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Abstra
t of the Ph.D. dissertation Wavelet frames and their dualsThis thesis is 
on
erned with 
omputational and theoreti
al aspe
ts of wavelet frameanalysis in higher dimensions and, in parti
ular, with the study of so-
alled dual framesof wavelet frames. A frame is a system of �simple� fun
tions or building blo
ks whi
hdeliver ways of analyzing signals. The signals are then represented by linear 
ombina-tions of the building blo
ks with 
oe�
ients found by an asso
iated frame, 
alled a dualframe. A wavelet frame is a frame where the building blo
ks are stret
hed (dilated) andtranslated versions of a single fun
tion; su
h a frame is said to have wavelet stru
ture.The dilation of the wavelet building blo
ks in higher dimension is done via a squarematrix whi
h is usually taken to be integer valued. In this thesis we step away from the�usual� integer, expansive dilation and 
onsider more general, expansive dilations.In most appli
ations of wavelet frames it is essential to have a dual frame with thesame stru
ture, but this is not always the 
ase. We explore the relationship betweendual frames of a wavelet frame. We show the existen
e of a �ni
e� wavelet frame forwhi
h the 
anoni
al 
hoi
e of a dual frame is not a wavelet system. At the same time,this �ni
e� wavelet frame has in�nitely many other �ni
e� dual wavelet frames.To avoid the possible la
k of wavelet stru
ture of a dual frame, we develop a 
on-stru
tion pro
edure for pairs of dual frames whi
h both have wavelet stru
ture. Usingthis simple pro
edure we 
onstru
t pairs of dual, bandlimited wavelet frames with goodtime lo
alization and other attra
tive properties. Furthermore, the dual wavelet framesare 
onstru
ted in su
h a way that we are guaranteed that both frames will have thesame desirable features. The 
onstru
tion pro
edure works for any real, expansive di-lation.A quasi-a�ne system is a variant of the wavelet system that has been used su
-
essfully in the study of properties of wavelet systems for integer dilations. We extendthe investigation of su
h quasi-a�ne systems to the 
lass of rational, expansive dila-tions and introdu
e a new family of oversampled quasi-a�ne systems. We show thatthe wavelet system is a frame if, and only if, the 
orresponding family of oversampledquasi-a�ne systems are frames with uniform frame bounds. We also prove a similarequivalen
e result between pairs of dual wavelet frames and dual quasi-a�ne frames. Wethen 
hara
terize when the 
anoni
al dual frame of an oversampled quasi-a�ne frameis also a quasi-a�ne system. Finally, we un
over some fundamental di�eren
es betweenthe integer and rational settings by exhibiting an example of a quasi-a�ne frame su
hthat its wavelet 
ounterpart is not a frame.





Resumé af ph.d.-afhandlingen Wavelet frames og deres dualerDenne afhandling omhandler beregningsmæssige og teoretiske aspekter af wavelet-fra-meteori i �ere dimensioner og, i særdeleshed, studiet af såkaldte duale frames. Enframe er et system af simple funktioner eller byggesten, som kan bruges til at analyseresignaler. Signalet bliver repræsenteret ved en linearkombination af byggestenene, hvorkoe�
ienter udregnes ved hjælp af en tilknyttet frame kaldet en dual frame. En wavelet-frame er en frame, hvor byggestenene er skalerede (dilaterede) og translaterede versioneraf en enkelt funktion. Vi siger, at framen har waveletstruktur. Dilationen af wavelet-byggestenene i højere dimensioner bliver sædvanligvis udført ved en kvadratisk matrixmed heltalsværdier. I denne afhandling betragtes mere generelle dilationsmatri
er.I langt de �este anvendelser af wavelet-frames er det afgørende at være i besiddelseen dual frame med waveletstruktur, men dette er ikke altid tilfældet. Vi undersøgerforholdet mellem dualer af en wavelet-frame. Vi viser, at der eksisterer wavelet-frames,for hvilke det kanoniske valg af dual ikke har waveletstruktur, men hvor der �ndesuendeligt mange alternative waveletdualer.For at undgå problemer med manglende waveletstruktur af en dual frame udviklesen metode til konstruktion af par af duale frames, hvor begge frames har wavelet-struktur. Vi konstruerer par af duale, båndbegrænsede wavelet-frames med attraktiveegenskaber. De duale wavelet-frames konstrueres endvidere således, at begge frames vilhave samme gode egenskaber. Konstruktionspro
eduren virker for alle reelle, ekspansivedilationsmatri
er.Quasi-a�ne systemer er en variation af det almindelige waveletsystem, der normaltbenyttes i studiet af waveletsystemer for heltalsdilationer. Vi udvider studiet af sådannequasi-a�ne systemer til klassen af rationelle, ekspansive dilationer og introdu
erer en nyfamilie af oversamplede quasi-a�ne systemer. Vi viser, at et waveletsystem er en frame,hvis og kun hvis den tilsvarende familie af oversamplede quasi-a�ne systemer er framesmed uniforme framegrænser. Vi beviser også lignende ækvivalensresultater for par afduale wavelet-frames og par af duale quasi-a�ne frames. Desuden karakteriserer vi,hvornår den kanoniske dual af en oversamplet quasi-a�n frame også er et quasi-a�ntsystem. Endeligt afdækker vi nogle fundamentale forskelle mellem den rationelle ogden heltallige situation ved at give et eksempel på en quasi-a�n frame, hvis tilhørendewaveletsystem ikke er en frame.
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CHAPTER 1
Introdu
tionThe �rst se
tion, Se
tion 1, is a brief introdu
tion to wavelet frame analysis and theresear
h presented in this thesis. Se
tion 2 is a review of mathemati
al de�nitions
entral to the thesis. The last se
tion of this introdu
tory 
hapter is a survey of thenew s
ienti�
 results obtained in the four papers [6, 7, 25, 26℄ whi
h are presented inthe thesis as Papers I, II, III, and IV. The survey is found in Se
tion 3.1. MotivationThe traditional Fourier analysis yields some of the most versatile methods in engineering,and it is used in almost every bran
h of engineering. Wavelet analysis is a modernalternative to Fourier methods; it has its origin in mathemati
s, quantum physi
s,ele
tri
al engineering, and seismi
 geology.Wavelet frames are a redundant version of the standard wavelet transform; theredundan
y implies that we use more data than stri
tly ne
essary to des
ribe the signal;the redundan
y, or surplus of data, a
ts as our safety net in 
ases of 
orruption or lossof data.The prin
ipal obje
tives in signal pro
essing te
hniques en
ompass 
ompression andanalysis of signals by representing these in terms of 
onvenient building blo
ks. Inparti
ular, we want expansions of a signal f of �nite energy, i.e., f ∈ L2(Rn) = {f :

Rn → C :
∫
Rn |f(x)|2dx <∞},

f(x) =
∑

k∈I
ckfk(x) in L2(Rn),where the fun
tions fk ∈ L2(Rn) are our basi
 building blo
ks. The 
oe�
ient ckshould be straightforward to 
al
ulate; in most appli
ations it is also 
ru
ial that thereare only few important 
oe�
ients {ck}. In wavelet analysis the building blo
ks {fk}have a parti
ular stru
ture: they are stret
hed (dilated) and translated versions of asingle �os
illating� fun
tion.In the standard approa
h for expressing signals in terms of wavelet building blo
ks,one lets the building blo
ks form an orthonormal basis. However, the basis requirement
an be so restri
tive on the building blo
ks that we sometimes have to give up ondesirable properties. One way to over
ome this issue is to repla
e the basis approa
hwith the more general approa
h of frames. Frames generalize the notion of bases in



2 CHAPTER 1. INTRODUCTIONsu
h a way that we obtain mu
h more �exibility in the 
onstru
tion of our buildingblo
ks {fk} and more freedom in the 
hoi
e of the 
oe�
ients {ck} and yet still sorestri
tive that the numeri
al stability of the bases approa
h is preserved. For framesthe 
oe�
ients {ck} are found by using a so-
alled dual frame, either the 
anoni
al dualor an alternate dual frame.One of the motivations of the resear
h presented in this thesis was to step away fromthe �standard� wavelet systems with integer, expansive dilations and examine 
ompu-tational and theoreti
al aspe
ts of wavelet systems with general expansive dilations. Itis not only of theoreti
al interest to 
onsider non-integer dilations sin
e non-integer set-tings in some 
ases allow for a favourable, dense sampling of the time-frequen
y plane.The standard fast wavelet algorithm from multiresolution analysis breaks down for ra-tional dilations, but Selesni
k and Bayram [1℄ re
ently developed a redundant dis
reteframe wavelet transform based on non-integer, rational dilations, see also [22℄.Frames are a generalization of orthonormal bases, hen
e the major reason to 
onsiderwavelet frames in pla
e of orthonormal wavelet bases is to obtain more �exibility andfreedom. The representation of a fun
tion or signal in terms of a frame involves eitherthe 
anoni
al dual or an alternate dual. But the 
anoni
al dual of a wavelet frameneed not have wavelet stru
ture; and even worse, there might not be any (
anoni
al oralternate) dual with wavelet stru
ture. Sin
e only wavelet frames with wavelet duals areuseful (e.g., from the point of view that the fast wavelet algorithm will not be availablefor either the analysis or synthesis of the signal if there is no wavelet dual), the freedom,in these 
ases, ends up being de
eptive. This, among other things, motivated the jointwork with Mar
in Bownik in Paper I on the relationship between the 
anoni
al dual andalternate duals. In parti
ular, we show that �ni
e� wavelet frames 
an have many �ni
e�alternate dual wavelet frames and at the same time a 
anoni
al dual whi
h is not evena wavelet system. Hen
e, when working with the 
anoni
al dual one has to pay 
loseattention to the stru
ture of this dual. In Paper II and III the possible la
k of waveletstru
ture of dual frames is avoided altogether by 
onstru
ting pairs of (non-
anoni
al)dual wavelet frames. The generators of this pair of dual frames are given in a veryexpli
it way and have attra
tive properties.To improve results in appli
ations involving multidimensional data the unde
imatedwavelet transform is sometimes preferred to the standard wavelet transform, see forexample [10℄. This approa
h adds shift invarian
e and redundan
y to the algorithm;indeed, the asso
iated algorithm is a frame wavelet de
omposition algorithm withoutdown sampling. The asso
iated theoreti
al tool is the so-
alled quasi-wavelet (also
alled quasi-a�ne) system whi
h is a shift invariant 
ounterpart of the wavelet (also
alled a�ne) system. In Paper IV with Mar
in Bownik we initiate the study of su
hsystems and their oversampled 
ounterpart in multiple dimensions for rational, expan-sive dilations. We prove equivalen
e results between a�ne and quasi-a�ne systems,and we 
hara
terize quasi-a�ne frames whose 
anoni
al dual frame takes the form ofa quasi-a�ne system. Equivalent results on a�ne and quasi-a�ne systems are usefulbe
ause they, in the study of wavelet systems, allow us to repla
e the dilation invariantwavelet system with the mu
h simpler shift invariant quasi-a�ne system.



2. Preliminaries and notation 32. Preliminaries and notation2.1. Frames in Hilbert spa
esWe are 
on
erned with series expansions in separable Hilbert spa
es. So, let H be aseparable Hilbert spa
es with inner produ
t 〈·, ·〉 linear in the �rst entry. Our 
entralde�nition is that of a frame for H.De�nition 1. A frame is a 
ountable 
olle
tion of ve
tors {fj}j∈indexsetJ su
h that thereare 
onstants 0 < C1 ≤ C2 <∞ satisfying
C1 ‖f‖2 ≤

∑

j∈J
|〈f, fj〉|2 ≤ C2 ‖f‖2 for all f ∈ H. (2.1)If only the upper bound in the inequality (2.1) holds, then {fj} is said to be a Besselsequen
e with Bessel 
onstant C2.For a Bessel sequen
e {fj}, we de�ne the frame operator of {fj} by

S : H → H, Sf =
∑

j∈J
〈f, fj〉fj.If {fj} is a frame, this operator is bounded, invertible, and positive. A frame {fj} issaid to be tight if we 
an 
hoose C1 = C2; this is equivalent to S = C1I, where I is theidentity operator on H. If furthermore C1 = C2 = 1, the sequen
e {fj} is said to be aParseval frame.Two Bessel sequen
es {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj for all f ∈ H.It 
an be shown that two su
h Bessel sequen
es indeed are frames, and we shall saythat the frame {gj} is dual to {fj}, and vi
e versa. At least one dual always exists,it is given by {S−1fj} and 
alled the 
anoni
al dual. A frame that is also a S
hauderbasis is 
alled a Riesz basis. A frame that is not a S
hauder basis is 
alled a redundantframe. Redundant frames have several duals; a dual whi
h is not the 
anoni
al dual is
alled an alternate dual.2.2. Wavelet frames in L

2(Rn)Wavelet frames are frames with a dilation and translation stru
ture in H = L2(Rn). Fix
n ∈ N, and let f ∈ L2(Rn). The translation by y ∈ Rn is Tyf(x) = f(x−y); dilation byan n × n non-singular matrix B is DBf(x) = |detB|1/2 f(Bx); modulation by b ∈ Rnis Ebf(x) = e2πi〈b,x〉f(x). For f ∈ L1(Rn), the Fourier transform is de�ned by

F f(ξ) = f̂(ξ) =

∫

Rn
f(x)e−2πi〈ξ,x〉dxwith the usual extension to L2(Rn). These four operations are unitary as operators on

L2(Rn), and they play a key role in wavelet analysis. The 
ommutator relations belowwill be used repeatedly. For k ∈ Rn, j ∈ Z and B̃ = P−1BP for some P ∈ GLn(R), wehave
TkDB = DBTBk, DB F = F D(Bt)−1 , D

B̃jDP = DPDBj . (2.2)



4 CHAPTER 1. INTRODUCTIONThe lo
al 
ommutant of a system of operators U at the point f ∈ L2(Rn) is de�ned as
Cf (U) :=

{
T ∈ B(L2(Rn)) : TUf = UTf ∀U ∈ U

}
.A (full-rank) latti
e Γ in Rn is a point set of the form Γ = PZn for some P ∈ GLn(R).The determinant of Γ is d(Γ) = |detP |; note that the generating matrix P is not uniqueand d(Γ) is independent of the parti
ular 
hoi
e of P . We refer to Appendix A.2 formore fa
ts on latti
es in Rn.Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), let Γ be a latti
e in Rn, and let A be a �xed n×nexpansive matrix, i.e., all eigenvalue λ of A satisfy |λ| > 1. The wavelet (or a�ne)system of unitaries A asso
iated with the dilation A and translation latti
e Γ is de�nedas A = {DAjTγ : j ∈ Z, γ ∈ Γ}. The wavelet system A(Ψ) generated by Ψ is de�ned as

A(Ψ) = {ψj,γ : j ∈ Z, γ ∈ Γ, ψ ∈ Ψ} , (2.3)where
ψj,γ := DAjTγψ = |detA|j/2 ψ(Aj · −γ) for j ∈ Z, γ ∈ Γ.If we need to stress the dependen
e of the underlying dilation matrix A and translationlatti
e Γ, we say that the wavelet system A(Ψ) is asso
iated with (A,Γ), or we use thenotation A(Ψ, A,Γ) for (2.3).We say that Ψ is a frame wavelet if A(Ψ) is a frame for L2(Rn), and say that Ψ and

Φ is a pair of dual frame wavelets if their wavelet systems are dual frames. We usuallydenote the transpose of the (�xed) dilation matrix A by B = At.A generalized multiresolution analysis (GMRA) is a sequen
e {DAj (V )}j∈Z of 
losedsubspa
es of L2(Rn) with the following four properties:(a) V ⊆ DA(V ),(b) ∪j∈ZDAj (V ) = L2(Rn),(
) ∩j∈ZDAj (V ) = {0},(d) TγV ⊆ V for all γ ∈ Γ.Whenever 
ondition (d) is satis�ed, we say that V is shift invariant with respe
t to Γ.A frame wavelet Ψ is said to be asso
iated with a GMRA if its spa
e of negative dilates
V (Ψ) := span{ψj,γ : j < 0, γ ∈ Γ} (2.4)satis�es 
onditions (a)�(d) with V = V (Ψ).Finally, the Gabor system generated by Ψ is de�ned as {EλTγψ : λ ∈ Λ, γ ∈ Γ, ψ ∈ Ψ}for latti
es Λ and Γ in Rn.A note on the dilation matrix and the translation latti
eIn general our only requirement on the dilation matrix A ∈ GLn(R) is that it is expan-sive, in other words, that it has eigenvalues stri
tly greater than one in absolute value(see Appendix A.1 for a list of equivalent 
onditions). However, we will sometimes putfurther restri
tions on A (or Γ). In parti
ular, we will 
onsider the following 
ases:the latti
e preserving dilation, i.e., AΓ ⊂ Γ, and the rank preserving dilation, i.e., theinterse
tion AΓ ∩ Γ is a full-rank latti
e. It is obvious that latti
e preserving dilationsare rank preserving.



3. Survey of the new results 5Furthermore, it is usually not ne
essary to 
onsider arbitrary translation latti
es Γ,and one is often able to restri
t attention to the standard translation latti
e Zn. Indeed,for A ∈ GLn(R) expansive and Γ = PZn for some P ∈ GLn(R) 
onsider the waveletsystem A(Ψ, A,Γ). By the 
ommutator relations (2.2), we see
A
(
DPΨ, Ã,Zn

)
= DP (A(Ψ, A,Γ)) , (2.5)where the matrix Ã := P−1AP is similar to A. Observe that the set of all matri
essimilar to an expansive matrix is pre
isely the set of all expansive matri
es. Sin
e DPis unitary, properties su
h as the frame and Bessel property 
arry over between the twosystems. Hen
e, in these 
ases it is possible to redu
e studies of wavelet systems withgeneral translation latti
e to the setting of integer latti
e.Therefore, we 
an without loss of generality usually restri
t attention to waveletsystems asso
iated with (A,Zn), i.e.,

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ} ,as is the 
ase in Paper IV. Moreover, whenever we take Γ = Zn, latti
e preservingdilations simply mean integer dilations A ∈ GLn(Z) and rank preserving dilationssimply mean rational dilations A ∈ GLn(Q). This is a simple 
onsequen
e of thefollowing two fa
ts:1) A ∈ GLn(Z) ⇔ AZn ⊂ Zn2) A ∈ GLn(Q) ⇔ AQn ⊂ Qn ⇔ AZn ∩ Zn has full rank.Of 
ourse, when we redu
e our study to the standard translation latti
e Zn, we needto re
all that, e.g., a result on rational dilations and translation latti
e Zn a
tually is aresult on rank preserving dilations and general translation latti
es Γ.Nevertheless, in Paper III, we a
tually do 
onsider the general 
ase of wavelet sys-tems asso
iated with (A,Γ) for arbitrary Γ. The reason is that we, in this paper, want to
onstru
t pairs of dual wavelet frames for some given expansive dilation A ∈ GLn(R).Of 
ourse, we 
an still apply the redu
tion step in (2.5), but this 
hanges the dilationmatrix A (to Ã).3. Survey of the new resultsThe following se
tion is a survey of the new results and their relation to known results.3.1. Canoni
al and alternate duals of a wavelet frame (Paper I)Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The 
anoni
al dual frame of a Gabor frame {EλTγΨ}always takes the form of a Gabor system. In other words, the 
anoni
al dual frame isof the form {EλTγΦ} for some Φ = {φ1, . . . , φL} ⊂ L2(Rn). Consequently, in Gaboranalysis, the frame and its 
anoni
al dual frame are always systems of fun
tions withthe same stru
ture. This is not the 
ase for wavelet frames. Indeed, Daube
hies [17℄ andChui and Shi [14℄ proved that the 
anoni
al dual of a wavelet Riesz basis need not havewavelet stru
ture. Hen
e, in parti
ular, the 
anoni
al dual frame of a wavelet frame neednot be a wavelet system. In Paper I with Mar
in Bownik we explore the relationshipbetween wavelet stru
ture of 
anoni
al and alternate dual frames of a wavelet frame.



6 CHAPTER 1. INTRODUCTIONThe 
anoni
al dual of a wavelet frame A(Ψ) = {DAjTkψ}j∈Z,k∈Zn,ψ∈Ψ is given as
{
S−1DAjTkψi

}
j∈Z,k∈Zn,i∈{1,...,L}

=
{
DAjS−1Tkψi

}
j∈Z,k∈Zn,i∈{1,...,L}

=
{
DAjηk,i

}
j∈Z,k∈Zn,i∈{1,...,L}

,where S is the frame operator ofA(Ψ), and {ηk,i} is a family of fun
tions, not ne
essarilywith translation stru
ture, indexed by {1, . . . , L} × Zn. In the 
al
ulations above weused that the frame operator 
ommutes with dilation; the 
al
ulations show that weonly need to worry about the stru
ture of the 
anoni
al dual on one s
ale, e.g., j = 0.The 
anoni
al dual takes the form of a wavelet system generated by |Ψ| = L fun
-tions, i.e.,
{
S−1DAjTkψi

}
j∈Z,k∈Zn,i∈{1,...,L}

=
{
DAjTk(S

−1ψi)
}
j∈Z,k∈Zn,i∈{1,...,L}

= {DAjTkφi}j∈Z,k∈Zn,i∈{1,...,L} ,pre
isely when TkS−1ψ = S−1Tkψ for all ψ ∈ Ψ and k ∈ Zn; that is, pre
isely when
S−1 ∈ Cψ({Tk : k ∈ Zn}) for all ψ ∈ Ψ. Observe that the lo
al 
ommutant Cψ({Tk :
k ∈ Zn}) is likely to be a lot bigger than the 
ommutant {Tk : k ∈ Zn}′.One of the major open problems 
on
erning the 
anoni
al dual of a wavelet frame isto give a 
hara
terization of those wavelet frames having a 
anoni
al dual with waveletstru
ture. One result in this dire
tion is due to Bownik and Weber [8℄ who showed thatif the 
anoni
al dual of a wavelet frame has the wavelet stru
ture with the same numberof generators, then the spa
e of negative dilates is shift invariant:Theorem 3.1 (Theorem 1 in [8℄). Let A ∈ GLn(Z) be expansive and Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn). Suppose that the 
anoni
al dual of a wavelet frame {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ}has a wavelet stru
ture, i.e., it is of the form {φj,k : j ∈ Z, k ∈ Zn, φ ∈ Φ} for some framewavelet Φ = {φ1, . . . , φL}. Then, the spa
e of negative dilates

V (Ψ) = span{ψj,k : j < 0, k ∈ Zn, ψ ∈ Ψ}is shift invariant with respe
t to Zn.Remark 1. For a Riesz wavelet Ψ the other dire
tion also holds, i.e., shift invarian
e of
V (Ψ) implies wavelet stru
ture of the 
anoni
al dual.This result gives us a ne
essary 
ondition for the 
anoni
al dual of a wavelet frameto have wavelet stru
ture, but the 
hara
terization problem is still open, even for dyadi
dilation in one dimension, i.e., A = 2.Now, let us take a 
loser look at the example of Daube
hies [17℄ and Chui and Shi[14℄ that exhibits a wavelet Riesz basis whose 
anoni
al dual is not a wavelet system.Let ψ ∈ L2(R) be the generator of an orthonormal wavelet basis in L2(R) with dyadi
dilation. De�ne η as a perturbation of ψ

η(x) = ψ(x) + ε21/2ψ(2x) ≡ ψ(x) + εD2ψ(x) for x ∈ R, (3.1)



3. Survey of the new results 7for some �xed 0 < ε < 1. In [14℄ it is shown that the fun
tion η generates a waveletRiesz basis {D2jTkη}j,k∈Z whose (
anoni
al) dual is not of the form {D2jTkφ} for any
φ ∈ L2(R). This argumentation 
an be extended to show that the 
anoni
al dual
{S−1ηj,k} is not of the form

{D2jTkφ : j, k ∈ Z, φ ∈ Φ}for any �nite set Φ ⊂ L2(R) of generators, see Appendix B.1.For this last statement to make sense, we need to explain pre
isely what is under-stood by a wavelet frame with a 
anoni
al dual frame with more generators than theframe itself. For a pair of dual frames {ψj,k} and {φj,k} in L2(R) we have a represen-tation of elements in L2(R) as
f =

∑

j,k∈Z

〈f, φj,k〉ψj,k for all f ∈ L2(R). (3.2)From this representation we observe that there is a very spe
i�
 pairing of elementsbetween the dual frames whi
h we have to respe
t: the (z, l)-th element of {φj,k} isused to �nd the 
oe�
ient for the mat
hing element in {ψj,k} whi
h obviously is ψz,l.Hen
e, if we want to speak of a dual frame with more generators than the waveletframe itself, we need to pay 
lose attention to this pairing (or duality) of elements. For
anoni
al dual frames, as argued above, we only need to verify the pairing on one of thes
ales j ∈ Z. Now, to understand what is meant by a 
anoni
al dual frame with moregenerators, we lift the pairing to another s
ale j ≥ 0 or, more generally, to a sparsertranslation latti
e. Let ψ ∈ L2(R) be the generator of a frame {ψj,k}j,k∈Z with dyadi
dilation. Suppose that the 
anoni
al dual of {ψj,k} is not a wavelet system generatedby one fun
tion. The idea is to 
onsider the wavelet frame {ψj,k} as a wavelet systemof the form
{ψj,k}j,k∈Z =

{
D2jTPkψ̃ : j, k ∈ Z, ψ̃ ∈ {ψ, Tψ, . . . , TP−1ψ}

}for some P ∈ N. Now, it might happen that this system (that is, the right hand sidesystem) has a 
anoni
al dual with wavelet stru
ture as systems on the sparser translationlatti
e PZ with P generators; for further details see also page 23 in Appendix B.Suppose for simpli
ity that the 
anoni
al dual frame is generated by two fun
tions
{φ1, φ2}. For this to make sense, we need to lift the duality to the translation latti
e
2Z, where we mat
h {D2jT2kψ} ∪ {D2jT2k(Tψ)} and {D2jT2kφ1} ∪ {D2jT2kφ2} as dualframes with equal number of generators. Equivalently, we 
an say that we lift theduality to s
ale j = 1, where we have the well-known form of dual frames {ψj,k} =
{D2jTk(D2ψ)}∪{D2jTk(D2Tψ)} and {D2jTkD2φ1}∪{D2jTkD2φ2}. These two equivalentlifting s
hemes are based on the paraphrasing

{ψj,k}j,k∈Z =
{
D2jT2kψ̃ : j, k ∈ Z, ψ̃ ∈ {ψ, Tψ}

}
,and

{ψj,k}j,k∈Z =
{
D2jTkψ̃ : j, k ∈ Z, ψ̃ ∈ {D2ψ,D2Tψ}

}
,



8 CHAPTER 1. INTRODUCTIONrespe
tively.Let us return to the example on the Riesz wavelet η from (3.1). The 
anoni
aldual {S−1ηj,k} is not a wavelet system generated by one fun
tion, hen
e we say that
{S−1ηj,k} does not have wavelet stru
ture. Sin
e we 
an even say that {ηj,k} is nota wavelet system generated by any �nite number of fun
tions, we should think of this
anoni
al dual as being very �far from� having wavelet stru
ture. The notion of theperiod of a wavelet frame in L2(R) is introdu
ed as a measure of how �far from� we are;it tells us something about how 
lose to or how far from the 
anoni
al dual frame is tohaving wavelet stru
ture.De�nition 2. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet asso
iatedwith an integer dilation fa
tor a, |a| ≥ 2. The period of Ψ is the smallest integer p ≥ 1su
h that for all f ∈ span {Tkψ : k ∈ Z, ψ ∈ Ψ},

TpkS
−1f = S−1Tpkf for all k ∈ Z,where S is the frame operator of the wavelet frame generated by Ψ. If there is no su
h

p, we say that the period of Ψ is ∞.We note that there is no dilation operator present in the de�nition above simplybe
ause dilation 
ommutes with the (inverse) frame operator. One 
an show that the
anoni
al dual of A(Ψ) has the wavelet stru
ture generated by |Ψ| fun
tions if, and onlyif, the period of Ψ is one. Moreover, in Paper I we show the following result on therelationship between the period of a wavelet frame and the number of generators of the
anoni
al dual.Theorem 3.2 (Proposition 2.3 in Paper I). Suppose that Ψ ⊂ L2(R) is a frame waveletwith an integer dilation fa
tor a, |a| ≥ 2. For any nonnegative integer M ∈ N, thefollowing statements are equivalent:(i) P (Ψ) |M , i.e., the period of Ψ, denoted P (Ψ), divides M.(ii) There exist ML fun
tions Φ = {φ1, . . . , φML} su
h that {DajTMkφ}j,k∈Z,φ∈Φ isthe 
anoni
al dual of {DajTkψ}j,k∈Z,ψ∈Ψ = {DajTMkψ}j,k∈Z,ψ∈ΨM
, where

ΨM := {Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ} .Hen
e, if the period P (Ψ) of a frame wavelet Ψ is �nite, then the 
anoni
al dualframe is a wavelet system generated by P (Ψ) · |Ψ| fun
tions, and this is the least numberof generators. From Proposition 3.2 it is also obvious that any tight frame wavelet hasperiod one.Returning to the Riesz wavelet η from (3.1), we know that (ii) is not satis�ed forany M ∈ N, hen
e P (η) = ∞. The following result is a re�nement of Theorem 3.1 andRemark 1.Proposition 3.3 (Proposition 2 in [8℄). Let M ∈ N. If Ψ is a frame wavelet and theperiod of Ψ divides M , then V (Ψ) is shift invariant by the latti
e MZ. In addition,if Ψ is a Riesz wavelet, then the period of Ψ divides M if, and only if, V (Ψ) is shiftinvariant by the latti
e MZ.



3. Survey of the new results 9From Remark 1 above we 
on
lude that the spa
e of negative dilates V (η) is notshift invariant. In [18℄ this is veri�ed by dire
t 
al
ulations. From the re�nement inProposition 3.3 we 
on
lude that V (η) is not even shift invariant with respe
t to anysublatti
e of Z. This is veri�ed by dire
t 
al
ulations in Appendix B.2.We return to the main 
on
lusion from the example of Daube
hies [17℄ and Chuiand Shi [14℄: the 
anoni
al dual frame of a wavelet frame need not be a wavelet system.Sin
e their example involved a non-biorthogonal Riesz wavelet, it has no alternate dualwavelet frames as well, and one might ask if the existen
e of an alternate dual framewith wavelet stru
ture would imply wavelet stru
ture of the 
anoni
al dual. In general,very little is known about the 
anoni
al dual frame of a wavelet frame, and this questiondeals with some fundamental interrelation aspe
ts of the 
anoni
al dual and alternateduals. The main result in Paper I is a negative answer to the question:Theorem 3.4 (Theorem 3.1 in Paper I). For all J ∈ N, there exists a frame wavelet
ψ ∈ L2(R) su
h that:(i) ψ̂ is C∞ and 
ompa
tly supported,(ii) its 
anoni
al dual frame is not a wavelet system generated by fewer than 2Jfun
tions,(iii) there are in�nitely many ψ̃ su
h that ψ and ψ̃ form a pair of dual wavelet frames.

