiN*

where c;;(m) are given in equation (3.19). So fix J € N and let {di,...,dy s} be
a complete set of representative of the quotient group (M; + A)/Mj so that s(J) is
the order of the group. We want to express Ni(f) as an average of N(Ty, f) over
r=1,...,s(J), thus we consider

1 s(J) L ,
s(J) N =N . WZ(BJm dr>
oy VN = X 3 clme
1 s(J) L
* > 2 culmymim)
s(J) r=11=1|j|>J meZ"
= L)+ L), (3.24)

which follows by (3.18). By absolute convergence of the sum above, we conclude that
Iy(J) — 0 as J — oo. Assume that the following identity holds.

L
=33 > cum. (3.25)

1=1j|<J meZrNB—iA*
Taking the limit J — oo in (3.24) and using equation (3.23) yield

s(J)

lim —— ZN Ty f) = lim (L(J) + I2(J)) = lim Z YooY culm)

% I=1 |j|<J meZnnB—iA*
= Nx(f).

Hence, to complete the proof we have only left to show (3.25). Taking K = M; and
M = M; + A in Lemma 3.6 gives us for all m € M%:

S(J ~ * *
M5 N A
{S(J) m e M5 N A, (3.26)

Ze2ﬂ'lmdr —
0 meM;\A

Fix j € Z with [j| < J. Take m = B/m. Obviously, . € M*% N A* precisely when
m & B*jM*J NB~IN*, and m € M* \ A* precisely when m € B*jM*J \ B7/A*. Since

B7IM* = + Bz > 7",
—J—j<I<T—j
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we conclude from equation (3.26) that, for all m € Z"™,

s(J) —J Ak
S ritiman _ [5(J) m LA BTN (3.27)
o 0 m € Z"\ B7IN*,
and this holds for all |j| < J. Using these relations we arrive at:
1 sW)
Z Z Z cji(m oy Z i(Bim,dy)
I=1|j|<J meZ r=1
= Z 2. DL cilm),
I=1|j|<J meZrNB=iA*
which completes the proof of the lemma. ]

Proof of Theorem 3.5. Assume that the affine system A(V) is a frame for L?(R") with
bounds Cy,Cy. It suffices to prove that .A;’\O(\I') is a frame for integer lattices Ag, i.e.,
Ao C Z"™, which follows from the fact that any rational lattice A has an integral sublattice
of the form ¢Z" for some ¢ € N, e.g., take ¢ = d(ANZ"), see equation (2.5). Hence, if
we prove that A%, () is a frame with bounds Cj, Cy, then, by applying Lemma 3.1,
A% (D) is a frame with the frame bounds being preserved.

So let Ag be an integral lattice. By our hypothesis there are constants C1,Co > 0
so that

CLIfI? < N(f) < Co|IfI? VfeL*R").

Fix J € N and consider M ; introduced above. For each representative d € [M ;+Ay)/M ]
we have

CilIf|* < N(Tuf) < Co || fI? Vf e L*R"),

where we have used that ||T,.f|| = ||f]| for x € R™. Adding these equations for each
representative d yields:

#{(Ms + No) /M }Cy || £]1? < > N(Tuf) < #{(Ms + No)/Ms}Ca || f]I* -
de[(My+Ao)/My]
By taking the limit J — oo, we have
1

C Ji Taf) < Co||f]1?
1||f|| —o #{(M +AO)/MJ} de| MJ%O)/MJ] ( df) - 2||f||

for all f € L2(R™). Since A is an integer lattice, we can apply Lemma 3.7. This gives
us

CilIfI? < Ni(f) < Co|If)

for f € D. Extending these inequalities to all of L?(R™) by a standard density argument
completes the proof. O
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Remark 4. The special case of Theorem 3.5 in one dimension with A = Z was first
shown in [14, Theorem 2.18|. In fact, [14, Theorem 2.18] is stated for quasi-affine
systems obtained by oversampling with respect to the lattice A = s~'Z, where s is
relatively prime to p and ¢, and a = p/q is a dilation factor. In this case the quasi-affine
system A7 () takes a nice algebraic form:

ai gy = [ 1Pl s 2 p(@e = sl k) j 20, ke
sz Il g2 s 2 (el — s Ipik) s <0, keZ
Hence, the above system is obtained by further oversampling of the standard quasi-
affine system A7 () given by (1.3). However, our Theorem 3.5 holds for oversampling
with respect to any rational lattice A, such as in (1.4) or in Example 3. The sparser the

lattice A is, the better result we have due to Lemma 3.1 on oversampling of quasi-affine
systems.

3.4. From quasi-affine to affine systems

When moving from quasi-affine to affine systems the frame property only carries over
if we impose stronger conditions on the set of generators. Hence, we have only the
following partial converse of Theorem 3.5.

Theorem 3.8. Let A € GL,(Q) be expansive and ¥ C L?*(R™). If M j-oversampled
quasi-affine system A(,{,lJ(\II) is a frame for L?(R"™) with uniform frame bounds C1, Cs
for all J € N, where M is given by (3.4), then the affine system A(¥) is a frame for
L?*(R™) with frame bounds Cy, Cs.

Proof. Assume that
CLIIfFIP < NGy (f) < CalfIP forall feD

holds for all J € N. Since scale j of the affine system and the M j-oversampled quasi-
affine system agrees whenever |j| < J, we have by (3.7),

Kj(f) = Kfy (f)  forall [j| < J, f € L*(R").

Thus, for J € N,

YK = > Ky, () < CallfI

l71<7 l71<J

Letting J — oo yields

2
= lim K (f) < limsup > Ky, () <Gl fIF,
1< 1<

whereby we conclude that A(¥) is a Bessel sequence with bound Cj. Likewise for the
lower bound:

CLIFIP < >0 Ko (0 + X Ky () =Y Ki(H)+ Y Ky (). (328

l71<J l7|>J l71<T l71>J
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Suppose that
Jim. > Ky, (fy=0  for feD. (3.29)
P>

Then, by equation (3.28),

CifI? < Jim. > Kij(f)y=N(f) for feD.
il

Since A(W) satisfies the upper bound, we can extend this inequality to all of L2(R")
by a density argument, hence the affine system A(V) satisfies the lower bound with
constant C7.

To complete the proof we need to verify (3.29). We have already showed that A()
is a Bessel sequence, so by Proposition 3.4 the series in (3.18) converges absolutely and

SF Y feputm)] <

=1 jEZ meZ"

where ¢;;(m) is given by (3.19). Therefore, by (3.20) and Remark 3,

IR CIOEDY Z S dTDy)* < Z Yo lej(m)]

l7|>J l7]>J 1=1 keK; lj|>J I=1 meZ"NB—IM*%

ZZZ|CN ) —0 asJ — oc.

|7|>J =1 meZn
This shows (3.29) and completes the proof of Theorem 3.8. O

The following result combines Theorems 3.5 and 3.8 in a more conceptually trans-
parent and less technical form.

Theorem 3.9. Let A € GL,(Q) be expansive and ¥ C L?(R"). Then, the affine system
A(W) is a frame for L?(R™) with frame bounds C1, Cy if, and only if, the A-oversampled
quasi-affine system A% (V) is a frame for L?(R"™) with uniform frame bounds Cy, Cy for
all integer lattices A.

3.5. Recovering known equivalence results

We end this section by illustrating the general nature of Theorems 3.5 and 3.8. In
particular, we will show that the well known equivalence result of Ron and Shen [20] for
affine and quasi-affine frames for integer dilation A € GL,(Z) is a simple consequence
of these results. Moreover, we have the following generalization of their result.

Proposition 3.10. Let A € GL,(Z) be expansive and ¥ C L*(R). Then the following
assertions are equivalent:
(i) A(¥) is a frame with bounds C1, Ca,
(ii) AR, (¥) is a frame with bounds C1,Cy for some oversampling lattice Ao C Z",
(iii) AX(¥) is a frame with bounds C4, Cy for all oversampling lattices A C Z™.
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Proof. By Theorem 3.5, we are only left to prove (ii) = (i), but this will follow from
an application of Theorem 3.8. From Lemma 3.1 we have that A9(¥) is a frame for
L?(R™) with bounds Cj, Cy. Recall the identity

Al (W) = Dygoi (A1) forlelZ

from Example 2. This tells us, by unitarity of the dilation operator, that A?MZ”(\II) is
a frame with (uniform) bounds Cj,C5 for each [ € Z. Since A has integer entries, we
have
My= (| AZ"=A’Z"  for J €N,
lj1<J

and the conclusion follows from Theorem 3.8. O

4. Dual affine and quasi-affine frames

The goal of this section is to prove the equivalence between pairs of dual affine and quasi-
affine frames in the setting of rational dilations. To achieve this we will use well-studied
fundamental equations of affine systems.

Definition 5. Suppose that U = {41,...,9r} € L?>(R") and & = {¢1,...,¢1} C
L?(R™) are such that

L
DD (BTEP +1a(BE?) <oo forae & (4.1)
I=1j€Z

We say that a pair (¥, ®) satisfies the fundamental equations if

L
t0(&) =D > (B IEH(BE) =1 forae. &, (4.2)

1=1j€z

L
(@)=Y Y (BIEHBI(E+a)=0 forae ¢andall acZ\ {0}
=1 j€Z:a€eBIZ™
(4.3)

Remark 5. Note that the assumption (4.1) is made to guarantee that the series in (4.2)
converges absolutely, and hence the Calderén condition (4.2) is meaningful. On the
other hand, the series (4.3) converges absolutely for a.e. { without any assumptions
(apart from ¥, ® C L?(R"), that is). Indeed, for any ¢ € L?(R") and o € R,

(B~ 2 J 100N (2 |det A7 2
L BT+ ap| ag= [ 3 iderap pie)Pag = (g Il < o0
i< R i<
(4.4)
for any J € N. Since the dilation B is expansive, for any «a # 0, there exists J € N
such that j € Z and o € BIZ" implies that j < .J. Hence, by 2 |zw| < |z|*> + |w|® for
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z,w € C,
Y. BTOABIE+a) <5 D (BT
JEL:EBIL™ JEZL:aEBITL™
+10 > g (BT (€ + ) <oo  forae £ R
j€Z:acBIiZN

The last inequality is a consequence of (4.4).

We will need the following result which was originally proved by Frazier, Garrigos,
Wang, and Weiss [11] in the dyadic setting. Later it was extended by the first author
[2] to the setting of integer, expansive dilations and by Chui, Czaja, Maggioni, and
Weiss [8] to the setting of real, expansive dilations. We include an alternative proof of
Theorem 4.1 for the sake of completeness and since its techniques will be used later.

Theorem 4.1. Let A € GL,(R) be expansive. Suppose that ¥ = {¢y,... ¢} C
L*(R") and ® = {¢1,...,¢r} C L*(R™) are such that

L
DD ((BTIOP +|a(BTEP) € Li,(R™\ {0}).

1=1j€Z

Then, the affine systems A(¥) and A(®) form a weak pair of frames, i.e.,

L
AP =35 S (f. DasTetn)(Das Ty, f)  forall f €D, (4.5)

I=1j€Z keZn
if, and only if, the fundamental equations (4.2) and (4.3) hold.