1

ξ
−1
2N

1
2N

2
2N

−2
2N

εψ̂1

−

1
2

−

1
4

ψ̂0

1
2

1
4

3
4

ε

ψ̂0

εψ̂1

Figure 1: Sket
h of the graph of a fun
tion ψ̂ = ψ̂0 + εψ̂1 satisfying the three 
onditions inTheorem 3.4 with J = N − 3 ∈ N.This 
laim (with J = 1) was asserted by Daube
hies and Han [18℄, but the originalargument in [18℄ uses an in
orre
t formula for the frame operator of a wavelet systemowing to a simple 
hange of sign mistake. This invalidates the original proof to the extentthat an easy remedy appears to be doubtful. Therefore, there was a need to providean alternative proof of Theorem 3.4. This was a

omplished by Paper I. Instead oftrying to work dire
tly with the frame operator as in [18℄, we use a less dire
t approa
husing (the negation of) Proposition 3.3. The 
onstru
ted fun
tion ψ satisfying the three
onditions in Theorem 3.4 is sket
hed in Figure 1.3.2. Constru
tions of pairs of dual wavelet frames (Paper II and III)In the previous se
tion we saw that duals and, in parti
ular, the 
anoni
al dual of awavelet frame need not have wavelet stru
ture. In Paper II and III we therefore relegatethe 
anoni
al dual to the ba
kground and develop 
onstru
tion pro
edures for pairs ofdual (non-
anoni
al) wavelet frames for arbitrary real, expansive dilations. This work



10 CHAPTER 1. INTRODUCTIONwas motivated by the existen
e of similar 
onstru
tion pro
edures for pairs of dualGabor frames [12℄ whi
h naturally lead to the question whether 
orresponding methods
ould be developed in the wavelet settings. We 
onsider the one-dimensional settings
L2(R) in Paper II and the extension to L2(Rn) in Paper III.Christensen [12℄ uses 
hara
terizing equations for dual Gabor frames to 
onstru
tpairs of dual Gabor frames with generators given in a very expli
it way. Consequently, inPaper II and III we use 
hara
terizing equations for dual wavelet frames. The existen
eof su
h equations was originally proved by Frazier, Garrigós, Wang, and Weiss [19℄in the dyadi
 setting. Later it was extended by Bownik [2℄ to the setting of integer,expansive dilations and by Chui, Czaja, Maggioni, and Weiss [13℄ to the setting of real,expansive dilations. A proof of Theorem 3.5 
an be found in Se
tion 4 of Paper IV.Theorem 3.5 (Theorem 4 in [13℄). Let A ∈ GLn(R) be expansive and Ψ = {ψ1, . . . , ψL},
Φ = {φ1, . . . , φL} ⊂ L2(Rn). Suppose A(Ψ) and A(Φ) are Bessel sequen
es in L2(Rn).Then, A(Ψ) and A(Φ) are dual frames if, and only if,

L∑

l=1

∑

j∈Z

ψ̂l(B
−jξ)φ̂l(B−jξ) = 1 for a.e. ξ, (3.3)

L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = 0 for a.e. ξ and all α ∈ Zn \ {0}. (3.4)Chara
terizing equations for dual Gabor frames 
an be expressed in time domainwhile we see that equations (3.3) and (3.4) are 
onditions in the Fourier domain. Thisindi
ates that the 
onstru
tion of wavelet frames will take pla
e in the Fourier domainas opposed to the time domain 
onstru
tions in [12℄.The setup will be as follows. We 
onsider wavelet systems in the general settingwith real, expansive dilation A ∈ GLn(R) and a latti
e Γ in Rn, i.e.,

{DAjTγψ}j∈Z,γ∈Γ
,where the Fourier transform of ψ has 
ompa
t support. Our aim is, for any given real,expansive dilation matrix A, to 
onstru
t wavelet frames with attra
tive features andwith a dual frame generator of the form

φ =
b∑

j=a

cjDAjψ (3.5)for some expli
itly given 
oe�
ients cj ∈ C and a, b ∈ Z. The idea behind the 
on-stru
tion is simple: �rst, we make a number of assumptions of a fun
tion ψ ∈ L2(Rn);then, we introdu
e φ in su
h a way that 
onditions (3.3) and (3.4) hold and 
on
ludeby Theorem 3.5 that ψ and φ generates a pair of dual wavelet frames.Our main �ndings in Paper II 
an be stated as follows.Theorem 3.6 (Theorem 2.3 in Paper II). Let d ∈ N, a > 1, and ψ ∈ L2(R). Supposethat ψ̂ is a real-valued fun
tion with supp ψ̂ ⊂
[
−ac,−ac−d

]
∪
[
ac−d, ac

] for some c ∈ Z,and that ∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R. (3.6)



3. Survey of the new results 11Let b ∈ (0, 2−1a−c
]. Then the fun
tion ψ and the fun
tion φ de�ned by
φ(x) = bψ(x) + 2b

d−1∑

j=1

a−jψ(a−jx) for x ∈ R, (3.7)generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).The prin
ipal advantage of having a dual generator of the form (3.7), or more gen-erally of the form (3.5), is that it will inherit properties from ψ preserved by dilationand linearity, e.g., vanishing moments, good time lo
alization and regularity properties.For a more 
omplete a

ount of su
h matters we refer to Paper II, but we remark that,as a potential drawba
k, the wavelet frame generators will not have 
ompa
t supportin the time domain leading to in�nite impulse response �lters.Figure 2 shows an example of a pair of generators ψ and φ in the Fourier domain 
on-stru
ted by Theorem 3.6. In Paper III we generalize and extend Theorem 3.6 to higherdimensions; we refer to Corollary 2.5 in Paper III for a generalization of Theorem 3.6.
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Figure 2: An example of a pair of dual generators ψ̂ (solid line) and φ̂ (dotted line) in theFourier domain (Figure 2 from Paper II).Next, we extend the one-dimensional result on 
onstru
tions of dual wavelet framesin Theorem 3.6 to higher dimensions. The extension is non-trivial sin
e it is un
lear howto determine the translation latti
e Γ and how to 
ontrol the support of the generatorsin the Fourier domain.In order to outline the 
onstru
tion pro
edure in higher dimensions we need tointrodu
e some notation. Let | · |∗ = 〈 · , · 〉1/2∗ be a Hermitian norm asso
iated with
B = At as in (vi) in Proposition A.1 and let K ∈ GLn(R) be the symmetri
, positivede�nite matrix su
h that 〈x, y〉∗ = ytKx. Finally, let Λ := diag(λ1, . . . , λn), where {λi}are the eigenvalues of K, and let Q ∈ O(n) be su
h that the spe
tral de
omposition of
K is QtKQ = Λ. With this setup we 
an state the 
onstru
tion as follows.



12 CHAPTER 1. INTRODUCTIONTheorem 3.7 (Theorem 3.3 in Paper III). Let A ∈ GLn(R) be expansive, d ∈ N0 and
ψ ∈ L2(Rn). Suppose that ψ̂ is a bounded, real-valued fun
tion with supp ψ̂ ⊂ Bc(I∗) \
Bc−d−1(I∗) for some c ∈ Z, and that

∑

j∈Z

ψ̂(Bjξ) = 1 for a.e. ξ ∈ Rn. (3.8)holds. Take Γ = (1/2)AcQ
√

ΛZn. Then the fun
tion ψ and the fun
tion φ de�ned by
φ(x) = d(Γ)


ψ(x) + 2

d∑

j=0

|detA|−j ψ(A−jx)


 for x ∈ Rn, (3.9)generate dual frames {DAjTkψ}j∈Z,γ∈Γ and {DAjTkφ}j∈Z,γ∈Γ for L2(Rn).The 
onstru
tion of redundant wavelet representations in higher dimensions is usu-ally based on extension prin
iples [29℄. By making use of extension prin
iples one isrestri
ted to 
onsidering expansive dilations A with integer 
oe�
ients. On the otherhand, the methods developed in Paper II and III work for any real, expansive dilation.The two papers 
ontain several appli
ations of Theorem 3.6 and 3.7. In Example II.3and III.5 we 
onstru
t pairs of dual wavelet frames generated by one smooth fun
tionwith good time lo
alization. For 
onstru
tions of generators of spline type with 
ompa
tsupport in the Fourier domain, we refer to Examples II.2, III.1 and III.4 (and Figure 2).3.3. A�ne and quasi-a�ne frames for rational dilations (Paper IV)Quasi-a�ne systems are little known 
ousins of the well-studied wavelet systems alsoknown as a�ne systems. A�ne systems A(ψ,A,Zn) are dilation invariant, i.e., φ ∈

A(ψ) ⇒ DAjφ ∈ A(ψ) for all j ∈ Z, but not shift invariant. However, if the dilation Ahas integer entries, then one 
an modify the de�nition of a�ne systems to obtain shiftinvariant systems. This leads to the notion of quasi-a�ne systems
Aq(ψ) =



ψ̃j,k(x) :=

{ |detA|j/2 ψ(Ajx− k) : j ≥ 0, k ∈ Zn

|detA|j ψ(Aj(x− k)) : j < 0, k ∈ Zn



 ,whi
h was introdu
ed and investigated for integer, expansive dilation matri
es by Ronand Shen [29℄. Despite that the orthogonality of the a�ne system 
annot be 
arriedover to the 
orresponding quasi-a�ne system due to the oversampling of negative s
alesof the a�ne system, it turns out that the frame property is preserved. This importantdis
overy is due to Ron and Shen [29℄ who proved that, for integer dilations, the a�nesystem A(ψ) is a frame if, and only if, its quasi-a�ne 
ounterpart Aq(ψ) is a frame(with the same frame bounds).Theorem 3.8 ([29℄). Let A ∈ GLn(Z) be expansive and Ψ ⊂ L2(R). Then, A(Ψ) is aframe with bounds C1, C2 if, and only if, Aq(Ψ) is a frame with bounds C1, C2.Su
h equivalen
e results are useful be
ause quasi-a�ne systems are shift invariantand thus mu
h easier to study than a�ne systems whi
h are dilation invariant. A proofof Theorem 3.8 
an be found in Proposition 3.10 in Paper IV.



3. Survey of the new results 13The goal of the work in Paper IV with Mar
in Bownik is to extend the study of quasi-a�ne systems to the 
lass of expansive rational dilations. So, let A be a �xed expansivedilation with rational entries. In [4℄ Bownik generalized the notion of a quasi-a�ne framefor rational, expansive dilations whi
h 
oin
ides with the usual de�nition in the 
ase ofinteger dilations. The main idea of Ron and Shen [29℄ is to oversample negative s
alesof the a�ne system at a rate adapted to the s
ale in order for the resulting system to beshift invariant. In order to de�ne quasi-a�ne systems for rational, expansive dilationsone needs to oversample both negative and positive s
ales of the a�ne system (at arate proportional to the s
ale) whi
h results in a quasi-a�ne system that in general
oin
ides with the a�ne system only at the s
ale zero. This 
an easily be seen in onedimension where the quasi-a�ne system has a relatively simple algebrai
 form. Supposethat a = p/q ∈ Q is a dilation fa
tor, where |a| > 1, p, q ∈ Z are relatively prime. Then,the quasi-a�ne system asso
iated with a is given by
Aq(ψ) =

{
|p|j/2 |q|−j ψ(ajx− q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 ψ(ajx− pjk) : j < 0, k ∈ Z

}
.In the rational 
ase it is mu
h less 
lear than in the 
ase of integer, expansive dilations(where both systems 
oin
ide at all non-negative s
ales), whether there is any relation-ship between a�ne and quasi-a�ne systems. Nevertheless, Bownik proved in [4℄ thatthe tight frame property is preserved when moving between rationally dilated a�ne andquasi-a�ne systems. This result has initially suggested that there is not mu
h di�eren
ebetween integer and rational 
ases.In Paper IV it is shown that this belief is largely in
orre
t by un
overing substan-tial di�eren
es between the theory of integer dilated and rationally dilated quasi-a�nesystems. For any rational, non-integer dilation we give an example of an a�ne systemwhi
h is not a frame, but yet, the 
orresponding quasi-a�ne system is a frame. Thiskind of example does not exist for integer dilations due to Theorem 3.8.O�hand, the equivalen
e result in Theorem 3.8 
an seem surprising sin
e we aredealing with two systems of fun
tions that are quite di�erent (at the negative s
ales

j < 0). The equivalen
e result suggests that we have some �exibility in how the lowfrequen
y (j < 0) part of the system is 
hosen. Re
all that we oversample both neg-ative and positive s
ales for rational dilations. Hen
e, the fa
t that the equivalen
e inTheorem 3.8 does not hold for rational dilations suggests that we have less �exibility in
hanging high frequen
y (j > 0) parts of the system.To understand the broken symmetry between the integer and rational settings weintrodu
e a new 
lass of quasi-a�ne systems indexed by the 
hoi
e of the oversamplinglatti
e Λ (see Appendix A.2 for basi
 fa
ts on latti
es). In short, the quasi-a�ne system
Aq

Λ
(ψ) is de�ned to be the smallest shift invariant system with respe
t to a latti
e

Λ, whi
h 
ontains all elements of the original a�ne system A(ψ). In order to makethis de�nition meaningful we also need to renormalize the elements of Aq
Λ
(ψ) at a rate
orresponding to the rate of oversampling as it was done previously.De�nition 3. Let A ∈ GLn(Q) be a rational, expansive matrix, and let Λ be a rationallatti
e in Rn, i.e., Λ = PZn with P ∈ GLn(Q). Suppose Ψ ⊂ L2(Rn) is a �nite set.



14 CHAPTER 1. INTRODUCTIONDe�ne Aq
Λ
(Ψ) the Λ-oversampled quasi-a�ne system by
Aq

Λ
(Ψ) =

⋃

j∈Z

{
1

|Λ/(Λ ∩A−jZn)|1/2
TωDAjΨ : ω ∈ Λ +A−jZn)

}When Λ = Zn we drop the subs
ript Λ, and we say that Aq(Ψ) = Aq
Zn(Ψ) is the standardquasi-a�ne system.By de�nition Aq

Λ
(Ψ) is shift invariant with respe
t to Λ. For illustration, let usdisplay the oversampled quasi-a�ne system in one dimensional 
ase with generator

Ψ = {ψ} and oversampling latti
e Λ = (pq)JZ for some J ∈ N0:
Aq

Λ
(ψ) =





|p|j/2 |q|−j+J/2 ψ(ajx− qJ−jk) : j > J, k ∈ Z

|a|j/2 ψ(ajx− k) : −J ≤ j ≤ J, k ∈ Z

|p|j+J/2 |q|−j/2 ψ(ajx− pj+Jk) : j < −J, k ∈ Z




.Now, our main result 
an be stated as follows.Theorem 3.9 (Theorem 3.9 in Paper IV). Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn).Then, the a�ne system A(Ψ) is a frame for L2(Rn) with frame bounds C1, C2 if, andonly if, the Λ-oversampled quasi-a�ne system Aq

Λ
(Ψ) is a frame for L2(Rn) with uniformframe bounds C1, C2 for all integer latti
es Λ.In the 
ase when the dilation A is integer-valued, the 
lass of Λ-oversampled quasi-a�ne systems redu
es to the standard quasi-a�ne system Aq(Ψ) and its dilates. Hen
e,the original result of Ron and Shen [29℄ follows immediately from Theorem 3.9. Theproof of Theorem 3.9 is in�uen
ed by the work of Hernández, Labate, Weiss, and Wilson[20, 21℄, where the authors obtain reprodu
ibility 
hara
terizations of generalized shiftinvariant (GSI) systems in
luding a�ne, wave pa
kets, and Gabor systems. The keyelement of these te
hniques is the use of almost periodi
 fun
tions whi
h was pioneeredby Laugesen [23, 24℄ in his work on translational averaging of the wavelet fun
tional.Using these methods Laugesen [24, Theorem 7.1℄ gave another proof of the equivalen
eof a�ne and quasi-a�ne frames in the integer 
ase. In this work we show that thesete
hniques 
an be generalized to treat rationally dilated quasi-a�ne systems as well.Moreover, Laugesen [24℄ 
onsidered equivalen
e results for time-dis
rete wavelet systems

A(Ψ) and time-
ontinuous wavelet systems {DAjTxΨ}j∈Z,x∈Rn. The Λ-oversampledquasi-a�ne systems represent, in some sense, intermediate stages between these twosystems. If Λ is very sparse, the oversampled quasi-a�ne system Aq
Λ
(Ψ) will resemblethe time-dis
rete wavelet system. If Λ, on the other hand, is very dense, then Aq

Λ
(Ψ)will be 
lose to the time-
ontinuous wavelet system.In Paper IV we also introdu
e a parti
ularly interesting sub
lass of generators wherethe equivalen
e between a�ne and quasi-a�ne frames exhibits the largest degree ofsymmetry. This is a 
lass of diagonal a�ne systems for whi
h the o�-diagonal fun
tions

tα de�ned below vanish.De�nition 4. For a given dilation matrix A and Ψ ⊂ L2(Rn) we introdu
e the familyof fun
tions {tα}α∈Zn on Rn by:
tα(ξ) =

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) for ξ ∈ Rn. (3.10)



3. Survey of the new results 15We say that the a�ne system A(Ψ) is diagonal if tα(ξ) = 0 a.e. for all α ∈ Zn \ {0}.The 
lass of diagonal a�ne frames is large enough to 
ontain all tight a�ne systems,but small enough to be 
ontained in the 
lass of a�ne frames having 
anoni
al duals witha�ne stru
ture. By Theorem 3.12 below we see that the 
lass of diagonal a�ne frames
onsists pre
isely of quasi-a�ne frames having a 
anoni
al dual quasi-a�ne frame.Now, for diagonal generators Ψ we have �perfe
t� equivalen
e between a�ne andquasi-a�ne frames as is seen from the following result. Theorem 3.10 is an extension of[4, Theorem 3.4℄ on tight frames.Theorem 3.10. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn) and let C1, C2 > 0 be 
on-stants. Suppose that the a�ne system A(Ψ) is diagonal. Then the following assertionsare equivalent:(i) the a�ne system A(Ψ) is a frame for L2(Rn) with bounds C1, C2.(ii) the quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) with bounds C1, C2 for someinteger latti
e Λ0 ⊂ Zn.(iii) the quasi-a�ne system Aq
Λ
(Ψ) is a frame for L2(Rn) with bounds C1, C2 for allinteger latti
es Λ ⊂ Zn.(iv)

C1 ≤
∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ Rn.In Se
tion 4 of Paper IV, we investigate pairs of dual quasi-a�ne frames thus 
on-ne
ting to the theme of Paper II and III, 
ompare Theorem 3.5 and Theorem 3.11. Thetheory of rationally dilated quasi-a�ne frames parallels quite 
losely that of integer di-lated systems. Hen
e, we have a perfe
t equivalen
e between pairs of dual a�ne framesand pairs of dual quasi-a�ne frames, regardless of the 
hoi
e of the oversampling latti
e
Λ.Theorem 3.11 (Theorem 4.2 in Paper IV). Let A ∈ GLn(Q) be expansive. Suppose A(Ψ)and A(Φ) are Bessel sequen
es in L2(Rn). Then the following assertions are equivalent:(i) A(Ψ) and A(Φ) are dual frames.(ii) Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) are dual frames for some integer oversampling latti
e Λ0 ⊂

Zn.(iii) Aq
Λ
(Ψ) and Aq

Λ
(Φ) are dual frames for all integer oversampling latti
es Λ ⊂ Zn.(iv) Ψ and Φ satisfy the equations (3.3) and (3.4).In the integer 
ase Theorem 3.11 was �rst shown by Ron and Shen [29, 30℄ withsome de
ay assumptions on generators Ψ and Φ. Chui, Shi, and Stö
kler [15℄ provedthe same result without any de
ay assumptions, see also [2, Theorem 4.1℄. Theorem3.11 generalizes this result to the setting of rational dilations.In Se
tion 5 in Paper IV we 
hara
terize when the 
anoni
al dual frame of a Λ-oversampled quasi-a�ne frame Aq

Λ
(ψ) is also a quasi-a�ne frame. In the 
ase of integerdilations, su
h 
hara
terization is due to Bownik and Weber [8, Theorem 3℄. Theo-rem 3.12 generalizes this result to the 
ase of rational dilations. It is remarkable thatthe existen
e of the 
anoni
al quasi-a�ne dual frame is independent of the 
hoi
e of



16 CHAPTER 1. INTRODUCTIONthe oversampling latti
e Λ. Hen
e, if su
h 
anoni
al dual frame exists for some Λ-oversampled quasi-a�ne system, then it must exist for all latti
es Λ ⊂ Zn.Theorem 3.12 (Theorem 5.6 in Paper IV). Let A ∈ GLn(Q) be expansive. Suppose theoversampled quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) for some integer latti
es
Λ0 ⊂ Zn. Then the 
anoni
al dual frame of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ) for some setof fun
tions Φ ⊂ L2(Rn) with 
ardinality |Φ| = |Ψ| if, and only if, for all α ∈ Zn \ {0},

tα(ξ) =
∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0 (3.11)Moreover, in the positive 
ase Aq
Λ
(Ψ) is a frame for all integer latti
es Λ ⊂ Zn andits 
anoni
al dual frame is Aq

Λ
(Φ).This line of resear
h 
onne
ts to the theory on the 
anoni
al dual of wavelet frameswhi
h we 
onsidered in Se
tion 3.1 (the survey on results in Paper I). We note that if

Ψ generates a quasi-a�ne frame Aq
Λ0

(Ψ) for some Λ0 ⊂ Zn whose 
anoni
al dual framehas the form of a quasi-a�ne system, then Ψ also generates an a�ne frame whose
anoni
al dual frame has a�ne stru
ture; loosely speaking, this means that it is harderfor a quasi-a�ne frame to have a 
anoni
al dual with the same stru
ture than for ana�ne frame. This fa
t is immediate from Theorem 5.4 in Paper IV. Theorem 3.12 on
anoni
al duals of quasi-a�ne frames, therefore, provides a su�
ient 
ondition for awavelet frame having a 
anoni
al dual with wavelet stru
ture:Proposition 3.13. Let A ∈ GLn(Q) be expansive and let Ψ ⊂ L2(Rn). If tα(ξ) = 0 a.e.for all α ∈ Zn \{0}, then the 
anoni
al dual frame of A(Ψ) is of the form A(Φ) for someset Φ ⊂ L2(Rn) with |Φ| = |Ψ|.Proposition 3.13 tells us, in other words, that the 
anoni
al dual of diagonal a�neframes has a�ne stru
ture.In the last se
tion of Paper IV we show that, for any non-integer, rational dilation,there exist quasi-a�ne frames Aq
Λ
(ψ) su
h that the 
orresponding a�ne system A(ψ)is not a frame:Theorem 3.14 (Theorem 6.1 in Paper IV). For ea
h rational non-integer dilation fa
tor

a > 1, there exists a fun
tion ψ ∈ L2(R) su
h that Aq
Λ
(ψ) is a frame for any oversamplinglatti
e Λ ⊂ Z, but yet, A(ψ) is not a frame.Despite that ea
h system Aq

Λ
(ψ) is a frame, its lower frame bound drops to zeroas the latti
e Λ gets sparser. Hen
e, this example does not 
ontradi
t Theorem 3.9.Moreover, in light of Theorem 3.11, none of the quasi-a�ne frames Aq

Λ
(ψ) 
an have adual quasi-a�ne frame.We end this the survey of Paper IV by noting that it is not possible, in general,to extend the notion of quasi-a�ne systems beyond rational dilations. Consider, forexample, a wavelet system in L2(R) with dilation fa
tor a = π. The s
ale j = 0 part

{Tk}k∈Z is Z-SI while the s
ale j = 1 part {DπTk}k∈Z is πZ-SI. Sin
e Z+πZ is dense in
R and therefore not a latti
e, we 
annot unite the two s
ales in a Λ-SI system for anylatti
e Λ in R.



A. Some linear algebra 17Appendix A. Some linear algebraThe following fa
ts on expansive matri
es and latti
es in Rn will be used throughoutthe thesis.A.1. Expansive matri
esAn expansive matrix is a real n × n matrix with eigenvalues |λ| > 1. Matri
es of thistype are used as dilation matri
es for wavelet systems in higher dimensions in this thesis.If A is an expansive matrix, then so is the transpose B = At. Proposition A.1 isa 
olle
tion of equivalent 
onditions for a (non-singular) matrix being expansive. Allequivalen
es 
an be found in the literature. Sin
e these equivalen
es often are statedwithout proof, we present a proof or a referen
e to a proof of ea
h of the equivalen
es.Proposition A.1. For B ∈ GLn(R) the following assertions are equivalent:(i) B is expansive, i.e., all eigenvalues λi of B satisfy |λi| > 1.(ii) ρ(B−1) < 1, where ρ denotes the spe
tral radius.(iii) limj→∞B−j = 0(iv) limj→∞
∥∥B−j∥∥ = 0 for some/all matrix norms ‖·‖.(v) For any norm | · | on Rn there are 
onstants λ > 1 and c ≥ 1 su
h that

|Bjx| ≥ (1/c)λj |x| for all j ∈ N0,for any x ∈ Rn. Equivalently, |B−jx| ≤ cλ−j |x|.(vi) There is a Hermitian norm | · |∗ on Rn and a 
onstant λ > 1 su
h that
|Bjx|∗ ≥ λj |x|∗ for all j ∈ N0,for any x ∈ Rn.(vii) ∣∣Bjx− x

∣∣ → ∞ for j → ∞ for all x ∈ Rn \ {0} for some/all ve
tor norms | · |.(viii) E ⊂ λE ⊂ BE for some ellipsoid E = {x ∈ Rn : |Px| ≤ 1}, P ∈ GLn(R) and
λ > 1.(ix) E ⊂ BE◦ for some ellipsoid E = {x ∈ Rn : |Px| ≤ 1}, P ∈ GLn(R).Proof. The equivalen
e (i) ⇔ (ii) follows dire
tly from the de�nition of ρ(B−1) while(ii) ⇔ (iii) is a standard result. The impli
ation (iii) ⇒ (iv) follows by 
ontinuity of thematrix norm and (iv) ⇒ (ii) by ρ(B−1)j ≤

∥∥B−j∥∥ → 0 for j → ∞.The equivalen
e (i) ⇔ (v) ⇔ (vi) is a result from [27℄; a proof of (i) ⇔ (v) 
anbe found in [20, Lemma 5.2℄ and an approa
h to 
onstru
t a Hermitian norm | · |∗ asin (vi) 
an be found in [3, Lemma 2.2℄ and [28, Lemma 1.5.1℄. We note that the onlydire
tion that requires some work is (i) ⇒ (vi) sin
e (vi) ⇒ (v) follows by equivalen
eof norms on Rn with c = C2/C1, where C1 |x| ≤ |x|∗ ≤ C2 |x|, and (v) ⇒ (iv) followsby the estimate ∥∥B−j∥∥ ≤ cλ−j for j ≥ 0 (take y = B−jx in (v)). This shows that thesequen
e of norms ∥∥B−j∥∥ a
tually de
ays exponentially to zero.Assume (v) holds. Then
∣∣∣Bjx− x

∣∣∣ ≥
∣∣∣|Bjx| − |x|

∣∣∣ ≥
∣∣∣(1/c)λj |x| − |x|

∣∣∣ =
∣∣∣(1/c)λj − 1

∣∣∣ |x| for j ≥ 0,



18 CHAPTER 1. INTRODUCTIONfor λ > 1 and c ≥ 1. Sin
e ∣∣(1/c)λj − 1
∣∣ → ∞ as j → ∞, we have |Bjx − x| → ∞for any x 6= 0 whi
h in turn is statement (vii). Assume (vii) holds and let (µ, v) be aneigenvalue-eigenve
tor pair for B. Then

∣∣∣Bjv − v
∣∣∣ =

∣∣∣µjv − v
∣∣∣ =

∣∣∣µj − 1
∣∣∣ |v| .Sin
e by hypothesis v 6= 0, we must have ∣∣µj − 1

∣∣→ ∞ as j → ∞ whi
h implies |µ| > 1.Sin
e this must be true for any eigenvalue, we 
on
lude that (i) holds.The impli
ation (i) ⇒ (viii) is Lemma 2.2 in [3℄. Assume (viii) holds. Let P ∈
GLn(R) be su
h that E = {x ∈ Rn : |Px| ≤ 1}. Sin
e E is an ellipsoid,

|Px|2 = xtKx,where K is a symmetri
, positive de�nite matrix. De�ne the inner produ
t by 〈x, y〉∗ =
xtKy, hen
e |x|∗ = |Px|. Take x ∈ Rn \ {0}, and let y = x/ |x|∗. Thus y ∈ ∂E and
By ∈ ∂B(E). By λE ⊂ B(E), we have λ = λ |y|∗ ≤ |By|∗ and thus λ |x|∗ ≤ |Bx|∗. For
x = 0 this inequality is immediate. This shows that (vi) holds.The last equivalen
e (viii) ⇔ (ix) is trivial.A.2. Latti
es in RnA latti
e Γ in Rn is a dis
rete subgroup under addition generated by integral linear
ombinations of n linearly independent ve
tors {pi}ni=1 ⊂ Rn, i.e.,

Γ = {z1p1 + · · · + znpn : z1, . . . , zn ∈ Z} .In other words, a latti
e is a �nitely generated free abelian group of rank n. Yet, inother words, it is a set of points of the form PZn for a non-singular n × n matrix P .Let Γ be a latti
e in Rn. If Γ = PZn, we say that the matrix P ∈ GLn(R) generatesthe latti
e Γ. A generating matrix of a given latti
e is only unique up to multipli
ationfrom the right by integer matri
es with determinant one in absolute value; in parti
ular,if Γ = PZn for some P ∈ GLn(R), then also Γ = PSZn for any S ∈ SLn(Z).We mainly follow the exposition in [9℄. The determinant of Γ is de�ned to be:
d(Γ) = |detP | , (A.1)where P ∈ GLn(R) is a generating matrix for Γ; note that d(Γ) > 0 and d(Zn) = 1.The determinant d(Γ) is independent of the parti
ular 
hoi
e of generating matrix Pand equals the volume of a fundamental domain IΓ of the latti
e Γ, where

IΓ = P ([0, 1)n) = {c1p1 + · · · + cnpn : 0 ≤ ci < 1 for i = 1, . . . , n}with pi denoting the ith 
olumn of a generating matrix P . Note that Rn = ∪γ∈Γ(γ+IΓ)with the union being disjoint, and that the spe
i�
 shape of IΓ depends on the 
hoi
eof the generating matrix P .Sin
e a generating matrix P of a latti
e Γ is not unique, it is useful to have a
hara
terization of latti
es in whi
h P does not appear. We have the following result.Theorem A.2 (Theorem III.VI in [9℄). Let Γ be a subset of Rn. Then, Γ is a latti
e if,and only if, the following three 
onditions hold:



A. Some linear algebra 19(i) If x, y ∈ Γ, then x± y ∈ Γ,(ii) Γ 
ontains n linearly independent ve
tors,(iii) There is a 
onstant r > 0 su
h that 0 is the only point of Γ in B(0, r) =
{x : |x| < r}.Suppose that Γ ⊂ Λ, in other words, that Γ is a sublatti
e of some �denser� latti
e

Λ. We de�ne the index of Γ in Λ as
D =

d(Γ)

d(Λ)
. (A.2)It is straightforward to verify that the index D is always a positive integer; the index Dis a
tually the number of 
opies of parallelotopes IΓ that �ts inside a larger parallelotope

IΛ. If D is the index of Γ in Λ, we have from [9, �I.2.2℄,
DΛ ⊂ Γ ⊂ Λ. (A.3)Lemma A.3 (Lemma I.1 in [9℄). The index of the sublatti
e Γ of Λ is the order of thequotient group Λ/Γ, i.e.,

|Λ/Γ| = D ≡ d(Γ)/d(Λ), (A.4)where |Λ/Γ| is the order of the quotient group Λ/Γ.Let {pi}ni=1 be generators of a latti
e Γ. Sin
e {pi} is a basis in Rn, there exists aunique (biorthogonal) basis {p∗i }ni=1 su
h that 〈pi, p∗j〉 = δi,j for i, j = 1, . . . , n. The duallatti
e of Γ is de�ned as
Γ
∗ = {z1p∗1 + · · · + znp

∗
n : z1, . . . , zn ∈ Z} ,and the de�nition is independent of the 
hoi
e of basis {pi}. Dual latti
es are sometimes
alled polar or re
ipro
al latti
es.The following result gives a representation of the dual latti
e without referen
e togenerating bases or matri
es.Lemma A.4 (Lemma I.5 in [9℄). Let Λ = PZn be a latti
e in Rn. Then, the dual latti
eof Γ is

Γ
∗ = {η ∈ Rn : 〈η, γ〉 ∈ Z for γ ∈ Γ}

= (P t)−1Zn.Furthermore, the determinants satisfy
d(Γ)d(Γ∗) = 1.If Γ ⊂ Λ, then Λ∗ ⊂ Γ∗. We refer to [9℄ for further basi
 properties of latti
es.