Proof. The proof is based on Proposition 3.4 on affine systems and the idea of polar-
ization as in [18, Section 8|. By our assumption on ¥ and ®, we can define

L
N(f,0,2) =>">" N (f, DasTeti)(Das Tuy, f)  for f €D, (4.6)

=1 j€EZ keZ™

where the multiple series converge absolutely. This follows immediately by Remark 1
and

2(f, Das Tt ) (D as Tudr, £)| < [(f, Das Ttbn)|* + [(Das T, f)I
By the polarization identity

I R
zw:sz:lzp\zpz—i—w\Q for z,w € C,

we have

N .
N(f, ¥, @) = 1 Z "N(f,0p), where O, = {9142}11':1: Orp = "1 + &1 (4.7)
p=1
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for f € D.
Since, for p = 1,2, 3,4,

S5 i o) = X [Pisie + dis o)

=1 j€Z =1 j€Z

L
<23 S (BB TEP + [A(BTE?) € Ligo(R™\ {0}),

1=1jez

we can apply Proposition 3.4 to ©,, for each p. This yields

T f @ ZZ Z b],l,p 27rz B]m:v>’

=1 jEZ meZ™

where

bjsp(m / FOFE+ Bim) (B i€)0, (B (e + Bim))de,  (4.8)

forl=1,...,L,j € Z,m € Z", and the integral in (4.8) converges absolutely. By the
polarization identity

4
AWy = ipz:lip(ipzl + w1)(iP 29 + wo) for 21, 29, w1, ws € C,
we have
4 A . .
Y (BB (€ + BIm)
p=1
4
= i Z (P (BIE) + ou(BE)) (Pu(B7 (& + BIm)) + (BT (¢ + BIm)))
p=

(BTGB + BIm)).
Therefore, by (4.7),

L
() = N f, 0, 0) =33 3 & (m)e?ritB/ma), (4.9)
=1 jEZ meZ™
where
&.(m Zz bjsp(m / F©)F(&+ Bim) (B d(B7 (€ + BIm)) de.

By a change of summation order, using absolute convergence of the series in (4.9), we
have

W)=Y et (4.10)

aEUjeszZ"
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where

fm [ FOTET @Y. Y BBIOME e + o)

I=1 jeZ:acBiZn

/ FEOF(E+a)ia(e)de, forac UjezB 7" (4.11)

Assume that the affine systems A(¥) and A(®) form a weak pair of frames. Using
T f]l = || f|l, this implies that the almost periodic function @w(z) from (4.9) is constant.
To be precise: w(z) = || f||>. By uniqueness of coefficients for Fourier series of almost
periodic functions [13, Lemma 2.5|, this only happens if, for a € Ujez BIZ",

Go=|fI>? and G =0 fora#0. (4.12)

By (4.11), this shows that
L Jf©f f@ras =172 = 112 fora s €.

Since D is dense in L2(R"), this implies further that #o(¢) = 1 for a.e. £ € R” showing
that the first fundamental equation (4.2) holds.
For a nonzero o we have by (4.11) and (4.12),

/ f(e §+O¢) «(§)dE =0, for all f € D,

for a € (UjezB/Z™) \ {0}. In particular, this equality holds for o € Z™ \ {0}. We need
to show that #, = 0 almost everywhere for a € Z" \ {0}. The conclusion is almost
immediate from Du Bois-Reynold’s lemma, that says that for local integrable functions
u on R™ satisfying [uv = 0 for all v € C§° we have u = 0. We fix a € Z"\ {0},
and let Iz» denote a fundamental domain of Z". For arbitrary [ € Z"™ we consider the
translated parallelepiped I; = Iz» + 1 C R™ and define f by

1 for £ € I,
f&) =Sta(&) foré+ael,
0 otherwise.

This definition makes sense since Ujeznl; = R™ and (I; — a) N I; = () for a € Z™ \ {0}.
Furthermore, since Z, is bounded by Remark 5, we have f € D. Consequently,

= [ AOFE+ i) de = [ 10T de = [ [falo)f .
which implies that £, (£) vanishes almost everywhere for & € I;. Since | € Z" was
arbitrarily chosen we deduce that £, (&) = 0 for a.e. £ € R™. This shows that the second
fundamental equation (4.3) holds.

Conversely, assume that the fundamental equations (4.2) and (4.3) hold. Equation
(4.3) states that £,(¢) = 0 for a.e. £ € R” for a € Z" \ {0}. By a change of variables
v = B and 8 = Bla(l € Z), this implies f3(y) = 0 for 3 € B!Z" \ {0}. Since this
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holds for all I € Z, we conclude t, = 0 almost everywhere for a € UjezBIZ" \ {0}.
Hence, by (4.11), &, = 0 for o € UjezB/Z™ \ {0}. Therefore, w(z) = & = || f||* for all
x € R™ so, in particular,

N(f,0,®)=w(0) =|f||* forall feD.
We conclude that the affine systems A(¥) and A(®) form a weak pair of frames. [

We are now able to prove the characterization of dual affine and quasi-affine frames
in terms of fundamental equations using the theory of mixed dual Gramians of Ron
and Shen [19, 21, 23]. An alternative proof using the ideas of polarization of affine
functionals is presented at the end of this section. In the integer case Theorem 4.2 was
first shown by Ron and Shen [20, 22] with some decay assumptions on generators ¥ and
®. Chui, Shi, and Stockler [9] proved the same result without any decay assumptions,
see also [2, Theorem 4.1]. Theorem 4.2 generalizes this result to the setting of rational
dilations.

Theorem 4.2. Let A € GL,(Q) be expansive. Suppose A(¥) and A(®P) are Bessel
sequences in L?>(R™). Then the following assertions are equivalent:
(i) A(V) and A(®) are dual frames.
(ii) AR, (V) and A} (®) are dual frames for some integer oversampling lattice Ng C
.
(iii) AX(¥) and A} (®) are dual frames for all integer oversampling lattices N C Z".
(iv) ¥ and ® satisfy the fundamental equations (4.2) & (4.3).

Proof. The local integrability condition in Theorem 4.1 is satisfied by Proposition 3.2
since A(V) and A(®) are assumed to be Bessel sequences. Furthermore, weak duality
(4.5) of two Bessel sequences implies “strong” duality |2, Lemma 2.7], i.e., that A(¥)
and A(®) are dual frames. Hence, by Theorem 4.1, we have (i) < (iv); this equivalence
is well-known, even for real dilations [8, Theorem 4].

The proof of the equivalences (ii) < (iii) < (iv) is based on the approach used in
[3, Theorem 3.4]. Let C~¥j (€)k,, denote the mixed dual Gramian of O 'Z"(D ;) and
OR 72" (D 4;®) for j € Z, see Section 2.4. By Lemma 2.3 with [ = A=JZ" this mixed
dual Gramian is given as

Gi(§)ks =

~ et AP Py Dasth(€ + K)Dasp(€ +1) k-1 NA",
0 k—1eN\T*

)T+ R)aiE+1) k—le BIZM NN,
0 k—1eN\BzZ",
for k,1 € A*. The mixed dual Gramian of A% (¥) and A% (®) is found by additivity of
the jth layer mixed dual Gramian G;(&) as

Gk =D Gj(Ery

JET

L -
=2 D DB (E+R)A(BHE+1))

{1 k—1e BIZ"N N,
I=1j€z

0 k—leN\BizZ",
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for k,1 € N*. We only consider k,l € A* so k — 1 € A* is trivially satisfied. Thus, we
arrive at the following expression for the mixed dual Gramian:

L
COri=Y. >, (B IE+R)Q(BE+1) = ton(& +E). (4.13)

=1 jeZ:k—leBizZ"

Assume (ii) holds. This implies that the mixed dual Gramian G(€) is the iden-
tity operator on £2(A}) for a.e. & € Ing, hence G(§)ky = Ok, for ae. § € Ips. By
equation (4.13), for a € A},

L
=Y Y GBIYN(BI(E+a)) =Tal§) forae EER. (414)

=1 j€Z:acBIZ"

This implies (iv) since Z™ C A§.

Assume (iv) holds. We will show that this implies (iii), i.e., that é(g)k,l = 0y, for
a.e. £ € Ip~ and all k,1 € A*, where A is any integer lattice satisfying A C Z". By a
change of variables, we see that £,(§) = 0 for a.e. £ and all o € U;ezBIZ" \ {0}. If
o € N\ UjezBZ", then obviously , = 0, hence equation (4.14) holds for o € A*.
This shows that the mixed dual Gramian G(¢) is the identity operator on ¢2(A*) for
a.e. § € Ip» which is equivalent to assertion (iii).

The last implication (iii) = (ii) is obvious. O

It is possible to give an alternative proof of Theorem 4.2 using the ideas of polar-
ization from the proof of Theorem 4.1. Since the equivalence (i) < (iv) in Theorem 4.2
is well-known, we will only (re)prove (ii) < (iii) < (iv) here.

Another proof of Theorem 4.2. Let A C Z". For f € D, we define the A-periodic func-
tion wj (z) by

L
Wi (x) = NATo f, 0, @) => Y > (Tof, diTiDaithy) (dj Ty Daidy, To f),  (4.15)

I=1 jEZ keK,
where d; = #{N/(NN A77Z™)}~Y/2 and K; is given by (3.3). The series in (4.15) con-

verges absolutely since A% (¥) and A% (®) are Bessel sequences. Applying polarization
identities as in the proof of Theorem 4.1 yields

wl(x) = > Goe?mie) (4.16)

OéEUjeszZ"ﬁ/\*

where the coefficients {¢,} are given in (4.11).

Assume (ii) holds. It is well-known that under the Bessel condition the weak duality
of frames is equivalent to the duality of frames, see for example |7, Theorem 5.6.2].
Hence, (ii) is equivalent to Ny (f, ¥, ®) = |£||? for all f € L2(R™). Since | T,f| = ||,
this implies that @} () = | f |?. By uniqueness of coefficients of the Fourier series of
Wy, this happens only when

Coq = Hf||25a70 for a € UjeZBjZ" ANE
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Following the proof of Theorem 4.1, we immediately have that this implies £, = 0,0
almost everywhere for a € UjeZBJZ" N A*. In particular, since Z" C A*, we have
to(€) = Sap for a.e. € and o € Z™. This is precisely assertion (iv).

Assume (iv) holds. By a change of variables, this implies that ,(£) = d4,0 for a.e.
£and all a € UjeszZ". Therefore,

Ca = Hf”Q(Sa,O for a € UjeszZn,

and we note that these equations are independent of A. Hence, by (4.16), for any
ANCzZ",
Ni(f, 0, ®) =0%(0) =é = ||f|*  forall feD.

By a density argument, this equality holds for all f € L?(R™), and assertion (iii) follows.
]

Remark 6. It is apparent from the proof above that the equivalence of (ii), (iii), and
(iv) in Theorem 4.2 holds under the weaker assumption that A} (V) and A} (®) are
Bessel sequences in L?(R") for some Ag C Z".