20 CHAPTER 1. INTRODUCTIONIsomorphism theoremsSin
e latti
es are groups, we 
an apply the isomorphism theorems. The se
ond isomor-phism theorem reads for latti
es Γ and Λ in Rn:
Γ/(Γ ∩ Λ) ∼= (Γ + Λ)/Λ. (A.5)Note that Γ + Λ and Γ∩ Λ are not ne
essarily latti
es, e.g., πZ + Z is dense in R, hen
enot a latti
e (it does not satisfy (iii) in Theorem A.2). For latti
es Γ,Λ,Θ satisfying

Γ ⊂ Λ ⊂ Θ the third isomorphism theorem yields
(Θ/Γ) / (Λ/Γ) ∼= Θ/Λ. (A.6)Rational latti
esIn Paper IV we 
onsider mostly rational latti
es. By a rational latti
e Γ we understand alatti
e whose points have rational 
oordinates, or equivalently, a latti
e whose generatingmatrix P has rational entries. For a rational latti
e Γ we de�ne Γ̃, the integral sublatti
eof Γ, by Γ̃ = Zn∩Γ, and the extended integral superlatti
e of Γ by Γ+Zn. By Theorem A.2it is straightforward to verify that Zn∩Γ and Γ+Zn are indeed latti
es. Sin
e Γ̃ = Γ∩Znis a sublatti
e of Zn with index in Zn as
D =

d(Γ̃)

d(Zn)
= d(Γ̃),equation (A.3) implies

d(Γ̃)Zn ⊂ Γ̃ ⊂ Γ. (A.7)This shows that any rational latti
e Γ has a integral sublatti
e of the form cZn, wherethe 
onstant c ∈ N 
an be taken to be c = d(Γ̃) = vol (I
Γ̃
) = |Zn/Γ̃|. Sin
e we also have

|Γ/Γ̃| = d(Γ̃)/d(Γ) by Lemma A.3, the above 
al
ulations show that
|Zn/Γ̃| = d(Γ)|Γ/Γ̃|.In a similar way, we have for the extended integral superlatti
e of Γ

|(Γ + Zn)/Zn| = d(Γ + Zn)−1 = vol (IΓ+Zn)−1 ∈ Nand
|(Γ + Zn)/Zn| (Γ + Zn) ⊂ Zn.For two rational latti
es Γ and Λ the dual latti
e of Γ∩Λ and Γ + Λ are Γ∗ + Λ∗ and

Γ∗ ∩ Λ∗, respe
tively.Appendix B. The dual of a non-biorthogonal Riesz waveletWe 
onsider a Riesz wavelets with dyadi
 dilation A = 2 in L2(R) de�ned as
η = ψ + εD2ψ 0 < ε < 1, (B.1)where ψ is a generator of a wavelet orthonormal basis {ψj,k := D2jTkψ}j,k∈Z. Thisexample was �rst 
onsidered by Chui and Shi [14℄ and Daube
hies [16℄, see also Se
-tion 3.1. For any ε < 1 the fun
tion η will generate a wavelet Riesz basis. This 
an be



B. The dual of a non-biorthogonal Riesz wavelet 21realized by 
onsidering the wavelet system generated by the perturbation term D2ψ.Obviously, the sequen
e {D2jTkD2ψ} = {D2jT2kψ} is a subsequen
e of the orthonor-mal basis {ψj,k}j,k∈Z, and hen
e a Bessel sequen
e with bound C2 ≤ 1. Therefore, by[11, Corollary 15.1.5℄, the sequen
e {ηj,k} is a Riesz basis for any ε ∈ (0, 1) with bounds
(1 ± ε1/2)2.In the following se
tion we will show that the (
anoni
al) dual of {ηj,k} is not awavelet system for any �nite number of generators. Observe that the (
anoni
al) dualof the orthonormal basis {ψj,k} is the basis itself, hen
e it is, in parti
ular, a waveletsystem generated by one fun
tion. Thus, by an arbitrarily small perturbation as in(B.1), the stru
ture of the dual 
hanges 
ompletely. Likewise, the the spa
e of negativedilates V (ψ) is shift invariant by Z while V (η) is not shift invariant with respe
t to anysublatti
e of Z. This is shown in the last se
tion.B.1. The stru
ture of the dualIn [14℄ it is shown that the (
anoni
al) dual of {D2jTkη}j,k∈Z is not of the form {D2jTkφ}for any φ ∈ L2(R). In the following we show that, in fa
t, the 
anoni
al dual {S−1ηj,k}is not of the form

{D2jTkφ : j, k ∈ Z, φ ∈ Φ}for any �nite set Φ ⊂ L2(R) of generators.The basis elements of the wavelet Riesz basis is ηj,k = ψj,k + εψj+1,2k for j, k ∈ Z.The dual basis 
an easily be 
al
ulated; in [11℄ it is found using an operator approa
h.We use a di�erent approa
h. As usual we let S = Sη denote the frame operator of {ηj,k}.In order to �nd {S−1ηj,k} we evaluate the frame operator on ψj,k for ea
h j, k ∈ Z:
Sψj,k =

∑

l,z∈Z

〈ψj,k, ηl,z〉ηl,z

=
∑

l,z∈Z

〈ψj,k, ψl,z〉ηl,z +
∑

l,z∈Z

〈ψj,k, εψl+1,2z〉ηl,z

= ηj,k + ε
∑

l∈Z,z∈2Z

〈ψj,k, ψl,z〉ηl−1,z/2.For odd k the above 
al
ulations yield Sψj,k = ηj,k. Sin
e {ηj,k} is a frame, the frameoperator is invertible, hen
e we �nd
S−1ηj,k = ψj,k ∀j ∈ Z, k ∈ 2Z + 1. (B.2)Let n = supn∈N0

{2n|k} for k ∈ Z. For odd k we have n = 0, and for even, nonzero kwe have n = max{n ∈ N : k/2n ∈ 2Z + 1} ≥ 1. For even k 6= 0 the above 
al
ulationsshow that Sψj,k = ηj,k+εηj−1,k/2 and, by appli
ation of the inverse frame operator anda rearrangement,
S−1ηj,k = ψj,k − εS−1ηj−1,k/2 ∀j ∈ Z, k ∈ 2Z.Repeated usage of this equation gives

S−1ηj,k = ψj,k − εS−1ηj−1,k/2

= ψj,k − ε(ψj−1,k/2 − εS−1ηj−2,k/4)

= ψj,k − εψj−1,k/2 + ε2(ψj−2,k/4 − εS−1ηj−3,k/8).



22 CHAPTER 1. INTRODUCTIONContinuing this way until the odd integer k/2n, a �nal appli
ation of (B.2) yields
S−1ηj,k = ψj,k − εψj−1,k/2 + ε2ψj−2,k/4 − · · · + (−ε)nψj−n,k/2n ∀j ∈ Z, k ∈ 2Z \ {0},(B.3)where n = supn∈N{2n|k}. For k = 0, we have by 
al
ulations similar to the above
S−1ηj,0 = ψj,0 − εψj−1,0 + · · · + (−ε)n−1ψj−n+1,0 + (−ε)nS−1ηj−n,0 ∀j ∈ Z, n ∈ N,whi
h in the limit n→ ∞ gives

S−1ηj,0 =
∞∑

n=0

(−ε)nψj−n,0 ∀j ∈ Z, (B.4)by the boundedness of the (dual) Riesz basis, i.e., supj,k
∥∥S−1ηj,k

∥∥ <∞. Summarizingour �ndings:
S−1ηj,k =





ψj,k j ∈ Z, k ∈ 2Z + 1,

ψj,k − εψj−1,k/2 + · · · + (−ε)nψj−n,k/2n j ∈ Z, k ∈ 2Z \ {0},
∑∞
m=0(−ε)mψj−m,0 j ∈ Z, k = 0.

(B.5)
=

{
ψj,k − εψj−1,k/2 + · · · + (−ε)nψj−n,k/2n j ∈ Z, k ∈ Z \ {0},
∑∞
m=0(−ε)mψj−m,0 j ∈ Z, k = 0.Remark 2. If ε > 1, we 
an in general only say that {ηj,k} is a Bessel sequen
e. If ηin fa
t is a frame wavelet, then S is invertible and we 
an 
al
ulate the 
anoni
al dualframe expli
itly as above. Note that the 
al
ulations are the same as for ε < 1 ex
eptwhen k = 0. For k = 0 we have
S−1ηj,0 = 1/εψj+1,0 − 1/εS−1ηj+1,0 ∀j ∈ Z,hen
e in the limit

S−1ηj,0 = −
∞∑

n=1

(−ε)−nψj+n,0 ∀j ∈ Z.We note that this only holds if S is invertible, that is, if {ηj,k} is a frame; S is well-de�ned sin
e {ηj,k} is a Bessel sequen
e.The expressions for the dual basis elements in (B.5) for k = 0 and for k 6= 0 areapparently di�erent from ea
h other whi
h implies, as we show below, that the dualRiesz basis 
annot have wavelet stru
ture. In [14℄ it is shown that there is no φ ∈ L2(R)su
h that S−1ηj,k = φj,k for all j, k ∈ Z, and the argumentation is as follows. Assumetowards a 
ontradi
tion that there exists a φ ∈ L2(R) that generates the dual frame,that is,
φj,k = S−1ηj,k for all j, k ∈ Z.Then, by (B.2) with j = 0 and k = 1,
φ0,1 = ψ0,1 or T1φ = T1ψ,



B. The dual of a non-biorthogonal Riesz wavelet 23and therefore φ = ψ. By (B.4) with j = 0, we have
ψ = φ0,0 =

∞∑

n=0

(−ε)nψ−n,0 = ψ +
∞∑

n=1

(−ε)nψ−n,0,thus ∞∑

n=1

(−ε)nψ−n,0 = 0.This is 
ontradi
ting the ω-independen
e of the orthonormal basis {ψj,k}. Re
all that asequen
e {fk}∞k=1 in a Hilbert spa
e is said to be ω-independent if whenever ∑∞
k=1 ckfkis 
onvergent and equal to zero, then ne
essarily ck = 0 for all k. This is a strong formof linear independen
e. We 
on
lude that the dual frame of {ηj,k} 
annot be generatedby a single fun
tion.We extend this argument to P fun
tions for P ∈ N, that is, we show that thedual frame of {ηj,k} 
annot be generated by P fun
tions for any P ∈ N. Towards a
ontradi
tion assume that the dual is generated by {φ0, φ1, . . . , φP−1} ⊂ L2(R) with

P < ∞, or by Proposition 3.2, that the period is P . By [8, Corollary 7℄, we then have
P = 2m for some m ∈ N.By our assumption we are lifting the duality to the translationlatti
e PZ and pairing

{D2jTPk(η),D2jTPk(T1η), . . . ,D2jTPk(TP−1η)}j,k∈Z (B.6)with
{D2jTPk(φ0),D2jTPk(φ1), . . . ,D2jTPk(φP−1)}j,k∈Z, (B.7)or, equivalently (here we use that P = 2m), lifting the duality to s
ale m and pairing

{D2jTk(D2mη),D2jTk(D2mT1η), . . . ,D2jTk(D2mTP−1η)}j,k∈Z (B.8)with
{D2jTk(φ̃0),D2jTk(φ̃1), . . . ,D2jTk(φ̃P−1)}j,k∈Z, (B.9)where φ̃i = D2mφi for i ∈ {0, 1, . . . , P − 1}. Sin
e (B.6) and (B.8) are simply para-phrases of {D2jTkη}j,k∈Z, these (three) systems will have the same frame operator S.By our assumption the P fun
tions satisfy
D2jTPkφi = S−1D2jTPkTiη, ∀j, k ∈ Z, i = 0, . . . , P − 1. (B.10)Sin
e dilation 
ommutes with the frame operator, this redu
es to

TPkφi = S−1TPkTiη, ∀k ∈ Z,whi
h is relation (B.10) on s
ale j = 0. In general, for 
anoni
al duals, we only need to
onsider duality on s
ale j = 0. We 
on
lude that our assumption is equivalent to theexisten
e of P = 2m fun
tions {φ0, . . . , φP−1} satisfying
φi = T−PkS

−1TPk+iη for all k ∈ Z. (B.11)
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ular, this means that the expression (B.11) of φi should be �independent� of
k ∈ Z, but 
al
ulating for i = 0 with k = 0 and k = 1 gives (using P = 2m.)

0 = φ0 − φ0 = S−1η − T−2mS−1T2mη

=
∞∑

n=0

(−ε)nψ−n,0 − T−2m(ψ0,2m − εψ−1,2m−1 + ε2ψ−2,2m−2 − · · · + (−ε)mψ−m,1)

=
∞∑

n=0

(−ε)nψ−n,0 − (ψ0,0 − εψ−1,0 + ε2ψ−2,0 − · · · + (−ε)mψ−m,0)

=
∞∑

n=m+1

(−ε)nψ−n,0. (B.12)Again, this is 
ontradi
ting the ω-independen
e of the orthonormal basis {ψj,k}. Thisproves that the dual Riesz basis of {ηj,k} 
annot be generated by any �nite number offun
tions.So, we now know that the dual Riesz basis of {ηj,k} has no wavelet stru
ture inthe broadest sense possible: the dual is not a wavelet system generated by any �nitenumber of fun
tions. This leads naturally to the question of how mu
h of or whi
hparts of {S−1ηj,k} have wavelet stru
ture. We spe
i�
ally showed that we 
annot unite
S−1η0,0 and S−1η0,P in a wavelet system. It is obvious that we 
annot asso
iate S−1ηj,0to other parts of {S−1ηj,k} by wavelet stru
ture due to the in�nite series in (B.4). Were
all that for i ∈ {0, 1, . . . , P − 1} we need to satisfy equation (B.11) for the dualgenerator φi to be well-de�ned. For any P = 2m, we 
laim that we 
an satisfy equation(B.11) for i = 1, 2, . . . , P − 1, that is, we 
an satisfy equation (B.11) ex
ept for the 
ase
i = 0. This implies that for higher values of P a larger part of the dual frame will beasso
iated with a wavelet system; note that the 
on
lusion from the previous paragraphis that no value of P gives the entire dual frame wavelet stru
ture. The 
laim is easilyveri�ed by the following 
al
ulations. For odd i = 1, 3, . . . , P − 1 we have

φi = T−2mkS
−1T2mkTiη

= T−2mkS
−1η0,2mk+i = T−2mkψ0,2mk+i = ψ0,i,and for even nonzero i = 2, 4, . . . , P − 2 we have

φi = T−2mk(ψ0,2mk+i − εψ−1,2m−1k+i/2 + ε2ψ−2,2m−2k+i/22 − · · · + (ε)nψ−n,2m−nk+i/2n)

= ψ0,i − εψ−1,i/2 + ε2ψ−2,i/22 − · · · + (−ε)nψ−n,i/2n ,where n = maxn∈N{2n|i} su
h that i/2n is odd; note that 2m−nk is even for k ∈ Z sin
e
n < m. This proves the 
laim that equation (B.11) is satis�ed for i 6= 0.Let us 
onsider the 
ase i = 0. We saw in the 
al
ulations in (B.12) above that we
annot satisfy (B.11) for k = 0 and k = 1 simultaneously whi
h, in turn, showed thenon-wavelet stru
ture of {S−1D2jTPkη : j, k ∈ Z}. This non-wavelet stru
ture is notonly due to the terms involving in�nite series, that is k = 0, but also due to �most�



B. The dual of a non-biorthogonal Riesz wavelet 25other k ∈ Z. This is seen by taking k = 1 and k = 2 in (B.11)
0 = φ0 − φ0 = T−2m2S

−1T2m2η − T−2mS−1T2mη

= ψ0,0 − εψ−1,0 + · · · + (−ε)mψ−m,0 + (−ε)m+1ψ−m−1,0

− (ψ0,0 − εψ−1,0 + · · · + (−ε)mψ−m,0)

= (−ε)m+1ψ−m−1,0,showing that we 
annot satisfy (B.11) for k = 1 and k = 2 with i = 0. We noti
e thata part of the problemati
 set {S−1D2jTPkη} a
tually has wavelet stru
ture in the sensethat for odd k ∈ Z the set {S−1D2jTPkη} takes form of a wavelet system
{
S−1D2jTPkη : j ∈ Z, k ∈ 2Z + 1

}
=
{
S−1D2jT2PkTP η : j ∈ Z, k ∈ Z

}

= {D2jT2Pkθ : j ∈ Z, k ∈ Z} ,for θ = ψ0,2m − εψ−1,2m−1 + · · ·+(−ε)mψ−m,1. On the other hand, for k = ±2n (n ∈ N)the dual element S−1D2jTPkη is a linear 
ombination of ψj,k with m + n + 1 terms.Sin
e the number of terms depends on n (hen
e on k), it is apparent that these elements
annot be united in one wavelet system.Let us make these 
al
ulations more expli
it and for this assume P = 4. The
i = 1, 3 the dual sets {S−1D2jTPkT1η} and {S−1D2jTPkT3η} are wavelet systemsgenerated by φ1 = ψ0,1 and φ3 = ψ0,3, respe
tively. Likewise, for i = 2 the set
{S−1D2jTPkT2η} is a wavelet system generated by φ2 = ψ0,2 − εψ−1,1 while (for i = 0)the set {S−1D2jTPkT0η} is not a wavelet system.Remark 3. Consider the parti
ular 
ase when ψ is the Lemarie's wavelet, where ψ is a
C∞ fun
tion with fast de
ay. Obviously, these properties are inherited by the dual basis
S−1ηj,k for all j ∈ Z, k ∈ Z \ {0}. In [14℄ it is shown that S−1ηj,0 does not belong to
Lp(R) for small p− 1 > 0. This leads to the observation that the non-wavelet stru
tureof the dual is not only due to the �non-regular� elements of the dual basis.B.2. The spa
e of negative dilatesThe spa
e of negative dilates V (η) of a frame wavelet η is de�ned as

V (η) = span{D2jTkη : j < 0, k ∈ Z} = span
(⋃

j<0

Wj(η)
)
,where the subspa
es Wj are de�ned by

Wj(η) = span{D2jTkη : k ∈ Z}.Daube
hies and Han [18℄ verify by dire
t 
al
ulations that the spa
e of negativedilates V (η) is not shift invariant. From the previous se
tion we know that the periodof η is P (η) = ∞ hen
e, by Proposition 3.3, we 
an 
on
lude that V (η) is not even shiftinvariant with respe
t to any sublatti
e of Z. In the following we verify this by dire
t
al
ulations.



26 CHAPTER 1. INTRODUCTIONWe �rst show that V0(η) is not Z-SI as is done in [18℄. Let X ⊕ Y denote theorthogonal dire
t sum of 
losed subspa
es X,Y ⊂ L2(R). We de�ne
Y := span{T2kψ : k ∈ Z}, (B.13)and denote the orthogonal 
omplement to Y inW0(ψ) by Y c, i.e., W0(ψ) = Y ⊕Y c. Let

Vj(·) = D2jV (·) for j ∈ Z so that V0(·) = V (·). Noti
e that 〈D2jTkψ,D2nTzψ〉= δj,nδk,zand V0(Ψ) = ⊕j<0Wj(Ψ). Sin
e T1ψ⊥V0(Ψ) and T1ψ⊥Y we have T1ψ⊥ (V0(ψ) ⊕ Y ).Every wavelet is asso
iated with a GMRA, hen
e V0(ψ) is shift invariant. Therefore,sin
e obviously D2−1ψ ∈ V0(ψ),
D2−1T1/2ψ = T1D2−1ψ ∈ V0(ψ).By the relation
D2jTkη = D2jTkψ + εD2j+1T2kψ,we see that

V0(η) ⊆ span{D2jTkψ : j < 0, k ∈ Z} ⊕ span{T2kψ : k ∈ Z} = V0(ψ) ⊕ Y. (B.14)By de�nition we have D2−1η ∈ V0(η). Now, let us 
onsider a translate of thisfun
tion:
T1D2−1η = T1D2−1ψ + εT1D2−1D21ψ = T1D2−1ψ︸ ︷︷ ︸

∈V0(Ψ)

+ εT1ψ︸ ︷︷ ︸
∈Y c

/∈ V0(ψ) ⊕ Y.Sin
e V0(η) is a subspa
e of V0(ψ)⊕Y , this implies, in parti
ular, that T1D2−1η /∈ V0(η).This shows non-shift invarian
e of V0(η).We extend this argumentation to show non MZ-shift invarian
e of V0(η) for any
M ∈ N.Theorem B.1. V0(η) is not shift invariant with respe
t to any sublatti
e of Z.Before providing a dire
t proof of Theorem B.1, we analyze the argumentation ofDaube
hies and Han above. It is obvious that we 
annot use the relation V0(η) ⊂
V0(ψ)⊕Y from (B.14) to show nonMZ-shift invarian
e of V0(η) forM > 1 sin
e V0(ψ)⊕
Y is 2Z-SI. Hen
e we need a 
loser estimate of V0(η), but this is not straightforwarddue to the 
ompli
ated stru
ture of V0(η). By de�nition we have

V0(η) = span
⋃

j<0

Wj(η).Re
all that the basis elements of the wavelet Riesz basis are ηj,k = ψj,k + εψj+1,2k for
j, k ∈ Z. Hen
e, on a �xed s
ale subspa
e Wj′(η) we have orthogonality between theelements, in other words, for �xed j′ ∈ Z the elements in {ηj′,k : k ∈ Z} are orthogonalto ea
h other. Furthermore, the elements of s
ale j′ from the Riesz basis are orthogonalto {ηj,k : j ∈ Z \ {j′ − 1, j′ + 1}, k ∈ Z}, that is, to all other s
ales than the 
oarser j′−1and �ner j′ + 1 s
ale. In general, an element ηj′,k′ is orthogonal to all other elements ofthe Riesz basis {ηj,k} ex
ept one element for odd k and two elements for even, nonzero
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k. In spite of these many orthogonalities, the stru
ture of V0(η) is 
ompli
ated, and thisis due to the intera
tion between the subspa
es Wj(η) and Wj+1(η) on two 
onse
utives
ales.For J ∈ N0 de�ne the following 
losed subspa
es of L2(R)

YJ =
J⊕

j=0

span {D2−jT2J−j2kψ : k ∈ Z} , (B.15)and
ZJ =

⊕

k∈Z

span
{
D2−jT2J−j(2k+1)η : j = 1, . . . , J

}
, (B.16)where Z0 := ∅. Further, let Z0

J denote the following subspa
e of ZJ
Z0
J =

⊕

k∈Z\{0}
span

{
D2−jT2J−j(2k+1)η : j = 1, . . . , J

}
.For J = 0, 1 and 2, the de�nitions read

Y0 = span {T2kψ}k∈Z ,

Y1 = span {D2−1T2kψ}k∈Z ⊕ span {T4kψ}k∈Z ,

Y2 = span {D2−2T2kψ}k∈Z ⊕ span {D2−1T4kψ}k∈Z ⊕ span {T8kψ}k∈Z ,and
Z0 = ∅,
Z1 =

⊕

k∈Z

span {D2−1T2k+1η} ,

Z2 =
⊕

k∈Z

span {D2−1T4k+2η,D2−2T2k+1η} .Noti
e that Y0 ≡ Y (see (B.13)) and that YJ and ZJ are 2J+1Z-SI.In order to verify Theorem B.1 by dire
t 
al
ulations, we need the following twolemmas.Lemma B.2. For all J ∈ N0 the following hold:
V0(η) ⊂ V−J(ψ) ⊕ YJ ⊕ ZJ . (B.17)Proof. The orthogonality of the three subspa
es are obvious from the de�nition and theabove. For J = 0 there is nothing left to show. Let J = 1. We have to show that

V0(η) ⊂ V−1(ψ)⊕(span {D2−1T2kψ}k∈Z ⊕ span {T4kψ}k∈Z

)⊕
(⊕

k∈Z

span {D2−1T2k+1η}
)
,and we note that the spa
e on the right hand side is 4Z-SI, but not shift invariant under

2mZ for m = 0, 1. Suppose f ∈ V0(η). Then there are 
oe�
ients {c−j,k} ∈ ℓ2(N × Z)su
h that
f =

∑

j<0

∑

k∈Z

cj,kηj,k =
∑

k∈Z

c−1,kη−1,k +
∑

k∈Z

c−2,kη−2,k +
∑

j<−2

∑

k∈Z

cj,kηj,k.



28 CHAPTER 1. INTRODUCTIONUsing ηj,k = ψj,k + εψj+1,2k and splitting the �rst sum for even and odd k yields
f =

∑

k∈Z

(c−1,2k + εc−2,k)ψ−1,2k + ε
∑

k∈Z

c−1,2kψ0,4k +
∑

k∈Z

c−1,2k+1η−1,2k+1

+
∑

k∈Z

c−2,kψ−2,k +
∑

j<−2

∑

k∈Z

cj,kψj,k + ε
∑

j<−1

∑

k∈Z

cj−1,kψj,2kwith un
onditionally 
onvergen
e sin
e {ψj,k} is an orthonormal basis and the 
oe�-
ients {cj,k} are in ℓ2. The �rst two terms above belong to Y1, the third to Z1, and thethree last terms to V−1(ψ), hen
e f ∈ V−1(ψ)⊕ Y1 ⊕Z1. Similar 
al
ulations prove theresult for J > 1.Remark 4. Note that V0(η) ⊂ Vj(ψ) for j ≥ 1 trivially, but that V0(η) and Vj(ψ) for
j ≤ 0 are unrelated in the sense that neither V0(η) ⊂ Vj(ψ) nor V0(η) ⊃ Vj(ψ) hold forany j ≤ 0. In parti
ular, Vj(ψ) 6⊂ V0(η) ⊂ V1(ψ) for j ≤ 0.The following fa
t is trivial.Lemma B.3. V−J(ψ) is 2JZ-shift invariant.Proof. It follows from the shift invarian
e of V0(ψ) using that f ∈ V−J(ψ) if, and onlyif, D2Jf ∈ V0(ψ) and that TkD2J = D2JT2Jk.Proof of Theorem B.1. By [8, Corollary 7℄ it su�
es to show non shift invarian
e bylatti
es of the form 2JZ for J ∈ N0. By de�nition D2−J−1η ∈ V0(η). We will show that
T2JD2−J−1η = D2−J−1T1/2η /∈ V0(η). From the de�nition of η we dire
tly have

T2JD2−J−1η = T2JD2−J−1ψ + εD2−JT1ψ, (B.18)where T2JD2−J−1ψ ∈ V−J(ψ) by Lemma B.3 sin
e D2−J−1ψ ∈ V−J(ψ).It is obvious that D2−JT1ψ is orthogonal to the subspa
es V−J(ψ) and YJ , andthus, in parti
ular, to T2JD2−J−1ψ, and by ηj,k = ψj,k + εψj+1,2k, to the fun
tions
η−j,2J−j(2k+1) for j 6= J − 1, J . From η−j,2J−j(2k+1) = ψ−j,2J−j(2k+1) + εψ−j+1,2J−j(4k+2)we see that

D2−JT1ψ⊥η−j,2J−j(2k+1) for j = 1, . . . , J and k 6= 0.We 
on
lude that D2−JT1ψ is orthogonal to the subspa
e V−J(ψ) ⊕ YJ ⊕ Z0
J . Thusit follows that T2JD2−J−1η is in V−J(ψ) ⊕ YJ ⊕ ZJ if, and only if, D2−JT1ψ is in theorthogonal 
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D2−JT1ψ =
J∑

j=1

αjD2−jT2J−jη

=
J∑

j=1

αjD2−jT2J−jψ +
J−1∑

j=0

εαj+1D2−jT2J−jψ,
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PAPER I
The 
anoni
al and alternateduals of a wavelet frame

Mar
in Bownik1 and Jakob Lemvig
Abstra
t. We show that there exists a frame wavelet ψ with fastde
ay in the time domain and 
ompa
t support in the frequen
ydomain generating a wavelet system whose 
anoni
al dual frame
annot be generated by an arbitrary number of generators. Onthe other hand, there exists in�nitely many alternate duals of ψgenerated by a single fun
tion. Our argument 
loses a gap in theoriginal proof of this fa
t by Daube
hies and Han [10℄.
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34 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAME1. Introdu
tionThis paper explores the relationship between 
anoni
al and alternate dual frames of awavelet frame. One of the �rst results in this dire
tion is due to Daube
hies [9℄ andChui and Shi [7℄ who proved that the 
anoni
al dual of a wavelet frame need not havea wavelet stru
ture. Sin
e their example involved a non-biorthogonal Riesz wavelet, ithas no alternate dual wavelet frames as well.In general, if the 
anoni
al dual of a frame wavelet has a wavelet stru
ture, thenit is quite likely that this frame wavelet has some other wavelet duals. However, theexisten
e of dual wavelet frames does not ne
essarily imply that the 
anoni
al dual musthave a wavelet stru
ture. This 
laim was asserted by Daube
hies and Han [10℄.Theorem 1.1. There exists a frame wavelet ψ ∈ L2(R) su
h that:(i) ψ̂ is C∞ and 
ompa
tly supported,(ii) its 
anoni
al dual frame is not a wavelet system generated by a single fun
tion,(iii) there are in�nitely many ψ̃ su
h that ψ and ψ̃ form a pair of dual frame wavelets.Unfortunately, the original argument in [10℄ uses an in
orre
t formula for the frameoperator of a wavelet system owing to a simple 
hange of sign mistake. This invalidatesthe original proof to the extent that an easy remedy appears to be doubtful. Moredetails about the nature of this problem 
an be found in Se
tion 3.Therefore, there is a need to provide an alternative proof of Theorem 1.1. We willuse a 
ompletely di�erent approa
h motivated by [5℄. Instead of trying to work dire
tlywith the frame operator as in [10℄, we will use a less dire
t approa
h using the followingresult of Weber and the �rst author [5℄.Theorem 1.2 (Theorem 1 in [5℄). Suppose that the 
anoni
al dual of a wavelet frame
{ψj,k(x) := 2j/2ψ(2jx − k) : j, k ∈ Z} has a wavelet stru
ture, i.e., it is of the form
{φj,k : j, k ∈ Z} for some frame wavelet φ. Then, the spa
e of negative dilates

V (ψ) := span{ψj,k : j < 0, k ∈ Z} (1.1)is shift invariant (SI).The paper is organized as follows. In Se
tion 2 we re
all some basi
 fa
ts about theperiod of a wavelet frame. In parti
ular, we explore the relationship between the periodand the number of generators of the 
anoni
al dual of a wavelet frame. In Se
tion 3 wegive an expli
it 
onstru
tion of a frame wavelet ψ as in Theorem 1.1. We prove that its
orresponding spa
e of negative dilates V (ψ) la
ks shift invarian
e. Consequently, byTheorem 1.2 we 
on
lude that the 
anoni
al dual of the wavelet frame {ψj,k}j,k∈Z is nota wavelet system generated by a single fun
tion. In fa
t, we prove that our example 
anbe adjusted in su
h a way that the 
anoni
al dual 
an not be generated by arbitrarilymany generators, see Theorem 3.1.Finally, we review basi
 de�nitions. A frame for a separable Hilbert spa
e H is a
olle
tion of ve
tors {fj}j∈J , indexed by a 
ountable set, su
h that there are 
onstants
0 < C1 ≤ C2 <∞ satisfying

C1 ‖f‖2 ≤
∑

j∈J
|〈f, fj〉|2 ≤ C2 ‖f‖2 for all f ∈ H.



2. The period of a frame wavelet 35If the upper bound holds in the above inequality, then {fj} is said to be a Besselsequen
e with Bessel 
onstant C2. The frame operator of {fj} is given by
S : H → H, Sf =

∑

j∈J
〈f, fj〉fj.This operator is bounded, invertible, and positive. A frame {fj} is said to be tight ifwe 
an 
hoose C1 = C2; this is equivalent to S = C1I, where I is the identity operator.Two Bessel sequen
es {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj for all f ∈ H.It 
an be shown that two su
h Bessel sequen
es indeed are frames, and we shall saythat the frame {gj} is dual to {fj}, and vi
e versa. At least one dual always exists, it isgiven by {S−1fj} and 
alled the 
anoni
al dual. Redundant frames have several duals;a dual whi
h is not the 
anoni
al dual is 
alled an alternate dual.Let f ∈ L2(R). De�ne dilation operator Daf(x) = |a|1/2 f(ax), translation operator

Tbf(x) = f(x − b), and modulation operator Ecf(x) = e2πicxf(x), where |a| > 1, b,
c ∈ R. The wavelet system generated by Ψ = {ψ1, . . . , ψL}, is de�ned as {ψj,k}j,k∈Z,ψ∈Ψ,where ψj,k = DajTkψ. We say that Ψ and Φ is a pair of dual frame wavelets if theirwavelet systems are dual frames. As stated above the 
anoni
al dual of a wavelet framegenerated by Ψ might not be a wavelet system generated by |Ψ| fun
tions. In this 
ase,we say that the 
anoni
al dual of Ψ does not have the wavelet stru
ture.Given a frame wavelet Ψ, the subspa
es Wj(Ψ) are de�ned by

Wj(Ψ) = span {ψj,k : k ∈ Z, ψ ∈ Ψ} , j ∈ Z. (1.2)By this de�nition we 
an write the spa
e of negative dilates, introdu
ed in Theorem 1.2,as
V (Ψ) = span

⋃

j<0

Wj(Ψ).If we have only one generator, that is L = 1, we shall write V (ψ) instead of V (Ψ).Suppose thatW ⊂ L2(R) is a 
losed subspa
e. We sayW isMZ-SI,MZ shift invariant,or shift invariant under MZ, M ∈ R, if TMzW ⊂ W for all z ∈ Z. In the 
ase M = 1,we shall say that W is shift invariant, or SI.For f ∈ L1(R), the Fourier transform is de�ned by Ff(ξ) = f̂(ξ) =
∫
R f(x)e−2πiξxdxwith the usual extension to L2(R). Given a measurable subset K ⊂ R, we de�ne thespa
e Ľ2(K), whi
h is invariant under all translations, by

Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}.2. The period of a frame waveletDaube
hies and Han [10℄ have introdu
ed the notion of the period of a dyadi
 waveletframe in L2(R). Weber and the �rst author [5℄ extended it to a non-dyadi
 situation asbelow.



36 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMEDe�nition 1. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet asso
iatedwith an integer dilation fa
tor a, |a| ≥ 2. The period of Ψ is the smallest integer p ≥ 1su
h that for all f ∈ span {Tkψ : k ∈ Z, ψ ∈ Ψ},
TpkS

−1f = S−1Tpkf for all k ∈ Z,where S is the frame operator of the wavelet frame generated by Ψ. If there is no su
h
p, we say that the period of Ψ is ∞.We remark that our 
onvention di�ers from the de�nitions in [5, 10℄, where the periodis said to be 0 (and not ∞) if no su
h p exists. The examples of non-biorthogonal Rieszwavelets by Daube
hies [9℄ and Chui and Shi [7℄ mentioned in the introdu
tion haveperiod ∞; while any tight frame wavelet has period 1.Following [15℄, the lo
al 
ommutant of a system of operators U at the point f ∈
L2(R) is de�ned as

Cf (U) :=
{
T ∈ B(L2(R)) : TUf = UTf ∀U ∈ U

}
.The wavelet system of unitaries is denoted by A := {DajTk : j ∈ Z, k ∈ Z}. The
anoni
al dual of a wavelet frame A(Ψ) = {DajTkψ}j,k∈Z,ψ∈Ψ is given as

{
S−1DajTkψi : j, k ∈ Z, i = 1, . . . , L

}
=
{
DajS−1Tkψi : j, k ∈ Z, i = 1, . . . , L

}

=
{
Dajηk,i : j, k ∈ Z, i = 1, . . . , L

}
,where S is the frame operator ofA(Ψ), and {ηk,i} is a family of fun
tions, not ne
essarilywith translation stru
ture, indexed by {1, . . . , L}×Z. The 
anoni
al dual takes the formof a wavelet system generated by |Ψ| = L fun
tions, i.e.,

{
S−1DajTkψi : j, k ∈ Z, i = 1, . . . , L

}
=
{
DajTk(S

−1ψi) : j, k ∈ Z, i = 1, . . . , L
}

= {DajTkφi : j, k ∈ Z, i = 1, . . . , L} ,pre
isely when TkS
−1ψ = S−1Tkψ for all ψ ∈ Ψ and k ∈ Z; that is, pre
isely when

S−1 ∈ Cψ({Tk : k ∈ Z}) for all ψ ∈ Ψ. Equivalently, the 
anoni
al dual of A(Ψ) has thewavelet stru
ture generated by |Ψ| fun
tions if, and only if, the period of Ψ is one, 
.f.Proposition 2.3 below.The following results from [5℄ will be used in the proof of Theorem 1.1. We restatethem here sin
e they were in
orre
tly stated in [5℄. We note that these results 
an bethought as re�nements of Theorem 1.2.Proposition 2.1 (Proosition 2 in [5℄). LetM ∈ N. If Ψ is a frame wavelet and the periodof Ψ divides M , then V (Ψ) is shift invariant by the latti
e MZ. In addition, if Ψ is aRiesz wavelet, then the period of Ψ divides M if, and only if, V (Ψ) is shift invariant bythe latti
e MZ.Corollary 2.2 (Corollary 5 in [5℄). If Ψ is a frame wavelet and the period of Ψ divides
|a|J for some J ≥ 0, then DaJ (V (Ψ)) is shift invariant.



2. The period of a frame wavelet 37If the period P (Ψ) of a frame wavelet Ψ is �nite, then the 
anoni
al dual frameis a wavelet system generated by P (Ψ) · |Ψ| fun
tions, and this is the least number ofgenerators. In this 
ase the wavelet stru
ture of the 
anoni
al dual frame is altered sin
eit is based on the translation latti
e P (Ψ) ·Z whi
h is sparser than the original latti
e Z.Moreover, for any nonnegative integer M , the period of Ψ divides M if, and only if, the
anoni
al dual is a wavelet system generated by M · |Ψ| fun
tions, see the propositionbelow. The �only if� dire
tion is impli
itly 
ontained in the proof of [5, Proposition 2℄.For the sake of 
ompleteness we prove both dire
tions here.Proposition 2.3. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet. For anynonnegative integer M ∈ N, the following statements are equivalent:(i) P (Ψ) |M , i.e., the period of Ψ, denoted P (Ψ), divides M.(ii) There exist ML fun
tions Φ = {φ1, . . . , φML} su
h that {DajTMkφ}j,k∈Z,φ∈Φ isthe 
anoni
al dual of {DajTkψ}j,k∈Z,ψ∈Ψ = {DajTMkψ}j,k∈Z,ψ∈ΨM
, where

ΨM := {Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ} .Proof. We note that the frame operator of {DajTkψ}j,k∈Z,ψ∈Ψ equals the frame operatorof {DajTMkψ}j,k∈Z,ψ∈ΨM
sin
e the two frames are setwise identi
al; we denote thisoperator by S.We �rst prove (i)⇒ (ii). By assumption the period of Ψ is �nite, hen
e the de�nitionof the period yields the following equation.

TP (Ψ)kS
−1f = S−1TP (Ψ)kf for all k ∈ Z and f ∈W0(Ψ). (2.1)Sin
e the period of Ψ divides M , we in parti
ular have P (Ψ)Z ⊃ MZ, and the aboveequation gives us

TMkS
−1f = S−1TMkf for all k ∈ Z and f ∈W0(Ψ).Consequently, for ea
h ψ ∈ Ψ,
S−1Tkψ = S−1TMl(Tmψ) = TMlS

−1(Tmψ),where k ∈ Z is written as k = Ml +m for l ∈ Z and m ∈ {0, 1, . . . ,M − 1}. The lastequality in the above equation shows that S−1 ∈ Cf ({TMk : k ∈ Z}) for every f ∈ ΨM ,so we arrive at (ii) by taking Φ = S−1ΨM = {S−1Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ}.To prove the other dire
tion, (ii) ⇒ (i), we assume that the 
anoni
al dual of thesystem {DajTMkψ}j,k∈Z,ψ∈ΨM
is generated byML fun
tions Φ = {φ1, . . . , φML}. Sin
e

|ΨM | = ML, it follows that S−1 ∈ Cψ({TMk : k ∈ Z}) for all ψ ∈ ΨM , i.e.,
S−1TMk(Tmψ) = TMkS

−1(Tmψ) for all k ∈ Z, m ∈ {0, . . . ,M − 1} , ψ ∈ Ψ. (2.2)In this equation we repla
e k ∈ Z by k + l with l ∈ Z, whereby we obtain
S−1TMk(TMl+mψ) = TMkS

−1(TMl+mψ) for all k, l ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ.



38 PAPER I. THE CANONICAL AND ALTERNATE DUALS OF A WAVELET FRAMENow sin
e
W0(Ψ) = span{TMl+mψ : l ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ},we see that

S−1TMkf = TMkS
−1f for all k ∈ Z, f ∈W0(Ψ), (2.3)and 
on
lude that the period of Ψ is at most M .To 
omplete the proof we need to show that the period of Ψ is a divisor of M .Assume on the 
ontrary that the period of Ψ is not a divisor of M . Then there are

q, r ∈ N ∪ {0} su
h that M = qP (Ψ) + r and 0 < r < P (Ψ). We know that the periodof Ψ is �nite, so equation (2.1) is satis�ed, and by from (2.1) and (2.3) we have
S−1TP (Ψ)k1+Mk2f = TP (Ψ)k1+Mk2S

−1f for k1, k2 ∈ Z, f ∈W0(Ψ).Taking k1 = −qk and k2 = k for ea
h k ∈ Z gives us rk = P (Ψ)k1 +Mk2. Therefore,
S−1Trkf = TrkS

−1f for all k ∈ Z, f ∈W0(Ψ),whi
h 
ontradi
ts the minimality of P (Ψ) sin
e 0 < r < P (Ψ).Remark 1. In the dyadi
 
ase and when M is a power of two, Proposition 2.3 redu
esto [10, Proposition 2.1℄. Indeed, if M = 2J for some J ∈ N, then any dyadi
 waveletsystem of the form {D2jTMkφ}j,k∈Z,φ∈Φ with translation with respe
t to the latti
eMZ,
an be written as a wavelet system {D2jTkφ}j,k∈Z,φ∈Φ′ using the standard translationlatti
e Z and the same number of generators |Φ| = |Φ′|, see [10℄. Corollary 7 in [5℄states that the period of a dyadi
 Riesz wavelet is either a power of two or in�nite.Hen
e, whenever a Riesz wavelet has �nite period the 
anoni
al dual takes the form
{D2jTkφ}j,k∈Z,φ∈Φ′ for some family of fun
tions Φ′, where we note that the translationis with respe
t to the latti
e Z.3. Canoni
al dual frames without wavelet stru
tureIn this se
tion we will prove Theorem 1.1 by giving an example of a wavelet frame in
L2(R) whose 
anoni
al dual does not have wavelet stru
ture. To be pre
ise, we will
onstru
t a family of examples, indexed by J ∈ N, su
h that the 
anoni
al dual 
annotbe generated by fewer than 2J fun
tions. In ea
h of these examples the wavelet itself isni
e in the sense that it has 
ompa
t support in the Fourier domain and fast de
ay inthe time domain, and it has ni
e alternate dual frame wavelets.Our 
onstru
tion is motivated by the proof of [5, Theorem 2(ii)℄, where Weber andthe �rst author give an example of a frame wavelet ψ with 
ompa
t support in theFourier domain whose 
anoni
al dual 
annot be generated by one fun
tion. The Fouriertransform of ψ is not 
ontinuous yielding poor de
ay in the time domain. Furthermore,the spa
e of negative dilates V (ψ) is not Z-SI (this is ne
essary in order to utilizeTheorem 1.2), but it is in fa
t 2Z-SI, hen
e the 
anoni
al dual must be generated byat least two fun
tions, 
.f. Proposition 2.1. We modify this example so that ψ̂ be
omes
C∞ and so that the spa
e of negative dilates be
omes non pZ-SI for p < 2J and p ∈ Nfor a 
hosen J ∈ N. Hen
e, we have the following generalization of Theorem 1.1.



3. Canoni
al dual frames without wavelet stru
ture 39Theorem 3.1. For all J ∈ N, there exists a frame wavelet ψ ∈ L2(R) su
h that:(i) ψ̂ is C∞ and 
ompa
tly supported,(ii) its 
anoni
al dual frame is not a wavelet system generated by fewer than 2Jfun
tion,(iii) there are in�nitely many ψ̃ su
h that ψ and ψ̃ form a pair of dual wavelet frames.Before providing the proof of Theorem 3.1, we will analyze the original proof ofTheorem 1.1 by Daube
hies and Han [10℄. The key role in the argument of [10℄ isplayed by an expli
it formula for the frame operator of a wavelet system.Proposition 3.2. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) generates a wavelet systemwhi
h is a Bessel sequen
e. Let
D = {f ∈ L2(R) : f̂ ∈ L∞(R) and supp f̂ ⊂ [−R,−1/R] ∪ [1/R,R] for some R > 1}.Then its frame operator S is given by
Ŝf(ξ) = f̂(ξ)

L∑

l=1

∑

j∈Z

|ψ̂l(2jξ)|2 +
∑

p∈Z

∑

q∈2Z+1

f̂(ξ+2−pq)tq(2
pξ) for a.e. ξ ∈ R, (3.1)and for all f ∈ D, where

tq(ξ) =
L∑

l=1

∞∑

j=0

ψ̂l(2
jξ)ψ̂l(2j(ξ + q)) for q ∈ Z.Proposition 3.2 is impli
itly 
ontained in the book of Hernández and Weiss [16,Proposition 7.1.19℄. This result 
an be extended to higher dimensions and more generaldilations, see [4, 13, 14, 18℄.Initially, the problem with the argument of Daube
hies and Han appears to be veryminor sin
e the formula (2.6) of [10℄ la
ks a negative sign whi
h is present in f̂(ξ+2−pq)of (3.1). This mistake 
an be tra
ed ba
k to the proof of Lemma 2.3 in [14℄. However,this 
hange of sign has profound e�e
ts for the rest of this paper. First, it a�e
tsLemma 3.1 in [10℄ by wiping out the negative signs in 2−jK1 and 2−jK2 of formula(3.1). Consequently, it invalidates the proof of [10, Theorem 3.3℄. To see this, 
onsiderthe example borrowed from the paper of Weber and the �rst author [5℄.Example 1. Let ψb ∈ L2(R) be given by

ψ̂b = χ[−1,−b]∪[b,1].In [5℄ it is shown that ψb is a biorthogonal Riesz wavelet whenever 1/3 ≤ b ≤ 1/2. Infa
t, one 
an expli
itly exhibit its dual biorthogonal wavelet φb as
φ̂b = χ[−1,−1/2]∪[1/2,1] − χ[−2+2b,−1]∪[1,2−2b].We note that this fa
t is far from being obvious, sin
e one 
an also show that ψb isnot a frame wavelet when 1/6 < b < 1/3, see [5, Example 2℄. While ψb is of a slightlydi�erent form than the fun
tion 
onsidered in [10, Theorem 3.3℄, one 
ould arrive at the
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on
lusion that ψb is not a biorthogonal wavelet when b = 1/3 by following the sameargument as in [10℄. This stands in a dire
t 
ontradi
tion with the above mentionedfa
t from [5℄. In fa
t, this is how the 
hange of sign mistake in [10℄ was un
overed bythe �rst author.In order to prove Theorem 3.1 we need to show two lemmas.Lemma 3.3. For every N ≥ 4 and 0 < δ < 2−N , there exists a frame wavelet ψ su
hthat ψ̂ ∈ C∞
0 (R) and

ψ̂(ξ) 6= 0 ⇐⇒ ξ ∈ (−1/2,−1/4) ∪ (1/2, 3/4) (3.2)
∪
(
−2−N+1 − δ,−2−N + δ

)
∪
(
2−N − δ, 2−N+1 + δ

)

ψ̂(ξ) = ψ̂(ξ − 1) 6= 0 for ξ ∈ (1/2, 3/4) . (3.3)Proof. Let ψ0 ∈ L2(R) be a frame wavelet su
h that ψ̂0 ∈ C∞
0 (R) and

ψ̂0(ξ) 6= 0 ⇐⇒ ξ ∈
(
−2−N+1 − δ,−2−N + δ

)
∪
(
2−N − δ, 2−N+1 + δ

)
,where N ≥ 4 and 0 < δ < 2−N as in the assumption. Let ψ1 ∈ L2(R) be su
h that

ψ̂1 ∈ C∞
0 (R) has support in [−1/2,−1, 4] ∪ [1/2, 3/4] and

ψ̂1(ξ) = ψ̂1(ξ − 1) 6= 0 whenever ξ ∈ (1/2, 3/4) . (3.4)For any su
h ψ1 ∈ L2(R) the sequen
e {D2jTkψ
1} generates a Bessel sequen
e by [17,Theorem 13.0.1℄ or by the proof of [8, Lemma 3.4℄.De�ne ψ ∈ L2(R) by ψ = ψ0 +εψ1, where εψ1 a
ts as a perturbation on the waveletframe generated by ψ0 and ensures that ψ satis�es (3.3), see also Figure 1. Denote theframe bounds of {D2jTkψ

0} by C1 and C2, and the Bessel bound of {D2jTkψ
1} by C0.The fun
tion εψ1 generates a Bessel sequen
e with bound ε2C0. Hen
e, for su�
ientlysmall ε > 0, we have ε2C0 < C1, and by a perturbation result [6, Corollary 2.7℄ or [12,Theorem 3℄, we 
on
lude that ψ generates a wavelet frame. By our 
onstru
tion ψ̂ is in

C∞
0 (R) and satis�es (3.2) and (3.3).Finally, let us illustrate how one 
an 
onstru
t two su
h fun
tions ψ0 and ψ1. For

N ≥ 4 and 0 < δ < 2−N , de�ne the fun
tion η by
η̂ = hδ ∗ χ[−2−N+1,−2−N ]∪[2−N ,2−N+1], (3.5)where hδ(x) = δ−1h(x/δ) with h ∈ C∞

0 (R), h ≥ 0, ∫R h(x)dx = 1, and supph ⊂ [−1, 1].This yields η̂ ∈ C∞ with
η̂(ξ) 6= 0 ⇐⇒ ξ ∈

(
−2−N+1 − δ,−2−N + δ

)
∪
(
2−N − δ, 2−N+1 + δ

)
.By ‖η̂‖L∞ ≤ 1 and the above, there exist 
onstants C1, C2 > 0, su
h that

0 < C1 ≤
∑

j∈Z

∣∣∣η̂(2jξ)
∣∣∣
2
≤ C2 < 2 for all ξ ∈ R \ {0}.
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al dual frames without wavelet stru
ture 41Moreover, for q ∈ 2Z + 1,
tq(ξ) :=

∞∑

j=0

η̂(2jξ)η̂(2j(ξ + q)) = 0 for all ξ ∈ R,sin
e η̂(2j ·) and η̂(2j(· + q)) have disjoint support for all j ≥ 0. We de�ne ψ0 as anormalization of η by
ψ̂0(ξ) =

η̂(ξ)√∑
j∈Z |η̂(2jξ)|2

for ξ ∈ R \ {0}, (3.6)and ψ̂0(0) = 0. Consequently, we have ∑j∈Z|ψ̂0(2jξ)|2 = 1 and tq(ξ) = 0 for ξ ∈ Rand q ∈ 2Z + 1. By [16, Theorem 7.1.6℄, ψ0 generates a tight wavelet frame withframe bound 1, and it has the desired properties. For the proof of the lemma thelast normalization step 
ould be omitted sin
e η itself generates a (non-tight) frame.However, it is in
luded sin
e we later want to use the fa
t that the ψ0 
an be 
hosen tobe a tight frame wavelet with frame bound 1.
1
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Figure 1: Sket
h of the graph of ψ̂ = ψ̂0 + εψ̂1.The 
onstru
tion of the perturbation term ψ1 is straightforward. Let θλ := hλ ∗
χ[1/2+λ,3/4−λ] for some 0 < λ < 1/8, where hλ is de�ned as above. De�ne ψ1 by
ψ̂1 = θλ+T−1θλ. This makes ψ̂1 a C∞ fun
tion with 
ompa
t support in [−1/2,−1, 4]∪
[1/2, 3/4], satisfying equation (3.4). This 
ompletes the proof of Lemma 3.3.Lemma 3.4. Suppose that a fun
tion ψ ∈ L2(R) satis�es (3.2) and (3.3) for some
N ≥ 4 and 0 < δ < 2−N . Then, the spa
e of negative dilates V (ψ) is not pZ-SI for any
p < 2N−3, p ∈ N.Proof. To prove this 
laim we will look at the subspa
es Wj(ψ) for j ≤ 0, de�ned by

Wj(ψ) = span{D2jTkψ : k ∈ Z}, j ∈ Z.First, 
onsider a prin
ipal shift invariant (PSI) subspa
e W0(ψ) = span{Tkψ}k∈Z. Bya result in [11℄, see also [3℄, this subspa
e 
an be des
ribed as
W0(ψ) = {f ∈ L2(R) : f̂ = ψ̂m for some measurable, 1-periodi
 m}.
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e, by (3.2) and (3.3) we have
W0(ψ) =

{
f ∈ L2(R) : supp f̂ ⊂ [−1/2,−1/4] ∪ [1/2, 3/4] ∪K

f̂(ξ − 1) = f̂(ξ) a.e. ξ ∈ [1/2, 3/4]
}
, (3.7)where K =

[
−2−N+1 − δ,−2−N + δ

]
∪
[
2−N − δ, 2−N+1 + δ

]
.Applying the s
aling relation Wj(ψ) = D2jW0(ψ) to (3.7) yields

Wj(ψ) =
{
f ∈ L2(R) : supp f̂ ⊂

[
−2j−1,−2j−2

]
∪
[
2j−1, 3/2 · 2j−1

]
∪ 2jK,

f̂(ξ − 2j) = f̂(ξ) a.e. ξ ∈ [2j−1, 3/2 · 2j−1
] }
. (3.8)Therefore, ea
h spa
e Wj(ψ), j ∈ Z, 
an be de
omposed as the orthogonal sum

Wj(ψ) = W 0
j ⊕W 1

j , where (3.9)
W 0
j = Ľ2(2jK), (3.10)

W 1
j =

{
f ∈ L2(R) : supp f̂ ⊂

[
−2j−1,−2j−2

]
∪
[
2j−1, 3/2 · 2j−1

]
, (3.11)

f̂(ξ − 2j) = f̂(ξ) a.e. ξ ∈ [2j−1, 3/2 · 2j−1
] }
.Using (3.9), it is possible to des
ribe the spa
e of negative dilates

V (ψ) = span
(⋃

j<0

Wj(ψ)
)in the Fourier domain. However, su
h a des
ription would be quite 
ompli
ated owingto intera
tions of the spa
es W 0

j and W 1
j at various s
ales j < 0.Instead, we 
onsider another spa
e

Ṽ (ψ) = V (ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)).By (3.10) and K ⊂ (−2−N+2, 2−N+2), we have
W 0
j ⊂ Ľ2([−2−N+1, 2−N+2]) for j < 0.Likewise, by (3.11) we have

W 1
j ⊂

{
Ľ2([−2−N+1, 2−N+2]) for j ≤ −N + 2,

Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)) for j ≥ −N + 3.Combining the last four equations with (3.9) yields
Ṽ (ψ) = span

(⋃

j<0

Wj(ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞))
)

= span
( −1⋃

j=−N+3

W 1
j

)
,
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al dual frames without wavelet stru
ture 43and further, by the orthogonality of the subspa
es W 1
−N+3, . . . ,W

1
−1,

Ṽ (ψ) =
−1⊕

j=−N+3

W 1
j .Consequently, by (3.11),

Ṽ (ψ) =
{
f ∈ L2(R) : supp f̂ ⊂

−1⋃

j=−N+3

2j([−1/2,−1/4] ∪ [1/2, 3/4]),

f̂(ξ − 2−1) = f̂(ξ) a.e. ξ ∈ [2−2, 3/2 · 2−2
]
,

f̂(ξ − 2−2) = f̂(ξ) a.e. ξ ∈ [2−3, 3/2 · 2−3
]
,... ...

f̂(ξ − 2−N+3) = f̂(ξ) a.e. ξ ∈ [2−N+2, 3/2 · 2−N+2
] }
. (3.12)Assume, towards a 
ontradi
tion, that V (ψ) is pZ-SI for some p < 2N−3 with p ∈ N.Then, Ṽ (ψ) is pZ-SI as well. De�ne f ∈ L2(R) by

f̂ = χIN∪(IN−2−N+3), where IN = [2−N+2, 3/2 · 2−N+2].Then f ∈ Ṽ (ψ), and by our hypothesis we have Tpkf ∈ Ṽ (ψ) for all k ∈ Z. Equivalently,using F Tk = E−k F , we have Epkf̂ ∈ F(Ṽ (ψ)) for all k ∈ Z. For k = 1, this impliesthat Epf̂(ξ) = e2πipξχIN∪(IN−2−N+3)(ξ) ∈ F(Ṽ (ψ)). By (3.12),
e2πip(ξ−2−N+3) = e2πipξ for a.e. ξ ∈ IN .This 
an only be satis�ed if e−2πip2−N+3

= 1, whi
h 
ontradi
ts the hypothesis that
1 ≤ p < 2N−3. This 
ompletes the proof of Lemma 3.4.Remark 2. A more detailed analysis shows that V (ψ) is 2N−2Z-SI, and it is not shiftinvariant by any sublatti
e of Z stri
tly larger than 2N−2Z. Sin
e we do not need su
hpre
ise assertion, we will skip its proof.Finally, we are ready to 
omplete the proof of Theorem 3.1.Proof of Theorem 3.1. Take any J ∈ N. Suppose that ψ is a frame wavelet as in Lemma3.3 with N = J+3. By Lemma 3.4 and Proposition 2.1, the period of ψ is at least 2N−3.Hen
e, by Proposition 2.3, we need at least 2J fun
tions to generate the 
anoni
al dualof {D2jTkψ}j,k∈Z.We have only left to show that the wavelet frame generated by ψ has in�nitely manyalternate duals that are generated by one fun
tion. For this purpose it is 
onvenient toassume that ψ = ψ0 + εψ1 is of the same form as in the proof of Lemma 3.3, i.e., ψ0generates a tight frame with frame bound 1. Hen
e, the fun
tions ψ and ψ0 satisfy the
hara
teristi
 equations

∑

j∈Z

ψ̂(2jξ)ψ̂0(2jξ) = 1, a.e. ξ ∈ R,

∞∑

j=0

ψ̂(2jξ)ψ̂0(2j(ξ + q)) = 0, a.e. ξ ∈ R for odd q ∈ Z,
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e ψ̂ = ψ̂0 on supp ψ̂0 and sin
e ψ̂(2j ·)ψ̂0(2j(· + q)) = 0 for all j ≥ 0 and all odd
q. We 
on
lude that {ψ0

j,k} is a dual frame of {ψj,k}. Sin
e {ψ0
j,k} is generated by onefun
tion, it is apparent from the above that {ψ0

j,k} must be an alternate dual.Any fun
tion φ ∈ L2(R) de�ned by φ̂ = ψ̂0 + h, where
h ∈ C∞(R), supph ⊂ [−1/4, 1/2] , supph ∩ supp ψ̂0 = ∅, h(0) = 0,generates a Bessel sequen
e by [17, Theorem 13.0.1℄. Sin
e ψ and φ satisfy the 
hara
-teristi
 equations above, su
h a φ is an alternate dual frame wavelet of ψ. This exampledemonstrates that we have in�nitely many alternate duals, and 
ompletes the proof ofTheorem 3.1.We end by putting our example in a perspe
tive with other known results.Remark 3. Aus
her [1℄ proved that every �regular� orthonormal wavelet ψ ∈ L2(R) is as-so
iated with an MRA. �Regular� means that |ψ̂| is 
ontinuous and ψ̂(ξ) = O(|ξ|−1/2−δ)as |ξ| → ∞ for some δ > 0, see [16, Corollary 7.3.16℄. This fa
t does not hold for tightframe wavelets. In fa
t, Baggett et al. [2℄ 
onstru
ted a non-MRA Cr tight framewavelet with rapid de
ay for any r ∈ N. Moreover, their tight frame wavelet is asso-
iated with a GMRA having the same dimension/multipli
ity fun
tion as the Journéwavelet. On
e we allow non-tight frame wavelets we might lose even the GMRA prop-erty. Indeed, the frame wavelet from Theorem 3.1 is an example of a non-GMRA C∞frame wavelet with rapid de
ay.Referen
es[1℄ P. Aus
her, Solution of two problems on wavelets, J. Geom. Anal. 5 (1995), 181�236.[2℄ L. Baggett, P. Jorgensen, K. Merrill, J. Pa
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PAPER II
Constru
ting pairs of dualbandlimited framelets withdesired time lo
alization in L

2(R)

Jakob LemvigAbstra
t. For su�
iently small translation parameters, we provethat any bandlimited fun
tion ψ, for whi
h the dilations of itsFourier transform form a partition of unity, generates a waveletframe with a dual frame also having the wavelet stru
ture. Thisdual frame is generated by a �nite linear 
ombination of dilationsof ψ with expli
itly given 
oe�
ients. The result allows a sim-ple 
onstru
tion pro
edure for pairs of dual wavelet frames whosegenerators have 
ompa
t support in the Fourier domain and de-sired time lo
alization. The 
onstru
tion is based on 
hara
ter-izing equations for dual wavelet frames and relies on a te
hni
al
ondition. We exhibit a general 
lass of fun
tion satisfying this
ondition; in parti
ular, we 
onstru
t pie
ewise polynomial fun
-tions satisfying the 
ondition.Keywords. Dual frames · Framelets · Non-tight frames · Partitionof unity · Bandlimited wavelets
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48 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)1. Introdu
tionLet ψ ∈ L2(R) be a fun
tion su
h that ψ̂ is 
ompa
tly supported and the fun
tions
ξ 7→ ψ̂(ajξ), j ∈ Z, form a partition of unity for some a > 1. We prove that forsu�
iently small translation parameter b the fun
tion ψ generates a wavelet frame
{aj/2ψ(ajx − bk) : j, k ∈ Z} with a dual wavelet frame generated by a �nite linear
ombination of dilations of ψ. The result allows a 
onstru
tion pro
edure for pairs ofdual wavelet frames generated by bandlimited fun
tions with fast de
ay in the timedomain where both generators are expli
itly given.The prin
ipal idea used in the proof of Theorem 2.3 
omes from Christensen's 
on-stru
tion of dual Gabor frames in [6℄. Our 
onstru
tion is similar, but it takes pla
e inthe Fourier domain. The proof of Theorem 2.3 and the 
onstru
tion pro
edure providedby this theorem are based on the well-known 
hara
terizing equations for dual waveletframes by Chui and Shi [8℄.Our aim is to provide a 
onstru
tion of a pair of dual frame generators ψ and φ forwhi
h the fun
tions ψ and φ are expli
itly given in the sense that the fun
tions or theirFourier transform are given as �nite linear 
ombinations of elementary fun
tions. To bepre
ise, the 
onstru
tion uses ψ as a starting point and de�nes the dual generator φ asa �nite linear 
ombination of dilations of ψ with expli
itly given 
oe�
ients. This givesus 
ontrol of the properties of both generators as opposed to using 
anoni
al duals.The 
onstru
tion of redundant wavelet representations is often restri
ted to tightframes in order to avoid the 
umbersome inversion of the frame operator. However,in this paper we 
onsider general non-tight, non-
anoni
al, non-dyadi
 dual waveletframes. The 
onstru
tion of wavelet frames is usually based on the (mixed) unitaryor oblique extension prin
iple [7, 9, 12, 13℄. These prin
iples lead to dual or tightframe wavelets with many desirable features: 
ompa
t support, high order of vanishingmoments, high smoothness, and symmetry/antisymmetry; in parti
ular, expli
itly givenspline generators are 
onstru
ted from B-spline multiresolution analysis in [7, 9℄. Inthese and similar 
onstru
tions one 
annot do with fewer than two generators (see[7, Theorem 9℄ and [9, Theorem 3.8℄ in
luding the su

eeding remark); in addition,higher smoothness leads to more generators or larger support of the generators. Our
onstru
tion leads to frame wavelet with similar properties, the most notable di�eren
eis that the generators have 
ompa
t support in the Fourier domain, not in the timedomain.Wavelet frames 
onstru
ted by the unitary extension prin
iple from a B-spline mul-tiresolution analysis will always have one generator with only one vanishing momentyielding a wavelet system with approximation order of at most 2; this problem is 
ir-
umvented in the oblique extension prin
iple. When multiple generators are neededin our 
onstru
tion, all of these will share the same properties. In Examples 2 and 3the 
onstru
ted wavelet frames are generated by only one fun
tion, and in these 
asesthe smoothness of the generator does not a�e
t the size of the support (that is, in theFourier domain).Our 
onstru
tion is expli
it, and it works for arbitrary real dilations, but as a draw-ba
k the wavelet frame generators will not have 
ompa
t support in the time domainleading to in�nite impulse response �lters. In the dyadi
 
ase an e�
ient algorithm
an be implemented by using the fast Fourier transform, see for example the fra
tional



1. Introdu
tion 49spline wavelet software for Matlab by Unser and Blu [3℄. The idea is to perform the
al
ulation in the Fourier domain using multipli
ation and periodization in pla
e of 
on-volution and down-sampling. For this to work, we need the frequen
y response of the�lter 
oe�
ients (sometimes simply 
alled �lters or masks and often denoted by τi, mi,or Hi), but we get this almost dire
tly from our 
onstru
tion; the frequen
y response ofboth high pass �lters (de
omposition and re
onstru
tion) 
an be obtained from dilationsof ψ̂. Note that this relies 
ru
ially on the fa
t that the dual generator φ is de�ned asa �nite linear 
ombination of dilations of ψ with expli
itly given 
oe�
ients.The paper is organized as follows. In Se
tion 2 we prove the main result of thisarti
le, Theorem 2.3. The theorem 
ontains a te
hni
al 
ondition on partition of unity,and we address this problem in Example 1 where we expli
itly 
onstru
t fun
tions thatsatisfy the 
ondition. A note on the terminology: the fun
tions in the �partition ofunity� are not assumed to be non-negative, but 
an take any real value. In Exam-ple 2 we give an example of a pair of smooth, fast de
aying, symmetri
 generatorswith the translation parameter being 1. The 
onstru
tion of dual wavelet frames usingTheorem 2.3 often imposes the translation parameter to be small, e.g., smaller than
1. Consequently, we want methods to expand the range of the translation parameter,and this is the topi
 of Se
tion 2.2. In Se
tion 3 we show that the representation offun
tions provided by Theorem 2.3 with the expli
itly given dual frame is advantageousover similar representations using tight frames or 
anoni
al dual frames. In Se
tion 4we present another appli
ation of Theorem 2.3 with generators in the S
hwartz spa
e.However, the 
onstru
tion in this example is less expli
it than in the �rst example. Weend this paper with some remarks on 
onstru
tions of pairs of dual wavelet frames forthe Hardy spa
e.We end this introdu
tion by reviewing some basi
 de�nitions and with an observationon the 
anoni
al dual frame. A frame for a separable Hilbert spa
e H is a 
olle
tion ofve
tors {fj}j∈J with a 
ountable index set J if there are 
onstants 0 < C1 ≤ C2 < ∞su
h that

C1 ‖f‖2 ≤
∑

j∈J

∣∣〈f, fj〉
∣∣2 ≤ C2 ‖f‖2 for all f ∈ H.If the upper bound holds in the above inequality, then {fj} is said to be a Bessel sequen
ewith Bessel 
onstant C2. For a Bessel sequen
e {fj} we de�ne the frame operator by

S : H → H, Sf =
∑

j∈J
〈f, fj〉fj.This operator is bounded, invertible, and positive. A frame {fj} is said to be tight ifwe 
an 
hoose C1 = C2; this is equivalent to S = C1I where I is the identity operator.Two Bessel sequen
es {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj ∀f ∈ H.It 
an be shown that two su
h Bessel sequen
es are indeed frames. Given a frame {fj},at least one dual always exists; it is 
alled the 
anoni
al dual and is given by {S−1fj}.Only redundant frames have several duals.