5. Diagonal affine systems

In this section we study a particularly interesting subclass of generators where the equiv-
alence between affine and quasi-affine frames exhibits the largest degree of symmetry.
This is a class of diagonal affine systems for which the off-diagonal functions ¢, defined
below vanish. We show that the class of diagonal affine frames consists precisely of
quasi-affine frames having a canonical dual quasi-affine frame. This extends a result of
Weber and the first author [5] from the setting of integer dilations to that of rational
dilations.

Definition 6. For a given dilation matrix A and ¥ C L?*(R") we introduce the family
of functions {tq},czn» on R™ by:

H=> Y dBIOYBI(E+a)  for LR (5.1)

VeV jeZ:aeBIZ"

In particular,

= > Y [BP

YeV jEZL
We say that the affine system A(W) is diagonal if t,(§) = 0 a.e. for all « € Z™ \ {0}.

Note that the series in (5.1) converges absolutely for a.e. £ in light of Remark 5. In
addition, if ¥ C L?(R™) generates an affine Bessel sequence A(¥) with bound Cy, or a
quasi-affine Bessel sequence A} (V) for some lattice A, then each ¢, is well defined and
essentially bounded in light of Proposition 3.2 and

oY [WBIYUBEE )<Y D (B YP
VeV jeZ:aceBIZ" VeV jeZ:acBIZ"

t3, Y, WBIE+a)P <0

VeV jeZ:aeBIZ"
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Now, with the extra assumption ¢,(§) = 0 a.e. for a € Z™ \ {0}, we have the following
equivalence result.

Theorem 5.1. Let A € GL,(Q) be expansive, ¥ C L?*(R") and let C1,Cy > 0 be con-
stants. Suppose that the affine system A(V) is diagonal. Then the following assertions
are equivalent:
(i) the affine system A(W) is a frame for L?(R"™) with bounds Cy, Cy.
(i) the quasi-affine system A} (V) is a frame for L?(R™) with bounds C1, Cy for some
integer lattice Ny C Z".
(iii) the quasi-affine system AX(V) is a frame for L?(R™) with bounds Cy,Cy for all
integer lattices N C Z™.
(iv)
C < Z ZW(B]E)P < Oy for a.e. £ € R"™.
YeV jEZ

Proof. Let A C Z™ be a lattice in R™. For fixed f € D, let w and wj be the func-
tions introduced in (3.13) and (3.17). By a change of summation order, using absolute
convergence of the series, these functions can be written as

_ 2mi(a,x q _ 2mi(a,x
w(zr) = Z Co eFTHOT) wi(z) = Z Co e2THOT) (5.2)
aEUjeszZ" OéEUjeszZ"ﬁ/\*
where

ca—/ FOfE+a)S Y d(BINBI(E +a))de

VeV jeZ:acBIZ"
—/ FOFE T a)ta@)de,  for a € UjenBIZP. (5.3)

Our standing assumption in this theorem is that t,(§) = 0 a.e. for a € Z" \ {0}.
By a change of variables, this implies ¢, (£) = 0 a.e. for a € U;jezB/Z™ \ {0}. Thus the
expressions in (5.2) reduce to

L2
w(z) = w?\(ﬂf) =cy = / }f(f)} to(&)dg for all z € R",
R?’L
hence w and wj are equal and constant functions of z. Therefore

N(f) = w(0) = wi(0) = NX(/)

for f € D. Since D is dense in L2(R"), we find that (i) < (ii) < (iii). Note that (i) =
(iii) also follows directly from Theorem 3.5.

We will verify that (i) < (iv). In terms of the t,-functions, assertion (iv) reads,
Cy < tp(§) < Co almost everywhere. By the above and an application of the Plancherel
theorem, assertion (i) is equivalent to

Cilf, f) < (tof, ) < Ca(f, f)  for f e LPR™). (5.4)

This implies that
Cy <tp(§) < Cy for a.e. £ € R",

which, on the other hand, clearly implies (5.4). O
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As a corollary we have the following converse of Theorem 3.5.

Corollary 5.2. Let A € GL,(Q) be expansive, ¥ C L*(R"), and let A(V) be diagonal.
Suppose that the Ng-oversampled quasi-affine system .A?\O(\I/) is a frame for L?(R™) with
bounds C1, Cy for some integer lattice Ao C Z". Then, the affine system A(V) is a frame
for L?*(R™) with bounds Cj, Cs.

As a direct consequence of Theorem 3.5 and Corollary 5.2 we generalize the equiva-
lence of affine and quasi-affine Parseval frames due to the first author [3, Theorem 3.4],
see also [14, Theorem 2.17].

Theorem 5.3. Suppose A € GL,(Q) is expansive and ¥ C L?(R"). Then the following
assertions are equivalent:

(i) the affine system A(V) is a Parseval frame for L?(R")
(i) the quasi-affine system A} (¥) is a Parseval frame for L?(R™) for some integer
lattice Ng C Z™

(iii) the quasi-affine system A} (V) is a Parseval frame for L?(R") for all integer lattices
NCzZ"

Proof. The implication (i) = (iii) is a special case of Theorem 3.5, and (iii) = (ii)
is obvious. Proposition 3.2 and the proof of Proposition 3.3 show that the local inte-
grability condition (3.16) for the quasi-affine system is satisfied, hence we can apply
Theorem 2.4 to A} (V). By equations (2.14), (3.10) and (3.11) this implies that t, = 0
for a € Z™ \ {0}, hence the affine system is diagonal. An application of Corollary 5.2
gives us (ii) = (i). O

5.1. Canonical dual quasi-affine frames

Our next aim is to characterize when the canonical dual of a quasi-affine frame is
also a quasi-affine frame. To achieve this we need the following result resembling [5,
Proposition 1].

Theorem 5.4. Let A € GL,(Q) be expansive. Suppose the A?\O(\I/) is a frame for some
Ao C Z", which has a dual quasi-affine frame A} (®). Then, for any S € B(L?(R"))
we have

SeCy(AR) forallp e ¥ & Se{Da,Th: e}

Note that we need to assume a much stronger hypothesis than the assumption of
[5, Proposition 1] saying that the quasi-affine system A%, (¥) is complete in L?(R™).

Proof. The fact that A} (¥) and A} (®) are dual frames implies that the fundamental
equations (4.2) and (4.3) hold, see Remark 6. By Theorem 4.1, the affine system A(¥)
is complete in L2(R").

Suppose that S € C¢(.A;1\O). Since the quasi-affine system .A;]\O(\II) is Ap-SI, S must
commute with translations T, A € Ag. Likewise, since the affine system A(V) is a part
of the quasi-affine system A} (¥) (up to normalizing constants), S € Cy(A). Since
the affine system A(W) is complete in L2(R") and A(¥) is dilation-invariant, S must
commute with the dilation operator D 4.

Conversely, if S € {D4, Ty : A € Ao}, then clearly S belongs to the local commutant
Cy(AR,) for any choice of ¢ € L?(R™). O
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Remark 7. Note that if S € {D4, Ty : XA € Ag}, then S commutes with all translation
Ty, A € R™. Indeed, by Tyjy = D4—iT)Dyj, S must commute with T4,y for j € Z
and A € Ag. Since A is expansive, UjeZAj/\o is dense in R™. Hence, by continuity
of x +— T,f for f € L?(R"), we have S € {D,T): A € R"}. In fact, we have the
following lemma which is a straightforward generalization of [5, Lemma 2].

Lemma 5.5. Let A € GL,(R) be expansive, A a lattice, and S € B(L?(R")). Then,
S € {Da,Ty: X € N} if, and only if, S is a B-dilation periodic Fourier multiplier, i.e.,
there exists a function s € L>°(R"™) such that

516 =5(©)f (&) forae.g,
where s(§) = s(B§) for a.e. .

Proof. Assume S € {Da, Ty : A€ NY. By Tyiy = Da-;ToD i, S commutes with Ty;
for j € Z and X € A, ie.,

STy, =TS  for k € Ujeg AN (5.5)

The union UJGZAj A is dense in R™ since A is expansive. For z € R"™ take {k, }nen from
UjezAA such that k, — z. By continuity of z — T, f for f € L*(R"), k, — z implies
Ty, f — Ty f in the L? norm, i.e., Ty, — T, in the strong operator topology. Hence, by
equation (5.5), we have ST, = T,.S, proving that S is a Fourier multiplier. Finally, by
DsS =8SDy and

FDaSF(E) = / DaSf(w)e ™ 4dy = |det A|"/? (B~ f(B™'¢),
Rn
and

FSDaf(€) = (&) | Dafla)e* " da = |det A|™2 5(6) f(B™'€),
R
we have B-periodicity of the symbol s.

Conversely, assume S is a Fourier multiplier with a B-dilation periodic symbol. The
operator S commutes with all translations by the Fourier multiplier property and with
dilations D 4 by the B-dilation periodicity of the symbol and the two displayed equations
above. O

Theorem 5.6. Let A € GL,(Q) be expansive. Suppose the oversampled quasi-affine
system AR (V) is a frame for L?(R™) for some integer lattices Ao C Z". Then the
canonical dual frame of A} (V) has the form A} (®) for some set of functions ® C
L?(R™) with cardinality #® = #W¥ if, and only if,

ta©=> > dBIOY(B(E+a)=0 forallacZ"\{0}. (5.6)

VeV jeZ:aceBIZ"

Moreover, in the positive case A% (V) is a frame for all integer lattices N C Z™ and its
canonical dual frame is A} (®).
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Proof. Let Sy be the frame operator of the quasi-affine system A{ (V). Since A7 (V)
is a frame, equation (3.12) is satisfied, hence the expression for w;]\o in (5.2) holds for
feD.

Assume that the canonical dual of A{ (¥) has the form A} (®), i.e., S € Cy(AR,)
for all ) € ¥. By Theorem 5.4 and Remark 7, S{ € {Da, Ty : A € R"}, hence

why (@) = (SR Tf Tuf ) = (TuSE £ Tuf ) = (SK £, ) Va € R,

which shows that w;]\O is constant for every f € D.
For each f € D we express wy  as the Ap-periodic Fourier series (5.2). Such a Fourier
series is identically constant if, and only if,

ca_/ FEOF(E+a)ta(6)dE =0 forauae<UBJZ"m/\g>\{o},

JET

by the uniqueness of the Fourier coefficients. In particular, this equality holds for
a € 2"\ {0} since Z™ C A Fix a € Z" \ {0}. Let I+ denote a fundamental domain
of Ay and, for I € Ag, let [; = Ip+ + 1. Define f by

1 for £ € I,
f(€) = ta(§) for &4+ a1,
0 otherwise.

Since t, is bounded by the Bessel bound Cs, we have f € D. Now,

= [ FOF €+ a)ta(d = [ tal@fa@t = [ [al&) de.
R I I,

for each [ € A§. Since Ule/\gfl = R" we deduce that ¢,(£) = 0 for a.e. £ € R", and the
theorem is half proved.