50 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)For f ∈ L2(R), we de�ne the dilation operator by Daf(x) = a1/2f(ax) and thetranslation operator by Tbf(x) = f(x − b) where 1 < a < ∞ and b ∈ R. We say that
{DajTbkψ}j,k∈Z is the wavelet system generated by ψ where a > 1 and b > 0. In thefollowing we use the index set (j, k) ∈ Z×Z whenever a sequen
e is stated without indexset. If {DajTbkψ} is a frame for L2(R), the generator ψ is termed a framelet or framewavelet. For f ∈ L1(R) the Fourier transform is de�ned by f̂(ξ) =

∫
R f(x)e−2πiξxdxwith the usual extension to L2(R). Given a measurable set K ⊂ R we de�ne the Paley-Wiener spa
e Ľ2(K), whi
h is invariant under all translations, by Ľ2(K) = {f ∈ L2(R) :

supp f̂ ⊂ K}.2. Constru
tion of dual wavelet framesOur main result, Theorem 2.3, is obtained from the following result by Chui and Shi [8℄.The result is stated in the last two lines of Se
tion 4 on page 263 in their arti
le.Theorem 2.1. Let a > 1, b > 0, and ψ, ψ̃ ∈ L2(R). Suppose the two wavelet sys-tems {DajTbkψ}j,k∈Z and {DajTbkψ̃}j,k∈Z form Bessel families. Then {DajTbkψ} and
{DajTbkψ̃} will be dual frames if the following 
onditions hold

∑

j∈Z

ψ̂(ajξ)
ˆ̃
ψ(ajξ) = b a.e. ξ ∈ R, (2.1)

ˆ̃ψ(ξ)ψ̂(ξ + q) = 0 a.e. ξ ∈ R for 0 6= q ∈ b−1Z. (2.2)The 
onditions (2.1) and (2.2) are also ne
essary when a > 1 is su
h that aj isirrational for all positive integers j, see [8, p. 263℄. For this reason the above 
onditionsare often refereed to as 
hara
terizing equations for su
h irrational dilations. The resultin Theorem 2.1 follows from the general result of 
hara
terizing equations for dualwavelet frames [8, Theorem 2℄.The next result, Lemma 2.2, gives a su�
ient 
ondition for a wavelet system to bea Bessel sequen
e. Its proof 
an be found in [5, Theorem 11.2.3℄.Lemma 2.2. Let a > 1, b > 0, and f ∈ L2(R). Suppose that
C2 =

1

b
sup

|ξ|∈[1,a]

∑

j,k∈Z

∣∣∣f̂(ajξ)f̂(ajξ + k/b)
∣∣∣ <∞.Then the a�ne system {DajTbkf} is a Bessel sequen
e with bound C2.Theorem 2.1 and Lemma 2.2 are all we need to prove our main result, Theorem 2.3.The main result 
ontains the te
hni
al 
ondition (2.3) on ψ. In the example followingthe proof of the main result, Example 1, we expli
itly 
onstru
t fun
tions satisfying this
ondition.Theorem 2.3. Let n ∈ N, a > 1, and ψ ∈ L2(R). Suppose that ψ̂ ∈ L∞(R) is areal-valued fun
tion with supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z, and that

∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R. (2.3)



2. Constru
tion of dual wavelet frames 51Let b ∈ (0, 2−1a−c
]. Then the fun
tion ψ and the fun
tion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

a−jψ(a−jx) for x ∈ R, (2.4)generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).Proof. By assumption the fun
tion ψ̂ is 
ompa
tly supported in R\{0}; the same holdsfor φ̂ sin
e, by the de�nition in (2.4) and the linearity of the Fourier transform,
φ̂(ξ) = bψ̂(ξ) + 2b

n−1∑

j=1

ψ̂(ajξ).An appli
ation of Lemma 2.2 shows that the fun
tions ψ and φ generate wavelet Besselsequen
es.To 
on
lude that ψ and φ generate dual wavelet frames we will show that 
ondi-tions (2.1) and (2.2) in Theorem 2.1 hold. By aj-dilation periodi
ity of the sum in
ondition (2.1) it is su�
ient to verify this 
ondition on the intervals [−a,−1] and [1, a].On these two intervals, only �nitely many terms in the sum (2.3) are nonzero sin
e
ψ̂ has 
ompa
t support; in parti
ular, only the terms j = c − n, c − n + 1, . . . , c − 1
ontribute whi
h follows from the support of the dilations of ψ̂:

supp ψ̂(ac−n·) ⊂ [−an,−1] ∪ [1, an] ,

supp ψ̂(ac−n+1·) ⊂ [−an−1,−1/a] ∪ [1/a, an−1],and 
ontinuing to
supp ψ̂(ac−1·) ⊂ [−a,−a−n+1] ∪ [a−n+1, a].For |ξ| ∈ [1, a], by the assumption, we have

1 =

(∑

j∈Z

ψ̂(ajξ)

)2

=

( c−1∑

j=c−n
ψ̂(ajξ)

)2 (2.5)
=
[
ψ̂(ac−nξ) + ψ̂(ac−n+1ξ) + · · · + ψ̂(ac−1ξ)

]2

= ψ̂(ac−nξ)
[
ψ̂(ac−nξ) + 2ψ̂(ac−n+1ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ ψ̂(ac−n+1ξ)
[
ψ̂(ac−n+1ξ) + 2ψ̂(ac−n+2ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ · · · + ψ̂(ac−1ξ)
[
ψ̂(ac−1ξ)

]

=
1

b

c−1∑

j=c−n
ψ̂(ajξ)φ̂(ajξ) =

1

b

∑

j∈Z

ψ̂(ajξ)φ̂(ajξ),hen
e ψ and φ satisfy 
ondition (2.1).To realize that ψ and φ satisfy equation (2.2) as well, we note supp ψ̂(· ± q) ⊂
B̄(∓q, ac) and supp φ̂ ⊂ [−ac,−ac−2n+1

] ∪ [ac−2n+1, ac
] ⊂ B̄(0, ac) where B̄(x, r) =
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[x− r, x + r] denotes the 
losed ball with 
enter at x and radius r. The two fun
tionsabove will have disjoint support modulo null sets whenever |q| ≥ 2ac. Consequently,by 
hoosing the translation parameter b ≤ 2−1a−c, the two fun
tions in 
ondition (2.2)will have disjoint support for all q ∈ b−1Z \{0} sin
e min
∣∣b−1Z \ {0}

∣∣ = 1/b ≥ 2ac, andthe 
ondition will be trivially satis�ed.Whenever n = 1 in Theorem 2.3 above, we have φ = bψ by equation (2.4), thus ψgenerates a tight frame with bound b. In this 
ase, i.e., n = 1, the 
hoi
es of ψ are verylimited sin
e fun
tions ψ satisfying the 
onditions in Theorem 2.3 with n = 1 must beof the form ψ̂ = χacS, where S = [−1,−1/a] ∪ [1/a, 1]. As a 
onsequen
e, interesting
onstru
tions using Theorem 2.3 are restri
ted to n > 1. For n > 1, the dual framesgenerated by ψ and φ will be non-
anoni
al.The important thing to note about the de�nition of φ in (2.4) is that φ will in-herit properties from ψ that are preserved by linearity and dilation, e.g., φ̂ will have
ompa
t support be
ause ψ̂ has this property. This holds also for properties su
h assmoothness, symmetry, fast de
ay, and vanishing moments up to some order. If ψ (or
ψ̂) 
an be written in terms of elementary fun
tions, the same will hold for φ (or φ̂).These observations naturally lead to a review of the properties generally possessed bythe dual generators we 
onstru
t. As mentioned above, all non-trivial appli
ations ofTheorem 2.3 involve n > 1, n ∈ N. We will furthermore assume that ψ̂ ∈ L2(R) iseven, expli
itly given, and, when mentioned, a Cr-fun
tion for some r ∈ N ∪ {0}. Inthis situation the resulting pair of dual generators has the following properties:

• Expli
it and similar form: ψ̂ and φ̂ are of similar form, e.g., pie
ewise polynomialof the same order (see Example 2) unlike the situation for the 
anoni
al dual (seeSe
tion 3). A similar 
onstru
tion pro
edure for tight frames gives �less� expli
itlygiven generators (see Se
tion 3).
• Compa
t support in Fourier domain of both ψ and φ.
• Fast de
ay in time domain. For ψ̂ ∈ Cr0(R) the generating fun
tion ψ will satisfy

lim|x|→∞ xrψ(x) = 0, that is, ψ(x) = o(x−r) as |x| → ∞. The dual generator φhas the same properties.
• High order of vanishing moments. In general for ψ̂ ∈ Cr0(R) the generator ψ willhave vanishing moments up to order r ∈ N ∪ {0} sin
e

0 =
dmψ̂

dξm
(0) = (−2πi)m

∫

R
xmψ(x)dx for m = 0, . . . , r.And again, the same holds for the dual generator φ.

• Symmetry: ψ̂ and φ̂ are even and real fun
tions and so are ψ and φ.
• Frequen
y overlap between s
ales for in
reased stability and non-semiorthogonali-ty: For all j, k ∈ Z there is a j′ 6= j and a k′ ∈ Z so that 〈DajTbkψ,Daj′Tbk′ψ〉 6= 0.The same holds for the dual generator φ.
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• Generalized multiresolution stru
ture [1℄ (see also Se
tion 2.3). The two generators
an be asso
iated with the same GMRA with identi
al 
ore subspa
e, the Paley-Wiener spa
e Ľ2(K) with K = ∪j<0

(
aj supp ψ̂

) ⊂ [−ac−1, ac−1
], hen
e bothgenerators 
an be asso
iated with the same s
aling fun
tion. These types of dualwavelet frames are 
alled sibling frames in [7℄. Furthermore, the GMRA providesarbitrarily large approximation order [10℄.To make Theorem 2.3 appli
able, we need to show how to 
onstru
t fun
tions thatsatisfy the te
hni
al 
ondition (2.3) in the theorem. It is important that this 
onstru
-tion is expli
it be
ause one of the key features of the theorem is that the dual generator isexpli
itly given in terms of dilations of ψ. In Example 1 we 
onstru
t a dyadi
 partitionof unity, that is, we 
onstru
t a fun
tion g ∈ L2(R) satisfying

∑

j∈Z

g(2jx) = 1 for a.e. x ∈ R. (2.6)This 
orresponds to 
ondition (2.3) for dyadi
 dilation a = 2; a generalization of the
onstru
tion to arbitrary real dilation parameter a > 1 is straightforward (repla
e everyo

urren
e of �2� with �a�). As we shall see a very general 
lass of fun
tions satisfy the
ondition (see also Example 3).Example 1. For any m ∈ Z, any δ > 0 smaller than or equal to 2m/3, and a boundedfun
tion f on [2m − δ, 2m + δ] satisfying f(2m − δ) = 0 and f(2m + δ) = 1, we de�ne
h1(x) =





f(x) x ∈ B̄(2m, δ),

1 x ∈ (2m + δ, 2m+1 − 2δ
)
,

1 − f(x/2) x ∈ B̄(2m+1, 2δ),

0 otherwise. (2.7)Any su
h h1 ∈ L2(R) will be 
ontinuous if f is 
ontinuous, and it will satisfy:
∑

j∈Z

h1(2
jx) =

{
1 for x > 0,

0 for x ≤ 0.We use the same approa
h to 
onstru
t h2 ∈ L2(R) satisfying:
∑

j∈Z

h2(2
jx) =

{
0 for x ≥ 0,

1 for x < 0,and de�ne g = h1 + h2. This gives us the dyadi
 partition of unity almost everywhere.The fun
tion f above 
ould be 
hosen as any polynomial satisfying f(2m − δ) = 0and f(2m + δ) = 1; this will make g 
ontinuous. If we also let the polynomial f satisfy
f ′(2m − δ) = f ′(2m + δ) = 0, then g ∈ C1(R). Continuing this way, we 
an make g assmooth as desired while still keeping g pie
ewise polynomial.In the next example we apply the ideas from the above example to Theorem 2.3 and
onstru
t dual wavelet frames with dyadi
 dilation and translation parameter b = 1;a
tually, any b ∈ (0, 1] 
an be used, but we take b = 1 for simpli
ity.
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ontinuous fun
tion on the interval [1/4, 1/2] satisfying f(1/4) =
1 and f(1/2) = 0. For example f 
an be any of the fun
tions below:

f(x) = 2 − 4x, (2.8a)
f(x) = 8(24x2 − 8x+ 1)(2x − 1)2, (2.8b)
f(x) = −16(320x3 − 192x2 + 42x− 3)(2x − 1)3, (2.8
)
f(x) = 32(4480x4 − 3840x3 + 1280x2 − 192x + 11)(2x − 1)4, (2.8d)
f(x) = 1

2 + 1
2 cos π(4x− 1). (2.8e)In de�nitions (2.8b) and (2.8e) the fun
tion f satisfy f ′(1/4) = f ′(1/2) = 0, in de�nition(2.8
) this also holds for the se
ond derivative, and in (2.8d) even for the third derivative.As in Example 1 de�ne ψ ∈ L2(R) by:

ψ̂(ξ) =





1 − f(2 |ξ|) for |ξ| ∈ [1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise. (2.9)This way ψ̂ be
omes a dyadi
 partition of unity with supp ψ̂ ⊂ [−1/2,−1/8]∪ [1/8, 1/2],so we 
an apply Theorem 2.3 with c = −1, n = 2, and b = 1. Following Theorem 2.3we de�ne the dual generator φ ∈ L2(R) by:
φ̂(ξ) =





2[1 − f(4 |ξ|)] for |ξ| ∈ [1/16, 1/8] ,

1 + f(2 |ξ|) for |ξ| ∈ (1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise. (2.10)whereby ψ and φ generate dual frames {D2jTkψ}j,k∈Z and {D2jTkφ}j,k∈Z for L2(R).The translation parameter in these wavelet systems is set to b = 1, and ea
h waveletframe is generated by only one fun
tion.Suppose we let ψ̂ ∈ L2(R) be pie
ewise polynomial as de�ned by equations (2.8a)to (2.8d). Then ψ̂ ∈ Cr(R) with r = 0, 1, 2, 3, respe
tively. Further, the generators
ψ and φ will be real and even, and ψ̂ and φ̂ will be pie
ewise polynomial and have
ompa
t support with supp ψ̂ ⊂ [−1/2,−1/8]∪ [1/8, 1/2] and supp φ̂ ⊂ [−1/2,−1/16]∪
[1/16, 1/2]. We have a greater number of vanishing moments and faster de
ay thanindi
ated by the review of properties above: ψ and φ will have r+1 vanishing momentsand de
ay as O(x−r−2) as |x| → ∞, e.g., using (2.8b) we have ψ̂, φ̂ ∈ C1(R), and ψand φ with vanishing moments up to order 2, and ψ(x) = O(x−3) and φ(x) = O(x−3),see Figures 1 and 2. The expli
it form of ψ and hen
e φ are easily found; in general,they are �nite linear 
ombination of sine and 
osine of the form sin(2παx)/(πx)n and
cos(2παx)/(πx)n for integer n ≥ 2 + r and α ∈ Q.We end the example with some notes on the numeri
al aspe
ts and the multireso-lution stru
ture. We 
laim that C1 = 1/2 and C2 = 1 are frame bounds for {D2jTkψ},that C1 = 7/2 and C2 = 5 are frame bounds for the dual frame {D2jTkφ}, and that
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Figure 1: A pair of dual generators ψ (solid line) and φ (dotted line) in the time domain with
f as in (2.8b).this holds for any f from equations (2.8); even more, the frame bounds hold for any fsatisfying 0 ≤ f(x) ≤ 1 for x ∈ [1/4, 1/2]. To prove the 
laim observe that

∑

k 6=0

∑

j∈Z

∣∣∣ψ̂(2jξ)ψ̂(2jξ + k)
∣∣∣ = 0, for ξ ∈ R,by the support of ψ̂. This redu
es the frame bound estimates in [5, Theorem 11.2.3℄ to

C1 = inf
|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
, C2 = sup

|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
,where C1 and C2 are a lower and upper frame bound of {D2jTkψ}, respe
tively. For

|ξ| ∈ [1/4, 1/2] we have, by the de�nition (2.9),
∑

j∈Z

|ψ̂(2jξ)|2 = f(|ξ|)2 + (1 − f(|ξ|))2 = 1 − 2f(|ξ|) + 2f(|ξ|)2,and thus,
C1 = min

x∈[α,β]
1 − 2x+ 2x2 = 1/2, C2 = max

x∈[α,β]
1 − 2x+ 2x2,with α := min1/4≤x≤1/2 f(x) and β := max1/4≤x≤1/2 f(x). Sin
e 0 ≤ f(x) ≤ 1 for

x ∈ [1/4, 1/2], we have α = 0 and β = 1, hen
e C2 = 1, and this proves the 
laim for
{D2jTkψ}; similar 
al
ulations will show the 
laim for the dual frame. In parti
ular,we see that the 
ondition number C2/C1 does not depend on the smoothness of thegenerators, and that the 
ondition number of the dual frame {D2jTkφ} is smaller thanthe 
ondition number of {D2jTkψ} and the 
ondition number of the 
anoni
al dualframe.
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Figure 2: A pair of dual generators ψ̂ (solid line) and φ̂ (dotted line) in the Fourier domainwith f as in (2.8b).The 
ore subspa
e of the GMRA is the Paley-Wiener spa
e V0 = Ľ2([−1/4, 1/4]).The fun
tion η ∈ L2(R) de�ned by η̂ = χ[−1/4,1/4] is a generator for V0, that is,
span{Tkη}k∈Z = V0, and {Tkη}k∈Z is a tight frame with frame bound 1 for V0. Wenote that this frame 
ontains twi
e as many elements as �ne
essary� in the sense that
{T2kη}k∈Z and {T2k+1η}k∈Z are orthogonal bases for V0. Obviously, we 
an take there�nable symbol H0 ∈ L2(T) to be the 1-periodi
 extension of H0 = χ[−1/8,1/8] so that
η̂(2ξ) = H0(ξ)η̂(ξ) for ξ ∈ R; note that the 
hoi
e of H0 is not unique, and by letting
H0 = χ[−3/8,1/4)∪[−1/8,1/8)∪[1/4,3/8) we obtain a quadrature mirror �lter sin
e H0(0) = 1and |H0(ξ)|2 + |H0(ξ + 1/2)|2 = 1. The re�nable symbol H0 is sometimes 
alled a lowpass �lter or mask. As wavelet symbol (high pass �lter) for the de
omposition Hd andre
onstru
tion Hr we 
an take Hd = ψ̂(2·) and Hr = φ̂(2·) extending them to 1-periodi
fun
tions; these symbols obviously satisfy ψ̂(2ξ) = Hd(ξ)η̂(ξ) and φ̂(2ξ) = Hr(ξ)η̂(ξ).2.1. An alternative de�nition of the dual generatorThe following result resembles Theorem 2.3, but it gives an alternative way of de�ning
φ; note the 
hange from ψ(a−jx) in (2.4) to ψ(ajx) in (2.11). The result follows fromthe symmetry of the 
al
ulations in (2.5).Proposition 2.4. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 2.3. Let
b ∈ (0, a−c(1 + an−1)−1

]. Then the fun
tion ψ and the fun
tion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

ajψ(ajx) for x ∈ R (2.11)generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).Proof. The fun
tions ψ̂ and φ̂ satisfy 
ondition (2.1). This follows from 
al
ulationssimilar to those in (2.5): We start by fa
toring out ψ̂(ac−1ξ) instead of ψ̂(ac−nξ),
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ontinue in a similar way. To see that 
ondition (2.2) is satis-�ed, we note that supp φ̂ ⊂ [−ac+n−1,−ac−n] ∪ [ac−n, ac+n−1
] sin
e supp φ̂(a−n+1·) ⊂[−ac+n−1,−ac−1

]∪[ac−1, ac+n−1
]. The two fun
tions in (2.2) will have disjoint supportmodulo null sets whenever |q| ≥ ac + ac+n−1 = ac(1 + an−1).The 
hoi
e of the translation parameter b is more restri
tive in Proposition 2.4 thanin Theorem 2.3 sin
e the support of φ̂ de�ned by (2.11) is larger than when de�nedby (2.4). Note that b ∈ (0, a−c(1 + an−1)−1

] 
an be repla
ed by the simpler, but morerestri
tive, b ∈ (0, a−c−n] in the 
ase a ≥ 2.2.2. Expanding the range of the translation parameterThe 
onstru
tion of dual wavelet frames from Theorem 2.3 often imposes the translationparameter b to be small, e.g., b < 1. Hen
e, it would be interesting to know in whi
h
ases we 
an take b = 1. For the sake of simpli
ity let a = 2 for a moment, and assumethat ψ satis�es the assumptions of Theorem 2.3. Obviously, we 
an take b = 1 if thesupport of ψ̂ is 
ontained in [−1/2, 1/2], that is, if c ≤ −1; this is exa
tly what we usedin Example 2. If c ≥ 0, we need, in order to a
hieve b = 1, to apply Theorem 2.3 to
ψ̂(2c+1·) in pla
e of ψ̂. This dilated version of ψ will still be a dyadi
 partition of unityand supp ψ̂(2c+1·) ⊂ [−1/2, 1/2]. Moreover, we have the following result.Corollary 2.5. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 2.3. Let
b ∈ (0, 2−1a−c

]. Then the fun
tion ψ̃ := Dbψ and the fun
tion φ̃ := Dbφ, where φ isde�ned as in (2.4), generate dual frames {DajTkψ̃}j,k∈Z and {DajTkφ̃}j,k∈Z for L2(R).Proof. The result basi
ally follows from an appli
ation of the identity
DbTbk = TkDb, (2.12)and the fa
t that dilation preserves the frame property and the duality of (wavelet)frames sin
e it is a unitary operator on L2(R). By assumption {DajTbkψ} and {DajTbkφ}are dual frames for b ∈ (0, 2−1a−c

]. The identity (2.12) yields,
DbDajTbkψ = DajTk(Dbψ),hen
e {DajTkψ̃} is a frame as a unitary image of a wavelet frame where ψ̃ = Dbψ. Thesame 
on
lusion holds for {DajTkφ̃}. For all f ∈ L2(R), we have

f = Db(D
∗
bf) =

∑

j,k∈Z

〈f,DbDajTbkφ〉DbDajTbkψ =
∑

j,k∈Z

〈
f,DajTkφ̃

〉
DajTkψ̃,and 
on
lude that duality is preserved.Another approa
h (for obtaining b = 1) makes use of multigenerated wavelet sys-tems. In the following result the 
onstru
ted dual wavelet frames are generated by mfun
tions again sharing the properties of the starting point fun
tion ψ; in parti
ular, if

ψ has vanishing moments up to some order, then so will every fun
tion in the generatorsets Ψ and Φ.



58 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Corollary 2.6. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 2.3. Let
m ∈ N and b ∈ (0, 2−1a−cm

]. Then the fun
tions Ψ = {ψ, Tb/mψ, . . . , T(m−1)b/mψ} andthe fun
tions Φ = {φ, Tb/mφ, . . . , T(m−1)b/mφ}, where φ is de�ned as in (2.4), generatedual frames {DajTbkψ}j,k∈Z,ψ∈Ψ and {DajTbkφ}j,k∈Z,φ∈Φ for L2(R).Proof. Let m ∈ N. For b so that 0 < b/m ≤ 2−1a−c, the fun
tions ψ and φ, where φ isde�ned as in (2.4), generate dual frames {DajTbk/mψ}j,k∈Z and {DajTbk/mφ}j,k∈Z for
L2(R). Note that (m−1Z) / Z = {0, 1, . . . ,m− 1}, and de�ne:

Ψ =
{
ψ, Tb/mψ, T2b/mψ, . . . , T(m−1)b/mψ

}
.It follows immediately that {DajTb/mkψ}j,k∈Z = {DajTbkψ}j,k∈Z,ψ∈Ψ. Similarly, wehave for φ that {DajTb/mkφ}j,k∈Z = {DajTbkφ}j,k∈Z,φ∈Φ, where

Φ :=
{
φ, Tb/mφ, T2b/mφ, . . . , T(m−1)b/mφ

}
.We 
on
lude {DajTbkψ}j,k∈Z,ψ∈Ψ and {DajTbkφ}j,k∈Z,φ∈Φ are dual frames for L2(R) for

b/m ≤ 2−1a−c, that is, for b ≤ 2−1a−cm.It follows from the 
orollary that, in the dyadi
 
ase, we 
an always obtain b = 1 byusing 2c+1 generators.2.3. On the generalized multiresolution stru
tureWe end this se
tion with a 
loser study of the GMRA stru
ture of ψ and φ. To thisend, let ψ ∈ L2(R) satisfy the assumptions in Theorem 2.3. We 
onsider the subspa
es
W b
j (ψ) := span {DajTbkψ : k ∈ Z}. Let ψ̃ = Dbψ be the generator of frame {DajTkψ̃},see Corollary 2.5. From the identity Tbk = Db−1TkDb we have W b

0 (ψ) = Db−1W 1
0 (ψ̃)where W 1

j (ψ̃) = span
{
DajTkψ̃ : k ∈ Z

}. By [10, Theorem 2.14℄,
W 1

0 (ψ̃) =

{
f ∈ L2(R) : f̂ = m

ˆ̃
ψ for some measurable, 1-periodi
 m}and further, using supp ˆ̃ψ ⊂ [−1/2, 1/2],

W 1
0 (ψ̃) =

{
f ∈ L2(R) : supp f̂ ⊂ supp

ˆ̃
ψ

}
= Ľ2(supp

ˆ̃
ψ),hen
e W b

0 (ψ) = Ľ2(supp ψ̂) by the above, and by dilation, W b
j (ψ) = Ľ2(aj supp ψ̂). We
on
lude that the spa
e of negative dilates, also 
alled the 
ore subspa
e, asso
iatedwith ψ is given by

V0(ψ) = span

(⋃

j<0

W b
j (ψ)

)
= Ľ2(K), K =

⋃

j<0

(
aj supp ψ̂

) ⊂
[
−ac−1, ac−1

]
,whi
h is a subspa
e invariant under all translations. It is straightforward to see V0(ψ) =

V0(φ); we will denote this spa
e by V0. A fun
tion η ∈ L2(R) is said to generate V0 if
span {Tbkη}k∈Z = V0, and we have that η generates V0 if, and only if, supp η̂ = K (see



3. Dual frames versus tight frames 59[10℄). If we further require {Tbkη}k∈Z to be a frame for V0, then η̂ 
annot be 
ontinuoushen
e η will be poorly lo
alized in time. This drawba
k follows from a result in [2℄;indeed, the sum ∑
k∈Z |η̂((ξ + k)/b)|2 redu
es to |η̂(ξ/b)|2 for ξ ∈ [−1/2, 1/2] sin
e

b ≤ 2−1a−c implies bac−1 ≤ 1/(2a) ≤ 1/2 − ε for some ε > 0 hen
e supp η̂(·/b) = bK ⊂
[−bac−1, bac−1] ⊂ [−1/2 + ε, 1/2 − ε]. Now, the 
on
lusion follows from [2, Theorem3.4℄. We note that the 
onstru
ted wavelet frame will not ne
essarily be a frame fora �xed dilation level subspa
e Wj(ψ) of L2(R). This situation is similar to that ofthe unitary and oblique extension prin
iples, but in 
ontrast to frame multiresolutionanalysis.3. Dual frames versus tight framesIn Theorem 2.3 we expli
itly 
onstru
t the dual frame. One might ask why we do notuse the 
anoni
al dual frame, or why we do not use the 
hara
terizing equations for tightframes to formulate a similar 
onstru
tion pro
edure of tight frames. In the followingwe will show that these approa
hes have some disadvantages 
ompared to Theorem 2.3.For a wavelet frame {DajTbkψ}j,k∈Z, the 
anoni
al dual frame is given by

{
S−1DajTbkψ : j, k ∈ Z

}
=
{
DajS−1Tbkψ : j, k ∈ Z

}
,where S is frame operator of {DajTbkψ}j,k∈Z. In general the 
anoni
al dual need nothave the stru
ture of a wavelet system, and this is one reason to avoid working with
anoni
al dual frames. However, as we show below, the 
anoni
al dual of all waveletframes 
onsidered in this paper will be of wavelet stru
ture, hen
e the 
anoni
al dual
ould be used in the synthesis pro
ess in the frame wavelet transform. The problemwith this approa
h is that it is di�
ult to 
ontrol whi
h properties the 
anoni
al dualframe inherits from the frame sin
e the appli
ation of the inverse frame operator 
andestroy desirable properties. We give an example of this issue in the following.Let ψ ∈ L2(R) be as in the assumptions of Theorem 2.3. Then ψ̂(ξ)ψ̂(ξ + b−1k) = 0for k ∈ Z \ {0}, and 
onsequently, by [11, Proposition 7.1.19℄ in the dyadi
 
ase anda simple generalization of parts of the proof of the proposition in the general 
ase, theasso
iated frame operator is the Fourier multiplier given by