Conversely, assume t,(£) = 0 for a € Z"\{0}. Then t,(£) = 0 for € (U;ezBIZ")\
{0} by a change of variables. In particular, t(£) = 0 for a € (UjezB'Z" N AS) \ {0},
hence wjl\o(x) = ¢o for every z € R", ie,, wjl\o is constant on R" for every f € D.
Therefore, for every = € R”,

(SR Tl Tof )= wh () = wh (0) = (S f.f)  for [€D.
This equality extends to all f € L2(R") by a density argument, hence
<(T_xSXOTx - S}{O) f, f> =0 for f € LA(R").

We conclude that S{ T, = T,Sj for all x € R", in other words, S{ is a Fourier
multiplier:

—

SEFE©) =s(9)f()  forae { €R™andall f € L*(R"), (5.7)



6. Broken symmetry between the integer and rational case 121

for some symbol s € L(R™). We claim the symbol of S} is
(© =to(6) = X S [b(B0)|
PeV jEZ

This function is obviously a B-dilation periodic function, that is, s(§) = s(B). B
Proposition 3.2 the function is bounded by the upper frame bound s(§) < C for a.e. &,
so s € L>®(R™). By the Plancherel theorem, we see

wi (0) = (SL f,f) = (SLf,f) forall feD,

and, by (5.3) with a = 0, that

o= [ FOIO > X

VeV jeZ

b ae.

Since wjl\o (x) = ¢ for all z € R™, we have, in particular,

<Sj{0f f)= wf (0 0)=co=(sf,f) forall feD.

Therefore, s is a B-dilation periodic symbol of S} implying that S§ commutes with
D4, see Lemma 5.5. The frame operator S;I\O belongs therefore to {Da, Ty : A € Ag}'.
As a result we find that (57\0)_1 € Cy(AR,) for ¢ € . This is equivalent to the
canonical dual of A (¥) having the quasi-affine structure with the same number of
generators. U

6. Broken symmetry between the integer and rational case

The goal of this section is to illustrate fundamental differences between integer and
rational cases. That is, a mere fact that a quasi-affine system is a frame does not imply
that an affine system must be a frame as well. This kind of phenomenon cannot happen
for integer dilations where we have a perfect equivalence of the frame property between
affine and quasi-affine systems. Moreover, this cannot happen for Parseval frames due
to Theorem 5.3, or more generally, for affine frames having duals by Theorem 4.2.
Moreover, Theorem 6.1 shows the optimality of our results. That is, the assumption of
uniformity of frame bounds of quasi-affine systems in Theorem 3.8 cannot be removed
in general.

Theorem 6.1. Let 1 < a € Q\ Z be a rational non-integer dilation factor. Then, there
exists a function ¢ € L?(R) such that A%(v) is a frame for any oversampling lattice
A C Z, but yet, A(3) is not a frame.

Remark 8. In the light of Theorem 3.8, the frame bounds of the quasi-affine systems
AR (¥) are not uniform for all lattices A C Z. In fact, we will see that the lower frame
bound of .Aj]\(w) drops to 0 as a lattice A gets sparser and sparser. Consequently, in the
limiting case, when no oversampling is present, we obtain an affine system .A(¢)) which
is not a frame due to the failure of the lower frame bound.
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We will need the following well-known result, see [16, Theorem 13.0.1] or the proof
of [10, Lemma 3.4]

Theorem 6.2. Suppose that 1) € L*(R) is such that ¢ € L°(R) and
V() =0(|¢°)  as&—0,
be) =0(El ™) as J¢] — oo,

for some § > 0. Then the affine system A(v) is a Bessel sequence.

We define the space L?(K), invariant under all translations, by
L*(K) ={f € L*(R) : supp f C K}
for measurable subsets K of R.

Proof of Theorem 6.1. Choose § > 0 so that a(a+1) <6< aQH Define ¢ € L?(R) as

) = 1(_q25,—5)u(s,a25) First, we shall show that the affine system A(¢)) is not a frame.
To achieve this we will follow the idea from [5, Example 2]. We will need the following
standard identity, which can be shown by the periodization argument

ST T ? /]Zf§+k: B+ m[de  forany fe 2R (6)

kEZL kEZ

Let K5 = (1 — a?6,a?). By the restriction on §, we have
Ks C (6,a%5) € (6,1 — ) and Ks —1C (—a?8,—0) C (—1+6,—0).

Hence, by a direct calculation using (6.1) we have for any f € L%(R)

S LT = [ 1761+ f©)Pdg+ Fe)Pde + Fe =)

kez Ks (6,1—a25) (a25,1-5)
(6.2)
In particular, by restricting (6.2) to a subspace L?(Ls), where
Ls=(—00,—1+0)U(Ks—1)U(—=0,0) UKsU(1—0,00),
we obtain a convenient formula

SULTOR = [ 1f6=D+f@Pd  forany feL2Ly).  (63)

keZ g

For any natural number N and sufficiently small € = (V) > 0, we define a function
v € L*(R) by

fN:Z(11+_1[—)7 (6.4)

—k —k —k —k

a a a a
It = - ID =(- —€,— : 6.5
k (a—i—l 6’a—i—l)’ k ( a+1 & a—}—l) (6.5)

where
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Intuitively, one might think of fN as a linear combination of point masses

£ Z a*k/(at+1) — O—a—kj(a+1))-

We claim that
D,ifn € L*(Ls)  forall j € Z. (6.6)

Indeed, (6.6) follows immediately from

(=4,6) J<k—1,
o (IFUI) C{ (Ks—1)UKs j=kk+1,
(=00, —1+0)U(l—0d,00) j>k+2,

for k =0,..., N and for sufficiently small e = ¢(N) > 0, i.e.,

1 a®
. ~N+1(5_ —N-2 1 5) }
0<6<m1n{a < a(a+1)>’a <a+1 +

Let S be the frame operator corresponding to the affine system A(¢)). Note that
by Theorem 6.2, S is bounded. Our goal is to show that .S is not bounded from below.
Combining (6.3)—(6.6) we have

ISENIP =S KN, D )P =D (Dys v, To)|?

JEZ z€Z JEZ z€Z
N+1

= 30 f a6~ D)+ Al e =

Here, we used that for £ € Kj

148 - 1,-(6=1) =0,
@ = D) + fvla™9) =10 j=1,...,N,
(€ = Ty (€-1) = N1

The presence of cancellations at scales j = 1,..., N is due to translation-dilation linkage
of the quadruple of points {+a/(a + 1),£1/(a + 1)}. On the other hand,

1wl = 1wl = 2e(N + 1)

Since N is arbitrary, this shows that the frame operator S is not bounded from below.
Consequently, A(¢)) is not a frame.

Next, we will show that A7 (¢) is a frame for any choice of lattice A C Z. Since
A(v) is a Bessel sequence, Theorem 3.5 yields that A7 (¢) is a Bessel sequence as well.
Hence, it remains to establish the lower frame bound for A} (¢).

Let a = p/q, where p,q € N are relatively prime, and [ € N be such that A = [Z.
Let

Ji = max{j € Ng : p/ divides 1}, Jo = max{j € Ny : ¢/ divides 1}.
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Take any j € Z. Then, we have the equality of lattices a 7Z + A = aJZ <= lis an
integer multiple of a=7. Clearly, this is equivalent to ! being divisible by ¢’ if j > 0 or
[ divisible by p~7 if j < 0. Therefore,

0L+ N=0T0 —= —J, <j< Ty (6.7)
Consequently,

aIZ+N= cia_jZ for some ¢; > 2, where j < —Jj or j > Jo. (6.8)
J
The properties (6.7) and (6.8) enable us to identify the quasi-affine system A} (¢).
At the scales —J; < j < Jo, the quasi-affine system A} (1) coincides with the affine
system A(1)). However, outside of this finite range of scales the quasi-affine system is
obtained by oversampling the affine system at a rate ¢; > 2. This will lead to a simple
form of the frame operator S{ of the quasi-affine system A7 (¢)).
Indeed, suppose that j < —J; or j > Jo. By Definition 4 and (6.8) the quasi-affine
system AR (1) at the scale j is

) 1 .
a JZ B —IZAN . _ pa~I/e; L N—1/2 .
WPet) = (AmmaTales) = /(e Do),
Hence,
Z ‘(f Z‘ faTa —Ik/c; a1w>’
9€08HD ;) I kez

_35 anks/(afcj)dgl /!f ‘ w —]5)’ de.

CJ

The last step is a consequence of the fact that supp(a=7-) C (—a,a?) and that cj > 2.
Combining this with (6.7) yields

I = 5 o (S X ) [ e

ait2§,—al §)JU(ad §,a11245)

j=—J1 k€EZ Py A
Ja
> 30 WO f T4 (fo s fo g )MOPSE 69)

By (6.2),

> D f, Titby)

keZ
e, . . . pl—a?s ol
—o [ Jf@E- 1))+ f@gPacra [ f@ePdg el [ If@iE-1)Pde.
Ks ) a2§
= [ 1fe-a)+ ferae [ @R (610)
al Ks a’(a?6—1,—6)Ual (§,1—a?4)
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Take any f € L2(R) with ||f|| = 1 and let = ||S4(f)||>. By equations (6.9) and
(6.10), [ [/I* < n, where

J2
Z={¢:|¢| <a M U {€: |¢] > a5} U U {¢:d70 < |¢] < a?(1—a®d)}.

j=—J
Using (6.10) one can show that
hi= /aa'5<|£|<aj+15 F€)Pde
<o WPz [ Ife-a)+f@Pder [ |fePae
ait16<|€|<alt2s aiKs a?6<[€|<a?(1—a?d)

<2 o If@Pag+2. 611)
aIt16<|€|<alt2s

Thus, we have a bound I; < 2(I;11 + 7). Combining this with the fact that 17,41 <17
yields I; <6 - 2/2=ip for j < J,. Consequently,

J2
1712 < [ @R+ Y L <oz,

j=—J1+1

This proves that the frame operator S{ of A% (¢) is bounded from below by a constant
depending only on J; and Jo, thus completing the proof of Theorem 6.1. U

Remark 9. By Theorem 3.8, the frame bounds of the quasi-affine systems A3 (¢) are not
uniform for all A C Z. More precisely, the lower frame bound of A% (¢)) must approach
0 for some choice of sparser and sparser lattices A. By analyzing the proof of Theorem
6.1 it is not difficult to show that this happens for the family of lattices A; = (pq)”/Z as
J — oo. This is due to the fact that in this case the quasi-affine system A7 (¢) coincides
with the affine system A(¢)) at the scales —J < j < J and the same argument as in the
first part of the proof of Theorem 6.1 applies.

Theorem 6.1 says that the lower frame bound is not preserved in general when we
move from a quasi-affine system A} () to the corresponding affine system A(¥) for
rational non-integer dilations. It is not known whether the same could happen with the
upper bound. This leads to the following open problem.

Question 1. Let ¥ C L*(R") and A € GL,(Q). Suppose that AR () is a Bessel
sequence for some oversampling lattice Ag C Z™. Is A(¥) necessarily a Bessel sequence?
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