Ŝf(ξ) =

(∑

j∈Z

∣∣∣ψ̂(ajξ)
∣∣∣
2
)
f̂(ξ) for a.e. ξ ∈ R, (3.1)for all f ∈ L2(R) with C1 ≤ ∑

j∈Z|ψ̂(ajξ)|2 ≤ C2 and C1, C2 as frame bounds for
{DajTbkψ}. Sin
e S is a Fourier multiplier, it 
ommutes with all translations, that is,
STr = TrS for all r ∈ R, and the same holds for the inverse frame operator, hen
e the
anoni
al dual takes the form

{
DajTbk(S

−1ψ) : j, k ∈ Z
}
,whi
h is a wavelet frame generated by S−1ψ. Moreover, the 
anoni
al dual generator isgiven by

Ŝ−1ψ(ξ) =
ψ̂(ξ)

∑
j∈Z

∣∣ψ̂(ajξ)
∣∣2 for a.e. ξ ∈ R, (3.2)



60 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Sin
e supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z and n ∈ N , we 
on
lude, byequation (3.2), supp Ŝ−1ψ = supp ψ̂ and
Ŝ−1ψ(ξ) =

ψ̂(ξ)
∑

|j|<n
(
ψ̂(ajξ)

)2 for a.e. ξ ∈ R. (3.3)This implies, among other things, that ψ̂ and Ŝ−1ψ will have the same regularity.But it also implies that 
hoosing ψ̂ to be pie
ewise linear will not make the 
anoni
aldual generator S−1ψ pie
ewise linear (in the Fourier domain, that is) owing to thedenominator in (3.3). This is unlike the situation in Example 2 where a pie
ewisepolynomial ψ̂ by Theorem 2.3 gave a dual generator φ̂ pie
ewise polynomial of the sameorder, e.g., a pie
ewise linear ψ̂ gave a pie
ewise linear φ̂. In general the denominator in(3.3) makes the expression for the 
anoni
al dual generator �less� expli
it. The pri
e wepay for using the non-
anoni
al dual is a slightly larger support (in the Fourier domain)of the dual generator.Sin
e the 
onstru
tion of wavelet frames by Theorem 2.3 is based on 
hara
terizingequations for dual wavelet frames, it would be natural to look for a similar way of
onstru
ting tight frames from their 
hara
terizing equations. In a naive approa
h tosu
h a 
onstru
tion one would need to 
hoose ψ ∈ L2(R) so that ψ̂ is real and thefamily ξ 7→ (ψ̂(ajξ))2, j ∈ Z, form a partition of unity and to 
hoose a su�
iently smalltranslation parameter (so that all terms in the series in the so-
alled �tq-equations�be
ome zero owing to disjoint support). Following the ideas from Example 1 we take
ψ ∈ L2(R) as (extending ψ̂ to an even fun
tion):

ψ̂(ξ) =





f(ξ) ξ ∈ B̄(am, δ),

1 ξ ∈ (am + δ, am+1 − aδ
)
,√

1 − (f(ξ/a))2 ξ ∈ B̄(am+1, aδ),

0 ξ ∈ [0,∞) \ [am − δ, am+1 + aδ
]
.for any m ∈ Z, any δ > 0 smaller than or equal to am/3, and a bounded fun
tion

f on [am − δ, am + δ] satisfying f(am − δ) = 0, f(am + δ) = 1, and |f | ≤ 1. Theimportant thing to note with this approa
h is that ψ̂ does not inherit properties from
f in opposition to the situation in Example 1, e.g., taking f to be linear does not make
ψ̂ pie
ewise linear be
ause of the square root in the expression above; moreover, it iswell known that the property of being a smooth (non-negative) fun
tion need not bepreserved when taking square roots.4. Another appli
ation of Theorem 2.3In Examples 1 and 2 we 
onstru
ted dual wavelet frames in a rather expli
it way. Thefollowing 
onstru
tion is less expli
it. In the �rst part of the example below we 
onstru
ta C∞ fun
tion on R with 
ompa
t support satisfying the te
hni
al 
ondition (2.6), andin the se
ond part we apply Theorem 2.3 to the 
onstru
ted fun
tion.Example 3 (Part I). Let f ∈ C∞(R) be de�ned as

f(x) =

{
e−1/x x > 0,

0 x ≤ 0,



4. Another appli
ation of Theorem 2.3 61and 
hoose positive 
onstants R > r > 0 so that
∃δ > 0 :

⋃

j∈Z

2j [r + δ,R − δ] = [0,∞) , (4.1)holds, e.g., take r = 1/8 and R = 1/2. We de�ne f1(x) = f(x− r)f(R− x) for x ∈ R,hen
e supp f1 ⊂ [r,R] and f1 ∈ C∞
0 (R), and we introdu
e a symmetri
 version of f1,denoted f2, in order to get a dyadi
 partition of unity of the negative as well as thepositive real line.

f2(x) =

{
f1(x) for x > 0,

f1(−x) for x ≤ 0.
(4.2)The fun
tion w will be used to normalize f2:

w(x) =
∑

j∈Z

f2(2
jx).For a �xed x ∈ R this sum only has �nitely many nonzero terms. Obviously, w is a

2j-dyadi
 periodi
 fun
tion and, by (4.1) and the de�nition of f1, it is also boundedaway from 0 and ∞:
∃c, C > 0 : c < w(x) < C for all x ∈ R \ {0},hen
e we 
an de�ne a fun
tion g ∈ C∞

0 (R) by
g(x) =

f2(x)

w(x)
for x ∈ R \ {0}, and, g(0) = 0. (4.3)This g will be a dyadi
 partition of unity; the 
al
ulations are straightforward:

∑

j∈Z

g(2jx) =
∑

j∈Z

f2(2
jx)

w(2jx)
=
∑

j∈Z

f2(2
jx)

w(x)
=

∑
j∈Z f2(2

jx)
∑
k∈Z f2(2kx)

= 1.The 
onstru
tion of g looks indeed less expli
it than the pie
ewise polynomial partitionof unity in Example 1 primarily be
ause g is normalized by an in�nite series w. Thissituation improves by noti
ing that, in pra
ti
e, the series w redu
e to a �nite sum sin
e
supp g = supp f2 ⊂ [−R,−r] ∪ [r,R]. For example, if we let r = 1/8 and R = 1/2, we
an do with three terms g(x) = f2(x)/

∑1
j=−1 f2(2

jx) for all x ∈ R \ {0}.Remark 1. 1. Note that the mirroring step (4.2) introdu
ing f2 also makes g sym-metri
. But it is obvious from the example that we 
an 
arry out the 
onstru
tionfor the positive part of the real line only to get a dyadi
 partition of the unity onthe positive real line, and, then, by the same approa
h (but with di�erent 
hoi
esof r and R), for the negative real line. This way g will not be symmetri
.2. In pla
e of f one 
ould 
hoose any fun
tion in C∞
0 (R) having the same support as

f . In pla
e of f1 one 
ould take any 
hara
teristi
 fun
tion f1 = χ[2n,2n+1] for some
n ∈ N 
onvolved with a smooth hδ ∈ C∞

0 (R) for a su�
iently small δ > 0, where
hδ(x) = δ−1h(δ−1x), and supph ⊂ [−1, 1], h ≥ 0, ∫ hdµ = 1, and h ∈ C∞

0 (R).Then supphδ ⊂ [−δ, δ] and supphδ ∗ f1 ⊂ [
2n − δ, 2n+1 + δ

].



62 PAPER II. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(R)Example 3 (Part II). We take r = 1/8 and R = 1/2 in Example 3 and set ψ̂ =
f2/

∑1
j=−1 f2(2

j ·) where f2 is given by (4.2), hen
e
ψ̂(ξ) =





e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ)−1 e(ξ−1/2)−1+e(1/8−2ξ)−1 e(2ξ−1/2)−1 ξ ∈ (1/8, 1/4) ,

1 ξ = 1/4,

e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ/2)−1 e(ξ/2−1/2)−1+e(1/8−ξ)−1 e(ξ−1/2)−1 ξ ∈ (1/4, 1/2) ,

0 ξ ∈ R+ \ (1/8, 1/2) ,and symmetri
ally for the negative real line. Applying this to Theorem 2.3 with n = 2,
c = −1, and b = 1 yields a pair of dual wavelet generators with ψ̂, φ̂ ∈ C∞(R),where φ̂ is de�ned as in (2.4), and supp ψ̂ ⊂ [−1/2,−1/8] ∪ [1/8, 1/2] and supp φ̂ ⊂
[−1/2,−1/16] ∪ [1/16, 1/2]. The generators are smooth, rapidly de
aying, symmetri
dual framelets with vanishing moments of in�nite order. It is 
lear that both belong tothe S
hwartz spa
e, but it is also 
lear, from the equation above, that ψ and φ are notexpli
itly given in the time domain.5. The Hardy spa
eA similar 
onstru
tion pro
edure for dual wavelet frames holds for the Hardy spa
e
H2(R) = {f ∈ L2(R) : supp f̂ ⊂ [0,∞)}. The result in Corollary 2.1 
an easily betransformed from L2(R) settings to the Hardy spa
e H2(R). Indeed, we only need torepla
e the right hand side b in equation (2.1) by bχ[0,∞)(ξ). In [4, Theorem 1.3℄ su
h atransformation is 
arried out for a similar result on tight wavelet frames [8, Theorem 1℄.The analogue version of Theorem 2.3 for the Hardy spa
e is as follows. Let n ∈ N and
a > 1. Suppose for ψ ∈ H2(R) that ψ̂ is a real-valued fun
tion with supp ψ̂ ⊂ [ac−n, ac]for some c ∈ Z and that

∑

j∈Z

ψ̂(ajξ) = χ[0,∞)(ξ) for a.e. ξ ∈ R.Let b ∈ (0, a−c]; a
tually, we 
ould even let b ∈ (
0, a−c(1 − a−2n+1)−1

]. Then ψ and
φ de�ned by (2.4) generate dual frames for H2(R). We note that, in the Hardy spa
e,the 
hoi
e of translation parameter be
omes less restri
tive than for L2(R). This owesto the fa
t that ψ̂ and φ̂ have smaller support sin
e they are zero on the negative realline.A
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PAPER III
Constru
ting pairs of dualbandlimited frame wavelets in

L
2(Rn)

Jakob LemvigAbstra
t. Given a real, expansive dilation matrix we prove thatany bandlimited fun
tion ψ ∈ L2(Rn), for whi
h the dilations ofits Fourier transform form a partition of unity, generates a waveletframe for 
ertain translation latti
es. Moreover, there exists a dualwavelet frame generated by a �nite linear 
ombination of dilationsof ψ with expli
itly given 
oe�
ients. The result allows a simple
onstru
tion pro
edure for pairs of dual wavelet frames whose gen-erators have 
ompa
t support in the Fourier domain and desiredtime lo
alization. The 
onstru
tion relies on a te
hni
al 
onditionon ψ, and we exhibit a general 
lass of fun
tion satisfying this
ondition.Keywords. Real, expansive dilation · Bandlimited wavelets · Dualframes · Non-tight frames · Partition of unity
Manus
ript, August 2008.



66 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)1. Introdu
tionFor A ∈ GLn(R) and y ∈ Rn, we de�ne the dilation operator on L2(Rn) by DAf(x) =

|detA|1/2 f(Ax) and the translation operator by Tyf(x) = f(x−y). Given a n×n real,expansive matrix A and a latti
e of the form Γ = PZn for P ∈ GLn(R), we 
onsiderwavelet systems of the form
{DAjTγψ}j∈Z,γ∈Γ

,where the Fourier transform of ψ has 
ompa
t support. Our aim is, for any given real,expansive dilation matrix A, to 
onstru
t wavelet frames with good regularity propertiesand with a dual frame generator of the form
φ =

b∑

j=a

cjDAjψ (1.1)for some expli
itly given 
oe�
ients cj ∈ C and a, b ∈ Z. This will generalize andextend the one-dimensional results on 
onstru
tions of dual wavelet frames in [16, 19℄to higher dimensions. The extension is non-trivial sin
e it is un
lear how to determinethe translation latti
e Γ and how to 
ontrol the support of the generators in the Fourierdomain. This will be done by 
onsidering suitable norms in Rn and non-overlappingpa
king of ellipsoids in latti
e arrangements.The 
onstru
tion of redundant wavelet representations in higher dimensions is usu-ally based on extension prin
iples [7, 8, 10, 11, 12, 13, 15, 17, 18℄. By making use ofextension prin
iples one is restri
ted to 
onsidering expansive dilations A with integer
oe�
ients. Our 
onstru
tions work for any real, expansive dilation. Moreover, in theextension prin
iple the number of generators often in
reases with the smoothness of thegenerators. We will 
onstru
t pairs of dual wavelet frames generated by one smoothfun
tion with good time lo
alization.It is a well-known fa
t that a wavelet frame need not have dual frames with waveletstru
ture. In [21℄ frame wavelets with 
ompa
t support and expli
it analyti
 form are
onstru
ted for real dilation matri
es. However, no dual frames are presented for thesewavelet frames. This 
an potentially be a problem be
ause it might be di�
ult or evenimpossible to �nd a dual frame with wavelet stru
ture. Sin
e we exhibit pairs of dualwavelet frames, this issue is avoided.The prin
ipal importan
e of having a dual generator of the form (1.1) is that it willinherit properties from ψ preserved by dilation and linearity, e.g., vanishing moments,good time lo
alization and regularity properties. For a more 
omplete a

ount of su
hmatters we refer to [16℄.In the rest of this introdu
tion we review basi
 de�nitions. A frame for a separableHilbert spa
eH is a 
ountable 
olle
tion of ve
tors {fj}j∈J for whi
h there are 
onstants
0 < C1 ≤ C2 <∞ su
h that

C1 ‖f‖2 ≤
∑

j∈J

∣∣〈f, fj〉
∣∣2 ≤ C2 ‖f‖2 for all f ∈ H.If the upper bound holds in the above inequality, then {fj} is said to be a Bessel sequen
ewith Bessel 
onstant C2. For a Bessel sequen
e {fj} we de�ne the frame operator by

S : H → H, Sf =
∑

j∈J
〈f, fj〉fj.



2. The general form of the 
onstru
tion pro
edure 67This operator is bounded, invertible, and positive. A frame {fj} is said to be tight ifwe 
an 
hoose C1 = C2; this is equivalent to S = C1I where I is the identity operator.Two Bessel sequen
es {fj} and {gj} are said to be dual frames if
f =

∑

j∈J
〈f, gj〉fj ∀f ∈ H.It 
an be shown that two su
h Bessel sequen
es are indeed frames. Given a frame {fj},at least one dual always exists; it is 
alled the 
anoni
al dual and is given by {S−1fj}.Only a frame, whi
h is not a basis, has several duals.For f ∈ L1(Rn) the Fourier transform is de�ned by f̂(ξ) =

∫
Rn f(x)e−2πi〈ξ,x〉dx withthe usual extension to L2(Rn).Sets in Rn are, in general, 
onsidered equal if they are equal up to sets of measurezero. The boundary of a set E is denoted by ∂E, the interior by E◦, and the 
losureby E. Let B ∈ GLn(R). A multipli
ative tiling set E for {Bj : j ∈ Z} is a subset ofpositive measure su
h that

∣∣∣Rn \ ∪j∈ZB
j(E)

∣∣∣ = 0 and ∣∣∣Bj(E) ∩Bl(E)
∣∣∣ = 0 for l 6= j. (1.2)In this 
ase we say that {Bj(E) : j ∈ Z

} is an almost everywhere partition of Rn, orthat it tiles Rn. A multipli
ative tiling set E is bounded if E is a bounded set and
0 /∈ E. By B-dilative periodi
ity of a fun
tion f : Rn → C we understand f(x) = f(Bx)for a.e. x ∈ Rn, and by a B-dilative partition of unity we understand ∑j∈Z f(Bjx) = 1;note that the fun
tions in the �partition of unity� are not assumed to be non-negative,but 
an take any real or 
omplex value.A (full-rank) latti
e Γ in Rn is a point set of the form Γ = PZn for some P ∈ GLn(R).The determinant of Γ is d(Γ) = |detP |; note that the generating matrix P is not unique,and that d(Γ) is independent of the parti
ular 
hoi
e of P .2. The general form of the 
onstru
tion pro
edureFix the dimension n ∈ N. We let A ∈ GLn(R) be expansive, i.e., all eigenvalues of Ahave absolute value greater than one, and denote the transpose matrix by B = At. Forany su
h dilation A, we want to 
onstru
t a pair of fun
tions that generate dual waveletframes for some translation latti
e. Our 
onstru
tion is based on the following resultwhi
h is a 
onsequen
e of the 
hara
terizing equations for dual wavelet frames by Chui,Czaja, Maggioni, and Weiss [6, Theorem 4℄.Theorem 2.1. Let A ∈ GLn(R) be expansive, let Γ be a latti
e in Rn, and let Ψ =
{ψ1, . . . , ψL}, Ψ̃ = {ψ̃1, . . . , ψ̃L} ⊂ L2(Rn). Suppose that the two wavelet systems
{DAjTγψl : j ∈ Z, γ ∈ Γ, l = 1, . . . , L} and {DAjTγψ̃l : j ∈ Z, γ ∈ Γ, l = 1, . . . , L} formBessel families. Then {DAjTγψl} and {DAjTγψ̃l} will be dual frames if the following
onditions hold

L∑

l=1

∑

j∈Z

ˆ̃ψl(B
jξ)ψ̂l(Bjξ) = d(Γ) a.e. ξ ∈ Rn, (2.1)

L∑

l=1

ˆ̃ψl(ξ)ψ̂l(ξ + γ) = 0 a.e. ξ ∈ Rn for γ ∈ Γ
∗ \ {0}. (2.2)



68 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)Proof. By ξ = Bjω for j ∈ Z, 
ondition (2.2) be
omes
L∑

l=1

ˆ̃
ψl(B

jω)ψ̂l(Bjω + γ) = 0 a.e. ω ∈ Rn for γ ∈ Γ
∗ \ {0}. (2.3)We use the notation as in [6℄, thus Λ(A,Γ) = {α ∈ Rn : ∃(j, γ) ∈ Z × Γ∗ : α = B−jγ}and IA,Γ(α) = {(j, γ) ∈ Z × Γ∗ : α = B−jγ}. Sin
e IA,Γ(α) ⊂ Z × (Γ∗ \ {0}) for any

α ∈ Λ(A,Γ) \ {0}, equation (2.3) yields
1

d(Γ)

∑

(j,γ)∈IA,Γ(α)

L∑

l=1

ˆ̃
ψl(B

jω)ψ̂l(Bj(ω +B−jγ)) = 0 a.e. ω ∈ Rnfor α 6= 0. By IA,Γ(0) = Z × {0}, we 
an rewrite (2.1) as
1

d(Γ)

∑

(j,γ)∈IA,Γ(0)

L∑

l=1

ˆ̃ψl(B
jω)ψ̂l(Bj(ω +B−jγ)) = 1 a.e. ω ∈ Rn,using that B−jγ = 0 for all j ∈ Z. Gathering the two equations displayed above yields

1

d(Γ)

∑

(j,γ)∈IA,Γ(α)

L∑

l=1

ˆ̃
ψl(B

jω)ψ̂l(Bj(ω +B−jγ)) = δα,0 a.e. ω ∈ Rn,for all α ∈ Λ(A,Γ). The 
on
lusion follows now from [6, Theorem 4℄.The following result, Lemma 2.2, gives a su�
ient 
ondition for a wavelet system toform a Bessel sequen
e; it is an extension of [3, Theorem 11.2.3℄ from L2(R) to L2(Rn).Lemma 2.2. Let A ∈ GLn(R) be expansive, Γ a latti
e in Rn, and φ ∈ L2(Rn). Supposethat, for some set M ⊂ Rn satisfying ∪l∈ZB
l(M) = Rn,

C2 =
1

d(Γ)
sup
ξ∈M

∑

j∈Z

∑

γ∈Γ∗

∣∣∣φ̂(Bjξ)φ̂(Bjξ + γ)
∣∣∣ <∞. (2.4)Then the wavelet system {DAjTγφ}j∈Z,γ∈Γ is a Bessel sequen
e with bound C2. Further,if also

C1 =
1

d(Γ)
inf
ξ∈M


∑

j∈Z

∣∣∣φ̂(Bjξ)
∣∣∣
2
−
∑

j∈Z

∑

γ∈Γ∗\{0}

∣∣∣φ̂(Bjξ)φ̂(Bjξ + γ)
∣∣∣


 > 0, (2.5)holds, then {DAjTγφ}j∈Z,γ∈Γ is a frame for L2(Rn) with frame bounds C1 and C2.Proof. The statement follows dire
tly by applying Theorem 3.1 in [5℄ on generalizedshift invariant systems to wavelet systems. In the general result for generalized shiftinvariant systems [5, Theorem 3.1℄, the supremum/in�mum is taken over Rn, but be-
ause of the B-dilative periodi
ity of the series in (2.4) and (2.5) for wavelet systems, itsu�
es to take the supremum/in�mum over a set M ⊂ Rn that has the property that

∪l∈ZB
l(M) = Rn up to sets of measure zero.



2. The general form of the 
onstru
tion pro
edure 69Theorem 2.1 and Lemma 2.2 are all we need to prove the following result on pairsof dual wavelet frames.Theorem 2.3. Let A ∈ GLn(R) be expansive and ψ ∈ L2(Rn). Suppose that ψ̂ is abounded, real-valued fun
tion with supp ψ̂ ⊂ ∪dj=0B
−j(E) for some d ∈ N0 and somebounded multipli
ative tiling set E for {Bj : j ∈ Z

}, and that
∑

j∈Z

ψ̂(Bjξ) = 1 for a.e. ξ ∈ Rn. (2.6)Let bj ∈ C for j = −d, . . . , d and let m = max {j : bj 6= 0} and m = −min {j : bj 6= 0}.Take a latti
e Γ in Rn su
h that
( d⋃

j=0

B−j(E) + γ
)
∩

m+d⋃

j=−m
B−j(E) = ∅ for all γ ∈ Γ

∗ \ {0}, (2.7)and de�ne the fun
tion φ by
φ(x) = d(Γ)

m∑

j=−m
bj |detA|−j ψ(A−jx) for x ∈ Rn. (2.8)If b0 = 1 and bj + b−j = 2 for j = 1, 2, . . . , d, then the fun
tions ψ and φ generate dualframes {DAjTγψ}j∈Z,γ∈Γ and {DAjTγφ}j∈Z,γ∈Γ for L2(Rn).Proof. On the Fourier side, the de�nition in (2.8) be
omes

φ̂(ξ) = d(Γ)
m∑

j=−m
bjψ̂(Bjξ).Sin
e ψ̂ by assumption is 
ompa
tly supported in a �ringlike� stru
ture bounded awayfrom the origin, this will also be the 
ase for φ̂. This property implies that ψ and φ willgenerate wavelet Bessel sequen
es. The details are as follows. The support of ψ̂ and φ̂is

supp ψ̂ ⊂
d⋃

j=0

B−j(E), supp φ̂ ⊂
m+d⋃

j=−m
B−j(E). (2.9)Note that 0 ≤ m,m ≤ d. The sets {Bj(E) : j ∈ Z

} tiles Rn, whereby we see that
∣∣∣ supp ψ̂(Bj·) ∩B−d(E)

∣∣∣ = 0 for j < 0 and j > d, (2.10)and,
∣∣∣ supp φ̂(Bj·) ∩B−d(E)

∣∣∣ = 0 for j < −m and j > m+ d. (2.11)Sin
e m,m ≥ 0, 
ondition (2.7) implies that ψ̂(Bjξ)ψ̂(Bjξ + γ) = 0 for j ≥ 0 and
γ ∈ Γ∗ \ {0}. Therefore, using (2.10), we �nd that

∑

j∈Z

∑

γ∈Γ∗

∣∣∣ψ̂(Bjξ)ψ̂(Bjξ + γ)
∣∣∣ =

d∑

j=0

(
ψ̂(Bjξ)

)2
<∞ for ξ ∈ B−d(E).



70 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)An appli
ation of Lemma 2.2 with M = B−d(E) shows that ψ generates a Besselsequen
e. Similar 
al
ulations using (2.11) will show that φ generates a Bessel sequen
e;in this 
ase the sum over γ ∈ Γ∗ will be �nite, but it will in general have more than onenonzero term.To 
on
lude that ψ and φ generate dual wavelet frames we will show that 
ondi-tions (2.1) and (2.2) in Theorem 2.1 hold. By B-dilation periodi
ity of the sum in
ondition (2.1), it is su�
ient to verify this 
ondition on B−d(E). For ξ ∈ B−d(E) wehave by (2.10),
1

d(Γ)

∑

j∈Z

ψ̂(Bjξ)φ̂(Bjξ) =
1

d(Γ)

d∑

j=0

ψ̂(Bjξ)φ̂(Bjξ)

= ψ̂(ξ)
[
b0ψ̂(ξ) + b1ψ̂(Bξ) + · · · + bdψ̂(Bdξ)

]

+ ψ̂(Bξ)
[
b−1ψ̂(ξ) + b0ψ̂(Bξ) + · · · + bd−1ψ̂(Bdξ)

]
+ · · ·

+ ψ̂(Bdξ)
[
b−dψ̂(ξ) + · · · + b−1ψ̂(Bd−1ξ) + b0ψ̂(Bdξ)

]
,and further, by an expansion of these terms,

=
d∑

j,l=0

bl−jψ̂(Bjξ)ψ̂(Blξ)

= b0

d∑

j=0

ψ̂(Bjξ)2 +
d∑

j,l=0
j>l

(bj−l + bl−j)ψ̂(Bjξ)ψ̂(Blξ).Using that b0 = 1 and bj−l + bl−j = 2 for j 6= l and j, l = 0, . . . , d, we arrive at
1

d(Γ)

∑

j∈Z

ψ̂(Bjξ)φ̂(Bjξ) =
d∑

j=0

ψ̂(Bjξ)2 +
d∑

j,l=0
j>l

2ψ̂(Bjξ)ψ̂(Blξ)

=

( d∑

j=0

ψ̂(Bjξ)

)2

=

(∑

j∈Z

ψ̂(Bjξ)

)2

= 1,exhibiting that ψ and φ satisfy 
ondition (2.1).By (2.9) we see that 
ondition (2.7) implies that the fun
tions φ̂ and ψ̂(· + γ) willhave disjoint support for γ ∈ Γ∗ \ {0}, hen
e (2.2) is satis�ed.Remark 1. The use of the parameters bj in the de�nition of the dual generator togetherwith the 
ondition b−j + bj = 2 was �rst seen in the work of Christensen and Kim [4℄on pairs of dual Gabor frames.We 
an restate Theorem 2.3 for wavelet systems with standard translation latti
e
Zn and dilation Ã = P−1AP , where P ∈ GLn(R) is so that Γ = PZn. The resultfollows dire
tly by an appli
ation of the relations D

ÃjDP = DPDAj for j ∈ Z and
DPTPk = TkDP for k ∈ Zn, and the fa
t that DP is unitary as an operator on L2(Rn).



2. The general form of the 
onstru
tion pro
edure 71Corollary 2.4. Suppose ψ, {bj}, A and Γ are as in Theorem 2.3. Let P ∈ GLn(R) be su
hthat Γ = PZn, and let Ã = P−1AP . Then the fun
tions ψ̃ = DPψ and φ̃ = DPφ, where
φ is de�ned in (2.8), generate dual frames {D

ÃjTkψ̃}j∈Z,k∈Zn and {D
ÃjTkφ̃}j∈Z,k∈Znfor L2(Rn).The following Example 1 is an appli
ation of Theorem 2.3 in L2(R2) for the quin
unxmatrix. In parti
ular, we 
onstru
t a partition of unity of the form (2.6) for the quin
unxmatrix.Example 1. The quin
unx matrix is de�ned as

A =

(
1 −1
1 1

)
,and its a
tion on R2 
orresponds to a 
ounter 
lo
kwise rotation of 45 degrees and adilation by √

2I2×2. De�ne the tent shaped, pie
ewise linear fun
tion g by

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

J5

J4

J2

J3

J1

x1

x2

Figure 1: Sket
h of the triangular domains Ji, i = 1, 2, 3, 4, 5.
g(x1, x2) =





−1 + 2x1 + 2x2, for (x1, x2) ∈ J1,

2x2, for (x1, x2) ∈ J2,

2x1, for (x1, x2) ∈ J3,

2 − 2x1, for (x1, x2) ∈ J4,

2 − 2x2, for (x1, x2) ∈ J5,

0 otherwise,where the sets Ji are the triangular domains sket
hed in Figure 1. Note that the valueat �the top of the tent� is g(1/2, 1/2) = 1. De�ne ψ̂ as a mirroring of g in the x1 axis



72 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)and the x2 axis:
ψ̂(ξ1, ξ2) =





g(ξ1, ξ2) for (ξ1, ξ2) ∈ [0,∞) × [0,∞) ,

g(ξ1,−ξ2) for (ξ1, ξ2) ∈ [0,∞) × (−∞, 0) ,

g(−ξ1, ξ2) for (ξ1, ξ2) ∈ (−∞, 0) × [0,∞) ,

g(−ξ1,−ξ2) for (ξ1, ξ2) ∈ (−∞, 0) × (−∞, 0) .Sin
e the transpose B of the quin
unx matrix also 
orresponds to a rotation of 45degrees (but 
lo
kwise) and a dilation by √
2I2×2, we see that ∑j∈Z ψ̂(Bjξ) = 1.We are now ready to apply Theorem 2.3 with E = [−1, 1]2\B−1([−1, 1]2) = [−1, 1]2\

I1 and d = 2; the set E is the union of the domians J4 and J5 and their mirrored versions.We 
hoose b−2 = b−1 = 0 and b1 = b2 = 2d(Γ), hen
e m = 0 and m = 2. Therefore,
d⋃

j=0

B−j(E),
m+d⋃

j=−m
B−j(E) ⊂ [−1, 1]2 ,that shows that we 
an take Γ∗ = 2Z2 or Γ = 1/2Z2, sin
e ([−1, 1]2 + γ) ∩ [−1, 1]2 = ∅whenever 0 6= γ ∈ 2Z2. De�ning the dual generator a

ording to (2.14) yields

φ(x) = (1/4)ψ(x) + (1/4)ψ(A−1x) + (1/8)ψ(A−2x); (2.12)using that d(Γ) = 1/4, and we remark that φ̂ is a pie
ewise linear fun
tion sin
e this isthe 
ase for ψ̂. The 
on
lusion from Theorem 2.3 is that ψ and φ generate dual frames
{DAjTk/2ψ}j,k∈Z and {DAjTk/2φ}j,k∈Z for L2(R2).The frame bounds 
an be found using Lemma 2.2 sin
e the series (2.4) and (2.5)are �nite sums on E; for {DAjTk/2ψ} one �nds C1 = 4/3 and C2 = 4.When the result on 
onstru
ting pairs of dual wavelet frames is written in thegenerality of Theorem 2.3, it is not always 
lear how to 
hoose the set E and the latti
e
Γ. In Example 1 we showed how this 
an be done for the quin
unx dilation matrix and
onstru
ted a pair of dual frame wavelets. In Se
tion 3 and Theorem 3.3 we spe
ify howto 
hoose E and Γ for general dilations. The issue of exhibiting fun
tions ψ satisfyingthe 
ondition (2.6) is addressed in Se
tion 4.In one dimension, however, it is straightforward to make good 
hoi
es of E and Γ asis seen by the following 
orollary of Theorem 2.3. The 
orollary uni�es the 
onstru
tionpro
edures in Theorem 2 and Proposition 1 from [16℄ in a general pro
edure.Corollary 2.5. Let d ∈ N0, a > 1, and ψ ∈ L2(R). Suppose that ψ̂ is a bounded,real-valued fun
tion with supp ψ̂ ⊂ [−ac,−ac−d−1] ∪ [ac−d−1, ac] for some c ∈ Z, andthat ∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R. (2.13)Let bj ∈ C for j = −d, . . . , d, let m = −min {j : {bj 6= 0}}, and de�ne the fun
tion φby
φ(x) =

d∑

j=−m
bja

−jψ(a−jx) for x ∈ R. (2.14)



3. A spe
ial 
ase of the 
onstru
tion pro
edure 73Let b ∈ (0, a−c(1 + am)−1
]. If b0 = b and bj + b−j = 2b for j = 1, 2, . . . , d, then ψ and

φ generate dual frames {DajTbkψ}j,k∈Z and {DajTbkφ}j,k∈Z for L2(R).Proof. In Theorem 2.3 for n = 1 and A = a we take E = [−ac,−ac−1]∪ [ac−1, ac] as themultipli
ative tiling set for {aj : j ∈ Z
}. The assumption on the support of ψ̂ be
omes

supp ψ̂ ⊂
d⋃

j=0

a−j(E) = [−ac,−ac−d−1] ∪ [ac−d−1, ac].Moreover, sin
e
d⋃

j=0

a−j(E) ⊂ [−ac, ac] ,
2d⋃

j=−m
a−j(E) ⊂ [−ac+m, ac+m] ,and

([−ac, ac] + γ) ∩ [−ac+m, ac+m] = ∅ for |γ| ≥ ac + ac+m = ac(1 + am),the 
hoi
e Γ∗ = b−1Z for b−1 ≥ ac(1 + am) satis�es equation (2.7). This 
orresponds to
Γ = bZ for 0 < b ≤ a−c(1 + am)−1.The assumptions in Corollary 2.5 imply that m ∈ {0, 1, . . . , d}; we note that in 
ase
m = 0, the 
orollary redu
es to [16, Theorem 2℄.3. A spe
ial 
ase of the 
onstru
tion pro
edureWe aim for a more automated 
onstru
tion pro
edure than what we have from The-orem 2.3, in parti
ular, we therefore need to deal with good ways of 
hoosing E and
Γ. The basi
 idea in this automation pro
ess will be to 
hoose E as a dilation of thedi�eren
e between I∗ and B−1(I∗), where I∗ is the unit ball in a norm in whi
h thematrix B = At is expanding �in all dire
tions�; we will make this statement pre
ise inSe
tion 3.1. This idea is instrumental in the proof of Theorem 3.3.3.1. Some results on expansive matri
esWe need the following well-known equivalent 
onditions1 for a (non-singular) matrixbeing expansive.Proposition 3.1. For B ∈ GLn(R) the following assertions are equivalent:(i) B is expansive, i.e., all eigenvalues λi of B satisfy |λi| > 1.(ii) For any norm | · | on Rn there are 
onstants λ > 1 and c ≥ 1 su
h that

|Bjx| ≥ 1/cλj |x| for all j ∈ N0,for any x ∈ Rn.(iii) There is a Hermitian norm | · |∗ on Rn and a 
onstant λ > 1 su
h that
|Bjx|∗ ≥ λj |x|∗ for all j ∈ N0,for any x ∈ Rn.1See Proposition A.1 in Chapter 1 for a more extensive list of equavalent 
onditions and a proof.



74 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)(iv) E ⊂ λE ⊂ BE for some ellipsoid E = {x ∈ Rn : |Px| ≤ 1}, P ∈ GLn(R) and
λ > 1.By Proposition 3.1 we have that for a given expansive matrix B, there exists a s
alarprodu
t with the indu
ed norm | · |∗ so that

|Bx|∗ ≥ λ |x|∗ for x ∈ Rn,holds for some λ > 1. We say that | · |∗ is a norm asso
iated with the expansive matrix
B. Note that su
h a norm is not unique; we will follow the 
onstru
tion as in theproof of [2, Lemma 2.2℄, so let c and λ be as in (ii) in Proposition 3.1 for the standardEu
lidean norm with 1 < λ < |λi| for i = 1, . . . , n, where λi are the eigenvalues of
B. For k ∈ N satisfying k > 2 ln c/ ln λ we introdu
e the symmetri
, positive de�nitematrix K ∈ GLn(R):

K = I + (B−1)tB−1 + · · · + (B−k)tB−k. (3.1)The s
alar produ
t asso
iated with B is then de�ned by 〈x, y〉∗ = xtKy. It might notbe e�ortless to estimate c and λ for some given B, but it is obvious that we just need topi
k k ∈ N su
h that BtKB− λ2K be
omes positive semi-de�nite for some λ > 1 sin
ethis 
orresponds to 〈KBx,Bx〉 ≥ λ2 〈Kx, x〉, that is, |Bx|2∗ ≥ λ2 |x|2∗ for all x ∈ Rn.We let I∗ denote the unit ball in the Hermitian norm | · |∗ = |K1/2·| asso
iated wth
B, i.e.,
I∗ = {x ∈ Rn : |x|∗ ≤ 1} =

{
x ∈ Rn : |K1/2x| ≤ 1

}
=
{
x ∈ Rn : xtKx ≤ 1

}
, (3.2)and we let O∗ denote the annulus

O∗ = I∗ \B−1(I∗).The ringlike stru
ture of O∗ is guaranteed by the fa
t that B is expanding in all dire
-tions in the | · |∗ norm, i.e.,
I∗ ⊂ λI∗ ⊂ B(I∗), λ > 1, (3.3)whi
h is (iv) in Proposition 3.1. We note that by an orthogonal substitution I∗ takes theform {x ∈ Rn : µ1x̃

2
1 + · · · + µnx̃

2
n ≤ 1} where µi are the positive eigenvalues of K and

x = Qx̃ with Q ∈ O(n) 
omprising of the ith eigenve
tor of K as the ith 
olumn. Theannulus O∗ is a bounded multipli
ative tiling set for {Bj : j ∈ Z}. This is a 
onsequen
eof the following result.Lemma 3.2. Let B ∈ GLn(R) be an expansive matrix. For x 6= 0 there is a unique
j ∈ Z so that Bjx ∈ O∗; that is,

Rn \ {0} =
⋃

j∈Z

Bj(O∗) with disjoint union. (3.4)
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edure 75Proof. From equation (3.3) we know that {Bl(I∗)}l∈Z is a nested sequen
e of subsetsof Rn, thus
Bl(I∗) \Bl−1(I∗) = Bl(O∗), l ∈ Z,are disjoint sets. Sin
e ∣∣B−jx

∣∣
∗ ≤ λ−j |x|∗ and ∣∣Bjx

∣∣
∗ ≥ λj |x|∗ for j ≥ 0 and λ > 1, wealso have

l⋃

m=−l+1

Bm(O∗) = Bl(I∗) \B−l(I∗) =
{
x ∈ Rn : |B−lx|∗ ≤ 1 and |Blx|∗ > 1

}

⊃
{
x ∈ Rn : λ−l |x|∗ ≤ 1 and λl |x|∗ > 1

}
=
{
x ∈ Rn : λ−l < |x|∗ ≤ λl

}
.Taking the limit l → ∞ we get (3.4).Example 2. Let the following dilation matrix be given

A =

(
3 −3
1 0

)
. (3.5)Here we are interested in the transpose matrix B = At with eigenvalues µ1,2 = 3/2 ±

i
√

3/2, hen
e B is an expansive matrix with |µ1,2| =
√

3 > 1. The dilation matrix B isnot expanding in the standard norm | · |2 in Rn, i.e., I2 6⊂ B(I2), as shown by Figure 2.In order to have B expanding the unit ball we need to use the Hermitian norm from
K4 K3 K2 K1 0 1 2 3 4

K4

K2

2

4

Figure 2: Boundaries of the sets I2, B(I2), B2(I2), and B3(I2) marked by solid, long dashed,dashed, and dotted lines, respe
tively. Note that I2 \ B(I2) is non-empty, and even
I2 \B2(I2) is non-empty.(iii) in Proposition 3.1 asso
iated with B. In (3.1) we take k = 2 so that the real,symmetri
, positive de�nite matrix K is

K = I + (B−1)tB−1 + (B−2)tB−2 =

(
28/9 16/9
16/9 8/3

)
,
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hoi
e k = 2 su�
es sin
e it makes BtKB − λ2K semi-positive de�nite for λ = 1.03 and thus
|Bx|∗ ≥ λ |x|∗ , x ∈ R2,holds for λ = 1.03.Figure 3 and 4 illustrate that B indeed expands the Hermitian norm unit ball I∗ inall dire
tions. We also remark that the Hermitian norm with k = 1 will not make the
K4 K3 K2 K1 0 1 2 3 4

K6

K4

K2

2

4

6

Figure 3: The unit ball I∗ in the Hermitian norm | · |
∗
asso
iated with B and its dilations

B(I∗), B
2(I∗), B

3(I∗). Only the boundaries are marked.dilation matrix B expanding in Rn; in this 
ase we have a situation similar to Figure 2.3.2. A 
rude latti
e 
hoi
eLet us 
onsider the setup in Theorem 2.3 with the set E = Bc(O∗) for some c ∈ Z,where the norm | · |∗ = |K1/2·| is asso
iated with B. Let µ be the smallest eigenvalueof K su
h that ℓ =
√

1/µ is the largest semi-prin
ipal axis of the ellipsoid I∗, i.e.,
ℓ = maxx∈I∗ |x|2. Then we 
an take any latti
e Γ = PZn, where P is a non-singularmatrix satisfying

‖P‖2 ≤ 1

ℓ ‖Ac‖2 (1 + ‖Am‖2)
, (3.6)as our translation latti
e in Theorem 2.3. To see this, re
all that we are looking for alatti
e Γ∗ su
h that, for γ ∈ Γ∗ \ {0},

supp φ̂ ∩ supp ψ̂(· ± γ) = ∅. (3.7)For our 
hoi
e of E we �nd that supp φ̂ ⊂ Bc+m(I∗) and supp ψ̂ ⊂ Bc(I∗). Sin
e
∣∣Bc+mx

∣∣
2 ≤

∥∥Bc+m
∥∥
2 |x|2 ≤

∥∥Bc+m
∥∥
2 ℓ for any x ∈ I∗,
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K1.0 K0.5 0 0.5 1.0

K1.0

K0.5

0.5

1.0

Figure 4: A zoom of Figure 3. Boundaries of the sets I∗, B(I∗), B2(I∗), and B3(I∗) markedby solid, long dashed, dashed, and dotted lines, respe
tively.and similar for Bcx, we have the situation in (3.7) whenever |γ|2 ≥ ℓ(‖Ac‖2+‖Ac+m‖2).Here we have used that for the 2-norm ‖A‖2 = ‖B‖2. For z ∈ Zn we have
|z|2 ≤ ‖P t‖2 |(P t)−1z|2 = ‖P‖2 |(P t)−1z|2,therefore, by |z|2 ≥ 1 for z 6= 0, we have
∣∣∣(P t)−1z

∣∣∣
2
≥ 1

‖P‖2

for z ∈ Z \ {0}.Now, by assuming that P satis�es (3.6), we have
|γ|2 = |(P t)−1z|2 ≥ 1/‖P‖2 ≥ ℓ ‖Ac‖2 (1 + ‖Am‖2) ≥ l(‖Ac‖2 +

∥∥Ac+m
∥∥
2)for 0 6= γ = (P t)−1z ∈ (P t)−1Zn = Γ∗, hen
e the 
laim follows.A latti
e 
hoi
e based on (3.6) 
an be rather 
rude, and produ
es 
onsequently awavelet system with unne
essarily many translates. From equation (3.6) it is obviousthat any latti
e Γ = PZn with ‖P‖ su�
iently small will work as translation latti
e forour pair of generators ψ and φ. Hen
e, the 
hallenging part is to �nd a sparse translationlatti
e whereby we understand a latti
e Γ with large determinant d(Γ) := |detP |. Inthe dual latti
e system this 
orresponds to a dense latti
e Γ∗ with small volume d(Γ∗)of the fundamental parallelotope IΓ∗ sin
e d(Γ)d(Γ∗) = 1. In Theorem 3.3 in the nextse
tion we make a better 
hoi
e of the translation latti
e 
ompared to what we havefrom (3.6).Using a 
rude latti
e approa
h as above, we 
an easily transform the translation lat-ti
e to the integer latti
e if we allow multiple generators. We pi
k a matrix P that sat-is�es 
ondition (3.6) and whose inverse is integer valued, i.e., Q := P−1 ∈ GLn(Z). The



78 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)
on
lusion from Theorem 2.3 is that {DAjTQ−1kψ}j∈Z,k∈Zn and {DAjTQ−1kφ}j∈Z,k∈Znare dual frames. The order of the quotient group Q−1Zn/Zn is |detQ|, so let {di :
i = 1, . . . , |detQ|} denote a 
omplete set of representatives of the quotient group, andde�ne

Ψ = {Tdi
ψ : i = 1, . . . , |detQ|} , Φ = {Tdi

φ : i = 1, . . . , |detQ|} .Sin
e {DAjTQ−1kψ}j∈Z,k∈Zn = {DAjTkψ}j∈Z,k∈Zn,ψ∈Ψ and likewise for the dual frame,the statement follows.3.3. A 
on
rete version of Theorem 2.3We list some standing assumptions and 
onventions for this se
tion.General setup. We assume A ∈ GLn(R) is expansive. Let | · |∗ = 〈 · , · 〉1/2∗ be aHermitian norm as in (iii) in Proposition 3.1 asso
iated with B = At and let K ∈
GLn(R) be the symmetri
, positive de�nite matrix su
h that 〈x, y〉∗ = ytKx. Let
Λ := diag(λ1, . . . , λn), where {λi} are the eigenvalues of K, and let Q ∈ O(n) be su
hthat the spe
tral de
omposition of K is QtKQ = Λ.The following result is a spe
ial 
ase of Theorem 2.3, where we, in parti
ular, spe
ifyhow to 
hoose the translation latti
e Γ. Sin
e we in Theorem 3.3 de�ne Γ, it allows fora more automated 
onstru
tion pro
edure.Theorem 3.3. Let A,K,Q,Λ be as in the general setup. Let d ∈ N0 and ψ ∈ L2(Rn).Suppose that ψ̂ is a bounded, real-valued fun
tion with supp ψ̂ ⊂ Bc(I∗) \ Bc−d−1(I∗)for some c ∈ Z, and that (2.6) holds. Take Γ = (1/2)AcQ

√
ΛZn. Then the fun
tion ψand the fun
tion φ de�ned by

φ(x) = d(Γ)


ψ(x) + 2

d∑

j=0

|detA|−j ψ(A−jx)


 for x ∈ Rn, (3.8)generate dual frames {DAjTγψ}j∈Z,γ∈Γ and {DAjTγφ}j∈Z,γ∈Γ for L2(Rn)Remark 2. Note that d(Γ) = 2−n |detA|c (λ1 · · ·λn)1/2 and √

Λ = diag(
√
λ1, . . . ,

√
λn).Proof. The annulus O∗ is a bounded multipli
ative tiling for the dilations {Bj : j ∈ Z
}by Lemma 3.2, hen
e this is also the 
ase for Bc(O∗) for c ∈ Z. The support of ψ̂ is

supp ψ̂ ⊂ Bc(I∗) \ Bc−d−1(I∗) = ∪dj=0B
c−j(O∗). Therefore we 
an apply Theorem 2.3with E = Bc(O∗), bj = 2 and b−j = 0 for j = 1, . . . , d so that m = 0 and m = d.The only thing left to justify is the 
hoi
e of the translation latti
e Γ. We need toshow that 
ondition (2.7) with m = 0 and m = d in Theorem 2.3 is satis�ed by

Γ∗ = 2BcQΛ−1/2Zn. By the orthogonal substitution x = Qx̃ the quadrati
 form xtKxof equation (3.2) redu
es to
λ1x̃

2
1 + · · · + λnx̃

2
n,where λi > 0, hen
e in the x̃ = Qtx 
oordinates I∗ is given by

Ĩ∗ =

{
x̃ ∈ Rn :

(
x̃1

1/
√
λ1

)2

+ · · · +
(

x̃n

1/
√
λn

)2

< 1

}
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edure 79whi
h is an ellipsoid with semi axes 1√
λ1
, . . . , 1√

λn
. Therefore, in the x̃ 
oordinates,

(Ĩ∗ + γ) ∩ Ĩ∗ = ∅ for 0 6= γ ∈ 2Λ−1/2Zn,or, in the x 
oordinates,
(I∗ + γ) ∩ I∗ = ∅ for 0 6= γ ∈ 2QΛ−1/2Zn.By applying Bc to this relation it be
omes

(
Bc(I∗) + γ

) ∩Bc(I∗) = ∅ for 0 6= γ ∈ Γ
∗ = 2BcQΛ−1/2Zn, (3.9)whereby we see that 
ondition (2.7) is satis�ed with m = 0 and Γ∗ = 2BcQΛ−1/2Zn.The dual latti
e of Γ∗ is Γ = 1/2A−cQΛ1/2Zn. It follows from Theorem 2.3 that ψ and

φ generate dual frames for this 
hoi
e of the translation latti
e.The frame bounds for the pair of dual frames {DAjTγψ}j∈Z,γ∈Γ and {DAjTγφ}j∈Z,γ∈Γin Theorem 3.3 
an be given expli
itly as
C1 =

1

d(Γ)
inf

ξ∈Bc−d(O∗)

d∑

j=0

(
ψ̂(Bjξ)

)2
, C2 =

1

d(Γ)
sup

ξ∈Bc−d(O∗)

d∑

j=0

(
ψ̂(Bjξ)

)2
,and

C1 =
1

d(Γ)
inf

ξ∈Bc−d(O∗)

d∑

j=−d

(
φ̂(Bjξ)

)2
, C2 =

1

d(Γ)
sup

ξ∈Bc−d(O∗)

d∑

j=−d

(
φ̂(Bjξ)

)2
,respe
tively. The frame bounds do not depend on the spe
i�
 stru
ture of Γ, but onlyon the determinant of Γ; in parti
ular, the 
ondition number C2/C1 is independent of

Γ. To verify these frame bounds, we note that equation (3.9) together with the fa
t
supp ψ̂, supp φ̂ ⊂ Bc(I∗) imply that

ψ̂(ξ)ψ̂(ξ + γ) = φ̂(ξ)φ̂(ξ + γ) = 0 for a.e. ξ ∈ Rn and γ ∈ Γ
∗ \ {0}.Therefore, by equations (2.10) and (2.11) with E = Bc(O∗), m = 0 and m = d, we have

∑

j∈Z

∑

γ∈Γ∗

∣∣∣ψ̂(Bjξ)ψ̂(Bjξ + γ)
∣∣∣ =

∑

j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2

=
d∑

j=0

(
ψ̂(Bjξ)

)2
,and

∑

j∈Z

∑

γ∈Γ∗

∣∣∣φ̂(Bjξ)φ̂(Bjξ + γ)
∣∣∣ =

∑

j∈Z

∣∣∣φ̂(Bjξ)
∣∣∣
2

=
d∑

j=−d

(
φ̂(Bjξ)

)2
,for ξ ∈ Bc−d(O∗). The stated frame bounds follow from Lemma 2.2.



80 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)Example 3. Let A and K be as in Example 2. The eigenvalues of K are λ1 = (26 +
2
√

65)/9 ≈ 4.7 and λ2 = (26 − 2
√

65)/9 ≈ 1.1. Let the normalized (in the standardnorm) eigenve
tors of K be 
olumns of Q ∈ O(2) and Λ = diag(λ1, λ2), hen
e QtKQ =
Λ. By the orthogonal transformation x = Qx̃ the Hermitian norm unit ball I∗ be
omes

Ĩ∗ =

{
x̃ ∈ R2 :

(
x̃1

1/
√
λ1

)2

+

(
x̃2

1/
√
λ2

)2

< 1

}
⊂ I2whi
h is an ellipse with semimajor axis 1/

√
λ2 ≈ 0.95 and semiminor axis 1/

√
λ1 ≈ 0.46.Sin
e Λ−1/2 = diag(1/

√
λ1, 1/

√
λ2), we have

∣∣∣(Ĩ∗ + γ) ∩ Ĩ∗
∣∣∣ = 0 for 0 6= γ ∈ 2Λ−1/2Z2.By the orthogonal substitution ba
k to x 
oordinates, we get

|(I∗ + γ) ∩ I∗| = 0 for 0 6= γ ∈ 2QΛ−1/2Z2.Suppose that ψ̂ is a bounded, real-valued fun
tion with supp ψ̂ ⊂ Bc(I∗)\Bc−d−1(I∗)for c = 1 that satis�es the B-dilative partition (2.6). Sin
e c = 1 we need to take
Γ∗ = 2B1QΛ−1/2Z2 and Γ = 1/2A−1QΛ1/2Z2, see Figure 5 and 6.

K6 K4 K2 0 2 4 6

K6

K4

K2
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Figure 5: The dual latti
e Γ
∗ = 2BcQΛ

−1/2Z2 for c = 1 is shown by dots, and the boundaryof the set Bc(I∗) by a solid line. Boundaries of the set Bc(I∗) translated to severaldi�erent γ ∈ Γ∗ \ {0} are shown with dashed lines. Re
all that supp ψ̂, supp φ̂ ⊂
Bc(I∗), hen
e supp φ̂ ∩ supp ψ̂(· + γ) = ∅ for γ ∈ Γ∗ \ {0}.3.4. An alternative latti
e 
hoi
eLet the setup up and assumptions be as in Theorem 3.3, ex
ept for the latti
e Γ whi
hwe want to 
hoose di�erently. As in Se
tion 3.2 the dual latti
e Γ∗ needs to satisfy (3.7)for γ ∈ Γ∗ \ {0}. We want to 
hoose Γ∗ as dense as possible sin
e this will make thetranslation latti
e Γ as sparse as possible and the wavelet system with as few translates
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Figure 6: The translation latti
e Γ = (1/2)AcQΛ1/2Z2 for c = 1.as possible. Sin
e supp ψ̂, supp φ̂ ⊂ Bc(I∗), we are looking for latti
es Γ∗ that pa
ksthe ellipsoids Bc(I∗) + γ, γ ∈ Γ∗, in a non-overlapping, optimal way. By the 
oordinatetransformation x̂ = Λ−1/2QtB−cx, the ellipsoid Bc(I∗) turns into the standard unit ball
I2 in Rn. This 
al
ulations are as follows.

Bc(I∗) =
{
Bcx : |x|2∗ ≤ 1

}
=
{
x : |K1/2B−cx|22 ≤ 1

}

=

{
x :
∣∣∣K1/2B−cBcQΛ−1/2x̂

∣∣∣
2

2
≤ 1

}

=
{
x :
〈
x̂,Λ−1/2QtKQΛ−1/2x̂

〉
2
≤ 1

}
=
{
x : |x̂|22 ≤ 1

}
,and we arrive at a standard sphere pa
king problem with latti
e arrangement of non-overlapping unit n-balls. The proportion of the Eu
lidean spa
e Rn �lled by the balls is
alled the density of the arrangement, and it is this density we want as high as possible.Taking Γ as in Theorem 3.3 
orresponds to a square pa
king of the unit n-balls I2+kby the latti
e 2Zn, i.e., k ∈ 2Zn. The density of this pa
king is Vn2−n, where Vn is thevolume of the n-ball: V2n = πn/(n!) and V2n+1 = (22n+1n!πn)/(2n + 1)!. This is notthe densest pa
king of balls in Rn sin
e there exists a latti
e with density bigger than

1.68n2−n for ea
h n 6= 1 [9℄; a slight improvement of this lower bound was obtainedin [1℄ for n > 5. Moreover, the densest latti
e pa
king of hyperspheres is known up todimension 8, see [20℄; it is pre
isely this dense latti
e we want to use in pla
e of 2Zn (atleast whenever n ≤ 8).In R2 Lagrange proved that the hexagonal pa
king, where ea
h ball tou
hes 6 otherballs in a hexagonal latti
e, has the highest density π/√12. Hen
e using PZ2 with
P =

(
2 0

1
√

3

)
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king by a fa
tor of
π/

√
12

π/22
= 4/

√
12 = 2/

√
3.It is easily seen that this fa
tor equals the relation between the area of the fundamentalparallelogram of the two latti
es |det 2I2×2| / |detP |. In Figure 5 we see that ea
h ellipseonly tou
hes 4 other ellipses 
orresponding to the square pa
king 2Zn; in the optimalpa
king ea
h ellipse tou
h 6 others. In R3 Gauss proved that the highest density is

π/
√

18 obtained by the hexagonal 
lose and fa
e-
entered 
ubi
 pa
king; here ea
h balltou
hes 12 other balls.4. Dilative partition of unityWith Theorem 3.3 at hand the only issue left is to spe
ify how to 
onstru
t fun
tions sat-isfying the partition of unity (2.6) for any given expansive matrix. In the two examplesof this se
tion we outline possible ways of a
hieving this.4.1. Constru
ting a partition of unityAs usual we �x the dimension n ∈ N and the expansive matrix B ∈ GLn(R). In the ex-amples in this se
tion we 
onstru
t fun
tions satisfying the assumptions in Theorem 3.3,that is, a real-valued fun
tion g ∈ L2(Rn) with supp g ⊂ Bc(I∗) \Bc−d−1(I∗) for some
c ∈ Z and d ∈ N0 so that the B-dilative partition

∑

j∈Z

g(Bjξ) = 1 for a.e. ξ ∈ Rn, (4.1)holds.In the 
onstru
tion we will use that the radial 
oordinate of the surfa
e of the ellip-soid ∂Bj(I∗), j ∈ Z, 
an be parametrized by the n−1 angular 
oordinates θ1, . . . , θn−1.The radial 
oordinate expression will be of the form h(θ1, . . . , θn−1)
−1/2 for some posi-tive, trigonometri
 fun
tion h, where h is bounded away from zero and in�nity with thespe
i�
 form of h depending on the dimension n and the length and orientation of theellipsoid axes.We illustrate this with the following example in R4. We want to �nd the radial
oordinate r of the ellipsoid

{
x ∈ R4 : (x1/ℓ1)

2 + (x2/ℓ2)
2 + (x3/ℓ3)

2 + (x4/ℓ4)
2 = 1

}
, ℓi > 0, i = 1, 2, 3, 4,as a fun
tion the angular 
oordinates θ1, θ2 and θ3. We express x = (x1, x2, x3, x4) ∈ R4in the hyperspheri
al 
oordinates (r, θ1, θ2, θ3) ∈ {0} ∪ R+ × [0, π] × [0, π] × [0, 2π) asfollows:

x1 = r cos θ1, x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3, x4 = r sin θ1 sin θ2 sin θ3.Then we substitute xi, i = 1, . . . , 4, in the expression above and fa
tor out r2 to obtain
r2f(θ1, θ2, θ3) = 1, where

f(θ1, θ2, θ3) = ℓ−2
1 cos2 θ1 + ℓ−2

2 sin2 θ1 cos2 θ2 (4.2)
+ ℓ−2

3 sin2 θ1 sin2 θ2 cos2 θ3 + ℓ−2
4 sin2 θ1 sin2 θ2 sin2 θ3.
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on
lusion is that r = r(θ1, θ2, θ3) = f(θ1, θ2, θ3)
−1/2.Example 4. For d = 1 in Theorem 3.3 we want g ∈ Cs0(R

n) for any given s ∈ N ∪ {0}.The 
hoi
e d = 1 will �x the �size� of the support of g so that supp g ⊂ Bc(I∗)\Bc−2(I∗)for some c ∈ Z. Now let r1 = r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1) denote theradial 
oordinates of the surfa
e of the ellipsoids ∂Bc−1(I∗) and ∂Bc(I∗) parametrizedby n− 1 angular 
oordinates θ1, . . . , θn−1, respe
tively.Let f be a 
ontinuous fun
tion on the annulus S = Bc(O∗) satisfying f |∂Bc−1(I∗) = 1and f |∂Bc(I∗) = 0. Using the parametrizations r1, r2 of the surfa
es of the two ellipsoidsand �xing the n−1 angular 
oordinates we realize that we only have to �nd a 
ontinuousfun
tion f : [r1, r2] → R of one variable (the radial 
oordinate) satisfying f(r1) = 1 and
f(r2) = 0. For example the general fun
tion f ∈ C0(S) of d variables 
an be any of thefun
tions below:

f(x) = f(r, θ1, . . . , θn−1) =
r2 − r

r2 − r1
, (4.3a)

f(x) = f(r, θ1, . . . , θn−1) =
(r2 − r)2

(r2 − r1)3
(2(r − r1) + r2 − r1), (4.3b)

f(x) = f(r, θ1, . . . , θn−1) = 1
2 + 1

2 cos π( r−r1r2−r1 ), (4.3
)where r = |x| ∈ [r1, r2], θ1, . . . , θn−2 ∈ [0, π], and θn−1 ∈ [0, 2π); re
all that r1 =
r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1). In de�nitions (4.3b) and (4.3
) the fun
tion
f even belongs to C1(S).De�ne g ∈ L2(R) by:

g(x) =





1 − f(Bx) for x ∈ Bc−1(I∗) \Bc−2(I∗),

f(x) for x ∈ Bc(I∗) \Bc−1(I∗),

0 otherwise. (4.4)This way g be
omes a B-dilative partition of unity with supp g ⊂ Bc(I∗) \Bc−2(I∗), sowe 
an apply Theorem 3.3 with ψ̂ = g and d = 2.We 
an simplify the expressions for the radial 
oordinates r1, r2 of the surfa
e of theellipsoids ∂Bc−1(I∗) and ∂Bc(I∗) from the previous example by a suitable 
oordinate
hange. The idea is to transform the ellipsoid Bc−1(I∗) to the standard unit ball I2 bya �rst 
oordinate 
hange x̃ = Λ1/2QtB−c+1x. This will transform the outer ellipsoid
Bc(I∗) to another ellipsoid. A se
ond and orthogonal 
oordinate transform x̂ = Qt′ x̃will make the semiaxes of this new ellipsoid parallel to the 
oordinate axes, leavingthe standard unit ball I2 un
hanged. Here Q′ 
omes from the spe
tral de
ompositionof A−1B−1, i.e., A−1B−1 = Qt′Λ′Q′. In the x̂ 
oordinates r1 = 1 is a 
onstant and
r2 = f−1/2 with f of the form (4.2) for n = 4 and likewise for n 6= 4.In the 
onstru
tion in Example 4 we assumed that d = 1. The next example worksfor all d ∈ N; moreover, the 
onstru
ted fun
tion will belong to C∞

0 (Rn).Example 5. For su�
iently small δ > 0 de�ne ∆1,∆2 ⊂ Rn by
∆1 = Bc−d−1(I∗) + B(0, δ),

∆2 + B(0, δ) = Bc(I∗).



84 PAPER III. CONSTRUCTING PAIRS OF DUAL BANDLIMITED FRAMELETS IN L2(Rn)This makes ∆2 \∆1 a subset of the annulus Bc(I∗)\Bc−d−1(I∗); it is exa
tly the subset,where points less than δ in distan
e from the boundary have been removed, or in otherwords
∆2 \ ∆1 + B(0, δ) = Bc(I∗) \Bc−d−1(I∗).For this to hold, we of 
ourse need to take δ > 0 su�
iently small, e.g., su
h that

∆1 ⊂ r∆1 ⊂ ∆2 holds for some r > 1.Let h ∈ C∞
0 (Rn) satisfy supph = B(0, 1), h ≥ 0, and ∫ hdµ = 1, and de�ne

hδ = δ−dh(δ−1·). By 
onvoluting the 
hara
teristi
 fun
tion on ∆2 \ ∆1 with hδ weobtain a smooth fun
tion living on the annulus Bc(I∗)\Bc−d−1(I∗). So let p ∈ C∞
0 (Rn)be de�ned by

p = hδ ∗ χ∆2\∆1
,and note that suppp = Bc(I∗) \ Bc−d−1(I∗) sin
e supphδ = B(0, δ). Normalizing thefun
tion p in a proper way will give us the fun
tion g we are looking for. We willnormalize p by the fun
tion w:

w(x) =
∑

j∈Z

p(Bjx).For a �xed x ∈ Rn \{0} this sum has either d or d+1 nonzero terms, and w is thereforebounded away from 0 and ∞:
∃c, C > 0 : c < w(x) < C for all x ∈ Rn \ {0},hen
e we 
an de�ne a fun
tion g ∈ C∞

0 (Rn) by
g(x) =

p(x)

w(x)
for x ∈ Rn \ {0}, and, g(0) = 0. (4.5)The fun
tion g will be an almost everywhere B-dilative partition of unity as is seen byusing the B-dilative periodi
ity of w:

∑

j∈Z

g(Bjx) =
∑

j∈Z

p(Bjx)

w(Bjx)
=
∑

j∈Z

p(Bjx)

w(x)
=

1

w(x)

∑

j∈Z

p(Bjx) = 1.Sin
e p is supported on the annulus Bc(I∗) \Bc−d−1(I∗), we 
an simplify the de�nitionin (4.5) to get rid of the in�nite sum in the denominator; this gives us the followingexpression
g(x) = p(x)/

d∑

j=−d
p(Bjx) for x ∈ Rn \ {0}.We 
an obtain a more expli
it expression for p by the following approa
h. Let r1 =

r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1) denote the radial 
oordinates of the surfa
eof the ellipsoids ∂Bc−d−1(I∗) and ∂Bc(I∗) parametrized by n − 1 angular 
oordinates
θ1, . . . , θn−1, respe
tively. Finally, let p ∈ C∞

0 (Rn) be de�ned by
p(x) = η(|x| − r1) η(r2 − |x|), with r1 = r1(θ1, . . . , θn−1) and r2 = r2(θ1, . . . , θn−1)where θ1, . . . , θn−1 
an be found from x, and

η(x) =

{
e−1/x x > 0,

0 x ≤ 0.
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88 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONS1. Introdu
tionQuasi-a�ne systems are little known 
ousins of well-studied a�ne systems also knownas wavelet systems. Let A be an expansive dilation matrix, i.e., n× n real matrix withall eigenvalues |λ| > 1. The a�ne system generated by a fun
tion ψ ∈ L2(Rn) is
A(ψ) =

{
ψj,k(x) := |detA|j/2 ψ(Ajx− k) : j ∈ Z, k ∈ Zn

}
. (1.1)The a�ne systems are dilation invariant, but not shift invariant. However, if the dilation

A has integer entries, that is AZn ⊂ Zn, then one 
an modify the de�nition of a�nesystems to obtain shift invariant systems. This leads to the notion of a quasi-a�nesystem
Aq(ψ) =



ψ̃j,k(x) :=

{ |detA|j/2 ψ(Ajx− k) : j ≥ 0, k ∈ Zn

|detA|j ψ(Aj(x− k)) : j < 0, k ∈ Zn



 , (1.2)whi
h was introdu
ed and investigated for integer, expansive dilation matri
es by Ronand Shen [20℄. Despite that the orthogonality of the a�ne system 
annot be 
arriedover to the 
orresponding quasi-a�ne system due to the oversampling of negative s
alesof the a�ne system, it turns out that the frame property is preserved. This importantdis
overy is due to Ron and Shen [20℄ who proved that the a�ne system A(ψ) is aframe if, and only if, its quasi-a�ne 
ounterpart Aq(ψ) is a frame (with the same framebounds). Furthermore, quasi-a�ne systems are shift invariant and thus mu
h easier tostudy than a�ne systems whi
h are dilation invariant.The goal of this work is to extend the study of quasi-a�ne systems to the 
lassof expansive rational dilations. Let A be an expansive dilation with rational entries,that is AQn ⊂ Qn. The �rst author [3℄ generalized the notion of a quasi-a�ne framefor rational, expansive dilations whi
h 
oin
ides with the usual de�nition in the 
ase ofinteger dilations. The main idea of Ron and Shen [20℄ is to oversample negative s
alesof the a�ne system at a rate adapted to the s
ale in order for the resulting system to beshift invariant, i.e., φ ∈ Aq(ψ) ⇒ Tkφ ∈ Aq(ψ) for all k ∈ Zn. In order to de�ne quasi-a�ne systems for rational expansive dilations one needs to oversample both negativeand positive s
ales of the a�ne system (at a rate proportional to the s
ale) whi
hresults in a quasi-a�ne system that in general 
oin
ides with the a�ne system only atthe s
ale zero. This 
an easily be seen in one dimension where the quasi-a�ne systemhas a relatively simple algebrai
 form. Suppose that a = p/q ∈ Q is a dilation fa
tor,where |a| > 1, p, q ∈ Z are relatively prime. Then, the quasi-a�ne system asso
iatedwith a is given by

Aq(ψ) =

{
|p|j/2 |q|−j ψ(ajx− q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 ψ(ajx− pjk) : j < 0, k ∈ Z

}
. (1.3)In the rational 
ase it is mu
h less 
lear than in the 
ase of integer, expansive dilations(where both systems 
oin
ide at all non-negative s
ales), whether there is any relation-ship between a�ne and quasi-a�ne systems. Nevertheless, the �rst author proved in[3℄ that the tight frame property is preserved when moving between rationally dilateda�ne and quasi-a�ne systems. This result has initially suggested that there is not mu
hdi�eren
e between integer and rational 
ases.



1. Introdu
tion 89In this work we show that this belief is largely in
orre
t by un
overing substantialdi�eren
es between the theory of integer dilated and rationally dilated quasi-a�ne sys-tems. For any rational, non-integer dilation we give an example of an a�ne systemwhi
h is not a frame, but yet, the 
orresponding quasi-a�ne system is a frame. Thiskind of example does not exist for integer dilations due to the above mentioned resultof Ron and Shen.To understand the broken symmetry between the integer and rational 
ase we in-trodu
e a new 
lass of quasi-a�ne systems indexed by the 
hoi
e of the oversamplinglatti
e Λ ⊂ Zn. In short, the quasi-a�ne system Aq
Λ
(ψ) is de�ned to be the smallestshift invariant system with respe
t to a latti
e Λ, i.e., φ ∈ Aq

Λ
(ψ) ⇒ Tλφ ∈ Aq

Λ
(ψ) for

λ ∈ Λ, whi
h 
ontains all elements of the original a�ne system A(ψ). In order to makethis de�nition meaningful we also need to renormalize the elements of Aq
Λ
(ψ) at a rate
orresponding to the rate of oversampling as it was done previously. Again, this is bestillustrated in one dimension. We take Λ = (pq)JZ for J ∈ N0 sin
e this parti
ular 
hoi
egives the oversampled quasi-a�ne system Aq

Λ
(ψ) a ni
e algebrai
 form:

Aq
Λ
(ψ) =





|p|j/2 |q|−j+J/2 ψ(ajx− qJ−jk) : j > J, k ∈ Z

|a|j/2 ψ(ajx− k) : −J ≤ j ≤ J, k ∈ Z

|p|j+J/2 |q|−j/2 ψ(ajx− pj+Jk) : j < −J, k ∈ Z




, (1.4)see Example 3. Then our main result 
an be stated as follows.Theorem 1.1. The a�ne system A(ψ) is a frame for L2(Rn) if, and only if, every Λ-oversampled quasi-a�ne system Aq

Λ
(ψ) is a frame with uniform frame bounds for all

Λ ⊂ Zn.In the 
ase when the dilation A is integer-valued, the 
lass of Λ-oversampled quasi-a�ne systems redu
es to the standard quasi-a�ne system Aq(ψ) and its dilates, seeExample 2. Hen
e, the original result of Ron and Shen [20℄ follows immediately fromTheorem 1.1. The proof of Theorem 1.1 is in�uen
ed by the work of Hernández, Labate,Weiss, and Wilson [13, 14℄, where the authors obtain reprodu
ibility 
hara
terizationsof generalized shift invariant (GSI) systems in
luding a�ne, wave pa
kets, and Gaborsystems. The key element of these te
hniques is the use of almost periodi
 fun
tionswhi
h was pioneered by Laugesen [17, 18℄ in his work on translational averaging ofthe wavelet fun
tional. Using these methods Laugesen [18℄ gave another proof of theequivalen
e of a�ne and quasi-a�ne frames in the integer 
ase. In this work we showthat these te
hniques 
an be generalized to treat rationally dilated quasi-a�ne systemsas well.In the next part of the paper we investigate more subtle frame properties of quasi-a�ne systems. We 
hara
terize when the 
anoni
al dual frame of a Λ-oversampledquasi-a�ne frame Aq
Λ
(ψ) is also a quasi-a�ne frame. In the 
ase of integer dilations,su
h 
hara
terization is due to the �rst author and Weber [5℄. Theorem 1.2 generalizesthis result to the 
ase of rational dilations. It is remarkable that the existen
e ofthe 
anoni
al quasi-a�ne dual frame is independent of the 
hoi
e of the oversamplinglatti
e Λ. Hen
e, if su
h 
anoni
al dual frame exists for some Λ-oversampled quasi-a�nesystem, then it must exist for all latti
es Λ ⊂ Zn.



90 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSTheorem 1.2. Suppose the quasi-a�ne system Aq
Λ0

(ψ) is a frame for L2(Rn) for somelatti
e Λ0 ⊂ Zn. Then, the 
anoni
al dual frame of Aq
Λ0

(ψ) is of the form Aq
Λ0

(φ) forsome φ ∈ L2(Rn) if, and only if, for all α ∈ Zn \ {0},
tα(ξ) :=

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0. (1.5)In this 
ase, Aq
Λ
(φ) is the 
anoni
al dual frame of Aq

Λ
(ψ) for all latti
es Λ ⊂ Zn.We also investigate pairs of dual quasi-a�ne frames. Here, the theory of rationallydilated quasi-a�ne frames parallels quite 
losely that of integer dilated systems. Hen
e,we have a perfe
t equivalen
e between pairs of dual a�ne frames and pairs of dualquasi-a�ne frames, regardless of the 
hoi
e of the oversampling latti
e Λ.Theorem 1.3. Suppose that A(ψ) and A(φ) are Bessel sequen
es in L2(Rn). Then thefollowing are equivalent:(i) A(ψ) and A(φ) are dual frames,(ii) Aq

Λ0
(ψ) and Aq

Λ0
(φ) are dual frames for some oversampling latti
e Λ0 ⊂ Zn,(iii) Aq

Λ
(ψ) and Aq

Λ
(φ) are dual frames for all oversampling latti
es Λ ⊂ Zn.Theorem 1.3 points at a lo
ation of the broken symmetry in the equivalen
e betweena�ne and quasi-a�ne frames in the rational non-integer 
ase. If su
h non-equivalen
eexists, then it 
an only exhibit itself for quasi-a�ne frames whi
h do not have a dualquasi-a�ne frame. The last se
tion of this work is devoted to showing that su
h phenom-ena does indeed exist. For any non-integer rational dilation fa
tor we give an exampleof a quasi-a�ne frame Aq

Λ
(ψ) su
h that the 
orresponding a�ne system A(ψ) is not aframe.Theorem 1.4. For ea
h rational non-integer dilation fa
tor a > 1, there exists a fun
tion

ψ ∈ L2(R) su
h that Aq
Λ
(ψ) is a frame for any oversampling latti
e Λ ⊂ Z, but yet,

A(ψ) is not a frame.Despite that ea
h system Aq
Λ
(ψ) is a frame, its lower frame bound drops to zeroas the latti
e Λ gets sparser. Hen
e, this example does not 
ontradi
t Theorem 1.1.Moreover, in the light of Theorem 1.3, none of the quasi-a�ne frames Aq

Λ
(ψ) 
an havea dual quasi-a�ne frame.We end this introdu
tion by reviewing some basi
 de�nitions. A frame sequen
e is a
ountable 
olle
tion of ve
tors {fj}j∈J su
h that there are 
onstants 0 < C1 ≤ C2 <∞satisfying, for all f ∈ span{fj},

C1 ‖f‖2 ≤
∑

j∈J
|〈f, fj〉|2 ≤ C2 ‖f‖2 .If span{fj} = H for a separable Hilbert spa
e H, we say that the frame sequen
e

{fj}j∈J is a frame for H; if the upper bound in the above inequality holds, but notne
essarily the lower bound, the sequen
e {fj} is said to be a Bessel sequen
e withBessel 
onstant C2. For a Bessel sequen
e {fj}, we de�ne the frame operator of {fj}by
S : H → H, Sf =

∑

j∈J
〈f, fj〉fj.



2. Generalized shift invariant systems, latti
es and oversampling 91If {fj} is a frame, this operator is bounded, invertible, and positive. A frame {fj} issaid to be tight if we 
an 
hoose C1 = C2; this is equivalent to S = C1I, where I isthe identity operator. If furthermore C1 = C2 = 1, the sequen
e {fj} is said to be aParseval frame.Two Bessel sequen
es {fj} and {gj} are said to be dual frames if
f =

∑

j∈J
〈f, gj〉fj for all f ∈ H.It 
an be shown that two su
h Bessel sequen
es indeed are frames, and we shall saythat the frame {gj} is dual to {fj}, and vi
e versa. At least one dual always exists, itis given by {S−1fj} and 
alled the 
anoni
al dual.Let f ∈ L2(Rn) for some �xed n ∈ N. The translation by y ∈ Rn is Tyf(x) =

f(x − y); dilation by an n × n non-singular matrix B is DBf(x) = |detB|1/2 f(Bx).These two operations are unitary as operators on L2(Rn). Let Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn) and let A be a �xed n × n expansive matrix, i.e., all eigenvalue λ of A satisfy
|λ| > 1. The a�ne system of unitaries A asso
iated with the dilation A is de�ned as
A = {DAjTγ : j ∈ Z, k ∈ Zn}, and the a�ne system A(Ψ) generated by Ψ is de�ned as

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ} ,where ψj,k = DAjTγψ for j ∈ Z, k ∈ Zn. We say that Ψ is a frame wavelet if A(Ψ) is aframe for L2(Rn), and say that Ψ and Φ is a pair of dual frame wavelets if their waveletsystems are dual frames. The transpose of the (�xed) dilation matrix A is denoted by
B = At.Following [12℄, the lo
al 
ommutant of a system of operators U at the point f ∈
L2(Rn) is de�ned as

Cf (U) :=
{
T ∈ B(L2(Rn)) : TUf = UTf ∀U ∈ U

}
.For f ∈ L1(Rn), the Fourier transform is de�ned by

F f(ξ) = f̂(ξ) =

∫

Rn
f(x)e−2πi〈ξ,x〉dxwith the usual extension to L2(Rn). We will frequently prove our results on the followingsubspa
e of L2(Rn)

D =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is 
ompa
t in Rn \ {0}

}
, (1.6)and extend the result by density arguments.2. Generalized shift invariant systems, latti
es and oversam-plingIn this se
tion we review some fundamental properties of latti
es, shift invariant systems,oversampling of shift invariant systems, mixed dual Gramians, and generalized shiftinvariant systems.



92 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONS2.1. Latti
es in RnA latti
e Γ in Rn is a dis
rete subgroup under addition generated by integral linear
ombinations of n linearly independent ve
tors {pi}ni=1 ⊂ Rn, i.e.,
Γ = {z1p1 + · · · + znpn : z1, . . . , zn ∈ Z} .In other words, it is a set of points of the form PZn for a non-singular n× n matrix P .Let Γ be a latti
e in Rn. If Γ = PZn, we say that the matrix P ∈ GLn(R) generates thelatti
e Γ. A generating matrix of a given latti
e is only unique up to multipli
ation fromthe right by integer matri
es with determinant one in absolute value; in parti
ular, if

Γ = PZn for some P ∈ GLn(R), then also Γ = PSZn for any S ∈ SLn(Z). Thedeterminant of Γ is de�ned to be:
d(Γ) = |detP | , (2.1)where P ∈ GLn(R) is a generating matrix for Γ; note that d(Γ) > 0 and d(Zn) = 1.The determinant d(Γ) is independent of the parti
ular 
hoi
e of generating matrix Pand equals the volume of a fundamental domain IΓ of the latti
e Γ, where

IΓ = P ([0, 1)n) = {c1p1 + · · · + cnpn : 0 ≤ ci < 1 for i = 1, . . . , n}with pi denoting the ith 
olumn of a generating matrix P . Note that Rn = ∪γ∈Γ(γ+IΓ)with the union being disjoint, and that the spe
i�
 shape of IΓ depends on the 
hoi
eof the generating matrix P .Suppose that Γ ⊂ Λ, in other words, that Γ is a sublatti
e of some �denser� latti
e
Λ. We de�ne the index of Γ in Λ as

D =
d(Γ)

d(Λ)
. (2.2)The index D is always a positive integer; it is a
tually the number of 
opies of paral-lelotopes IΓ that �ts inside a larger parallelotope IΛ. If D is the index of Γ in Λ, wehave from [6, �I.2.2℄,

DΛ ⊂ Γ ⊂ Λ, (2.3)and, from [6, Lemma I.1℄,
#{Λ/Γ} = D ≡ d(Γ)/d(Λ), (2.4)where #{Λ/Γ} is the order of the quotient group Λ/Γ. As illustrated in the following,these simple relations are often very useful. Suppose Γ is a rational latti
e, i.e., the pointsof the latti
e have rational 
oordinates or, equivalently, the entries of a generating matrix

P are rational. In this situation we de�ne Γ̃, the integral sublatti
e of Γ, by Γ̃ = Zn ∩ Γ,and the extended integral superlatti
e of Γ by Γ + Zn. Using the 
hara
terization oflatti
es in [6, Theorem III.VI℄, it is straightforward to show that these point sets a
tuallyare latti
es. Thus Γ̃ = Γ ∩ Zn is a sublatti
e of Zn with index in Zn as
D =

d(Γ̃)

d(Zn)
= d(Γ̃),
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onsequently,
d(Γ̃)Zn ⊂ Γ̃ ⊂ Γ. (2.5)This shows that any rational latti
e Γ has a integral sublatti
e of the form cZn, wherethe 
onstant c ∈ N 
an be taken to be c = d(Γ̃) = vol (I

Γ̃
) = #{Zn/Γ̃}. Sin
e we alsohave #{Γ/Γ̃} = d(Γ̃)/d(Γ), the above 
al
ulations show that

#{Zn/Γ̃} = #{Γ/Γ̃}d(Γ).In a similar way, we have for the extended integral superlatti
e of Γ

#{(Γ + Zn)/Zn} = d(Γ + Zn)−1 = vol (IΓ+Zn)−1 ∈ Nand
#{(Γ + Zn)/Zn}(Γ + Zn) ⊂ Zn.The dual latti
e of Γ is given by

Γ
∗ = {η ∈ Rn : 〈η, γ〉 ∈ Z for γ ∈ Γ} , (2.6)thus if Γ = PZn, then Γ∗ = (P t)−1Zn. The determinants of dual latti
es satisfy thefollowing relation

d(Γ)d(Γ∗) = 1.If Γ ⊂ Λ, then Λ∗ ⊂ Γ∗. For rational latti
es Γ and Λ the dual latti
e of Γ ∩ Λ and
Γ + Λ are Γ∗ + Λ∗ and Γ∗ ∩ Λ∗, respe
tively. Dual latti
es are sometimes 
alled polar orre
ipro
al latti
es. We refer to [6℄ for further basi
 properties of latti
es.2.2. Shift invariant systemsDe�nition 1. Suppose that Γ is a (full-rank) latti
e in Rn, i.e., Γ = PZn for some n×nnon-singular matrix P . A 
losed subspa
eW ⊂ L2(Rn) is said to be shift invariant (SI)with respe
t to the latti
e Γ or simply Γ-SI, if f ∈ W implies Tγf ∈ W for all γ ∈ Γ.Given a 
ountable family Φ ⊂ L2(Rn) and a latti
e Γ we de�ne the Γ-SI system EΓ(Φ)and the Γ-SI subspa
e SΓ(Φ) by

EΓ(Φ) = {Tγφ : φ ∈ Φ, γ ∈ Γ} , SΓ(Φ) = spanEΓ(Φ) .We will need the following result on oversampling of shift invariant frame sequen
es;in 
ase the frame sequen
e is a
tually a frame for all of L2(Rn) assertion (i) belowredu
es to [14, Theorem 3.3℄. Our proof is more elementary than [14, Theorem 3.3℄ andis in
luded to illustrate how well behaved shift invariant systems are under oversampling.Proposition 2.1. Let Γ,Γ′ be latti
es in Rn and Φ,Ψ ⊂ L2(Rn) 
ountable sets of thesame 
ardinality. Suppose that Γ ⊂ Γ′ and SΓ(Φ) = SΓ′

(Φ). Then the following asser-tions hold:(i) If EΓ(Φ) is a frame sequen
e with bounds C1, C2, then
1

#{Γ′/Γ}1/2
EΓ

′

(Φ)is a frame sequen
e with bounds C1, C2.
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(Ψ). If EΓ(Φ) and EΓ(Ψ) are dual frames for
SΓ(Φ), then

1

#{Γ′/Γ}1/2
EΓ

′

(Φ) and 1

#{Γ′/Γ}1/2
EΓ

′

(Ψ)are dual frames for SΓ(Φ).Proof. To prove (i) assume that there are 
onstant C1, C2 > 0 su
h that
C1 ‖f‖2 ≤

∑

φ∈Φ

∑

γ∈Γ

|〈f, Tγφ〉|2 ≤ C2 ‖f‖2 for all f ∈ SΓ(Φ) .Let {d1, . . . , dq} be a 
omplete set of representatives of the quotient group Γ′/Γ. Forea
h dr, r = 1, . . . , q, we then have
C1 ‖f‖2 ≤

∑

φ∈Φ

∑

γ∈Γ

|〈T−drf, Tγφ〉|2 ≤ C2 ‖f‖2 for all f ∈ SΓ(Φ)using the isometry of the translation operator, i.e., ‖T−drf‖ = ‖f‖, and the Γ′-SI of
SΓ′

(Φ) = SΓ(Φ). Adding these q inequalities yield
qC1 ‖f‖2 ≤

∑

φ∈Φ

q∑

r=1

∑

γ∈Γ

|〈f, Tdr+γφ〉|2 ≤ qC2 ‖f‖2 ,and thus,
C1 ‖f‖2 ≤

∑

φ∈Φ

∑

γ∈Γ′

|〈f, q−1/2Tγφ〉|2 ≤ C2 ‖f‖2 .Sin
e q = #{Γ′/Γ}, assertion (i) is proved.Let Φ and Ψ be indexed by I, i.e., Φ = {φi}i∈I and Ψ = {ψi}i∈I . By our assumptionwe have
f =

∑

i∈I

∑

γ∈Γ

〈f, Tγφi〉Tγψi for all f ∈ SΓ(Φ) = SΓ(Ψ) ,hen
e, in parti
ular,
‖f‖2 =

∑

i∈I

∑

γ∈Γ

〈f, Tγφi〉〈Tγψi, f〉.Using the same te
hniques as in the proof of (i) we arrive at
f =

∑

i∈I

∑

γ∈Γ′

〈f, q−1/2Tγφi〉 q−1/2Tγψi for all f ∈ SΓ(Φ) = SΓ′

(Φ) .By (i) the sequen
es q−1/2EΓ′

(Φ) and q−1/2EΓ′

(Ψ) are Bessel sequen
es, and (ii) isproved.As an immediate 
onsequen
e of Proposition 2.1 we have the following useful fa
tfor SI frame sequen
es spanning all of L2(Rn).
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es and oversampling 95Corollary 2.2. Let Γ be a latti
e. If EΓ(Φ) is a frame for L2(Rn) with bounds C1, C2,then, for any superlatti
e Γ′ of Γ, i.e., Γ ⊂ Γ′,
1

#{Γ′/Γ}1/2
EΓ′

(Φ)is a frame for L2(Rn) with bounds C1, C2.Corollary 2.2 is [14, Theorem 3.3℄ stated in terms of latti
es rather than in termsof latti
e generating matri
es. In the matrix version the 
ondition Γ ⊂ Γ′ be
omes theless transparent, but equivalent, 
ondition C−1RC ∈ GLn(Z), where Γ = CZn and
Γ′ = R−1CZn for R,C ∈ GLn(R), i.e., EΓ(Φ) = {TCkφ : k ∈ Zn, φ ∈ Φ} and EΓ′

(Φ) =
{TR−1Ckφ : k ∈ Zn, φ ∈ Φ}.2.3. Oversampling SI systemsFollowing [3℄ we introdu
e the notion of oversampling a SI system by a rational latti
e.De�nition 2. Let Γ, Λ be rational latti
es in Rn, i.e., latti
es with generating matri
esin GLn(Q). Suppose Φ ⊂ L2(Rn) is a 
ountable set. De�ne OΓ

Λ
(Φ), the oversampling of

EΓ(Φ) by a rational latti
e Λ ⊂ Qn, as
OΓ

Λ(Φ) = EΓ+Λ

(
1

#{Λ/(Λ ∩ Γ)}1/2
Φ

)
.By de�nition OΓ

Λ
(Φ) is always SI with respe
t to Λ, and if Λ ⊂ Γ, no oversamplingo

urs, and the oversampled system OΓ

Λ
(Φ) = EΓ(Φ). Moreover,

OΓ

Λ(Φ) ≡
{

1

#{Λ/(Λ ∩ Γ)}1/2
Tωφ : φ ∈ Φ, ω ∈ Γ + Λ

}

=

{
1

#{Λ/(Λ ∩ Γ)}1/2
Td+γφ : φ ∈ Φ, d ∈ [Λ/(Λ ∩ Γ)], γ ∈ Γ

}

≡ 1

#{Λ/(Λ ∩ Γ)}1/2

⋃

d∈[Λ/(Λ∩Γ)]

Td
(
EΓ(Φ)

)
,where the union runs over representatives of distin
t 
osets of the group Λ/(Λ ∩ Γ).Indeed, the penultimate equality is a 
onsequen
e of the fa
t that by 
hoosing represen-tatives of 
osets of (Γ + Λ)/Γ in Λ, we also have representatives of Λ/(Λ ∩ Γ). Likewise,
hoosing the representatives of 
osets of (Γ + Λ)/Λ to be in Γ yields representatives of

Γ/(Λ ∩ Γ), hen
e
OΓ

Λ(Φ) =
1

#{Λ/(Λ ∩ Γ)}1/2

⋃

d∈[Γ/(Λ∩Γ)]

Td
(
EΛ(Φ)

)
. (2.7)2.4. Mixed dual GramiansLet Λ be a latti
e in Rn, and let IΛ∗ denote a fundamental domain of Λ∗. De�ne theisometri
, isomorphism J between L2(Rn) and L2(IΛ∗ , ℓ2(Λ∗)) by

J f : IΛ∗ → ℓ2(Λ∗), J f(ξ) =
{
f̂(ξ + λ)

}
λ∈Λ∗

for f ∈ L2(Rn). (2.8)
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es of the form J f(ξ) are 
alled �bers of ℓ2(Λ∗) parametrized by the base spa
e
ξ ∈ IΛ∗ . Let {fi}i∈I and {gi}i∈I be 
ountable 
olle
tions of fun
tions in L2(Rn). Bygeneralizing [1, Theorem 2.3℄, we have that EΛ({fi}) is a frame (or Bessel sequen
e) in
L2(Rn) if, and only if, {d(Λ∗)1/2J fi(ξ)}i∈I is a frame (or Bessel sequen
e) in ℓ2(Λ∗)for a.e. ξ ∈ IΛ∗ with bounds being preserved. From this fa
t it is straightforward toverify that EΛ({fi}) and EΛ({gi}) are dual frames if, and only if, {d(Λ∗)1/2J fi(ξ)}i∈Iand {d(Λ∗)1/2J gi(ξ)}i∈I are dual frames for a.e. ξ ∈ IΛ∗ .Now, assume that EΛ({fi}) and EΛ({gi}) are Bessel sequen
es. For a �xed ξ ∈ IΛ∗set ti = d(Λ∗)1/2J fi(ξ) and ui = d(Λ∗)1/2J gi(ξ) for i ∈ I. The synthesis operators forthe �bers {ti} and {ui} are de�ned by

T : ℓ2(I) → ℓ2(Λ∗), T ({ci}) =
∑

i∈I
citi,

U : ℓ2(I) → ℓ2(Λ∗), U({ci}) =
∑

i∈I
ciui,respe
tively. The analysis operators are the adjoint operators, and one �nds

T ∗(a) = {〈a, ti〉}i∈I , U∗(a) = {〈a, ui〉}i∈I ,for a = {aλ}λ∈Λ∗ ∈ ℓ2(Λ∗). The �bers {ti} and {ui} being dual frames in ℓ2(Λ∗) meansin terms of the analysis and synthesis operators that
TU∗ = Iℓ2(Λ∗), or, UT ∗ = Iℓ2(Λ∗),where Iℓ2(Λ∗) is the identity operator on ℓ2(Λ∗). This fa
t is obvious.The mixed dual Gramian G̃ = G̃(ξ) is de�ned as G̃ = UT ∗. In the standard basis

{ek}k∈Λ∗ of ℓ2(Λ∗) the mixed dual Gramian a
ts by 〈G̃ek, el〉 =
∑
i∈I ti(k)ui(l), so

G̃ =

(
d(Λ∗)

∑

i∈I
f̂i(ξ + k)ĝi(ξ + l)

)

k,l∈Λ∗

. (2.9)By the above, the SI systems EΛ({fi}) and EΛ({gi}) are dual frames if, and only if,
G̃(ξ) = Iℓ2(Λ∗) for a.e. ξ ∈ IΛ∗ .The following result is a generalization of [3, Lemma 2.5℄. Lemma 2.3 says that themixed dual Gramian of a pair of oversampled SI systems is in one part a res
aling ofthe original mixed dual Gramian, whereas in the other part it has zero entries.Lemma 2.3. Let Γ and Λ be latti
es, and let Ψ = {ψi}i∈I and Φ = {φi}i∈I be 
ountablesets in L2(Rn). Suppose OΓ

Λ
(Ψ) and OΓ

Λ
(Φ) are Bessel sequen
es. Then the mixed dualGramian of OΓ

Λ
(Ψ) and OΓ

Λ
(Φ) is given for k, l ∈ Λ∗ as

G̃(ξ)k,l =




d(Γ∗)

∑
i∈I ψ̂i(ξ + k)φ̂i(ξ + l) if k − l ∈ Γ∗ ∩ Λ∗,

0 if k − l ∈ Λ∗ \ Γ∗. (2.10)Proof. We paraphrase the oversampled systems OΓ

Λ
(Ψ) and OΓ

Λ
(Φ) using (2.7) whi
hyields

OΓ

Λ(Ψ) = EΛ
(
Ψ′) , where Ψ′ =

⋃

d∈[Γ/(Λ∩Γ)]

{
1

#{Λ/(Λ ∩ Γ)}1/2
TdΨ

}
,
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OΓ

Λ(Φ) = EΛ
(
Φ′) , where Φ′ =

⋃

d∈[Γ/(Λ∩Γ)]

{
1

#{Λ/(Λ ∩ Γ)}1/2
TdΦ

}
.Hen
e, by (2.9),

d(Λ∗)−1G̃(ξ)k,l =
1

#{Λ/(Λ ∩ Γ)}
∑

i∈I

∑

d∈[Γ/(Λ∩Γ)]

T̂dψi(ξ + k)T̂dφi(ξ + l)

=
1

#{Λ/(Λ ∩ Γ)}


 ∑

d∈[Γ/(Λ∩Γ)]

e−2πi〈k−l,d〉


∑

i∈I
ψ̂i(ξ + k)φ̂i(ξ + l).Using Lemma 3.6 and #{Γ/(Λ ∩ Γ)}/#{Λ/(Λ ∩ Γ)} = d(Λ)/d(Γ) = d(Γ∗)/d(Λ∗) thisyields (2.10).2.5. Generalized shift invariant systemsGeneralized shift invariant system were introdu
ed and studied in the work of Hernán-dez, Labate, and Wilson [13℄, and independently by Ron and Shen [23℄.De�nition 3. For a 
olle
tion of fun
tions {gp}p∈P , a generalized shift invariant (GSI)system is de�ned as ⋃

p∈P
EΓp(gp) , (2.11)where {Γp}p∈P is a 
ountable 
olle
tion of latti
es in Rn. The Γp-SI system EΓp(gp) issaid to be the pth layer of the GSI system.Letting Φ = {gp}p∈P and Γ = Γp for ea
h p ∈ P in (2.11) for a GSI system, were
over the SI system EΓ(Φ). Moreover, a GSI system is SI if there exists a (sparse)latti
e Γ so that Γ ⊂ Γp for ea
h p ∈ P. Furthermore, if Cp ∈ GLn(R) is 
hosen su
hthat Γp = CpZ

n for ea
h p ∈ P, then the GSI system in (2.11) takes the form
{
TCpkgp : k ∈ Zn, p ∈ P

}
. (2.12)We will use the following results about GSI systems from [13℄. Here, we state theresults from [13℄ in terms of latti
es in Rn rather than in terms of (2.12) and matri
es

{Cp}. The reason behind this 
onvention is that a matrix Cp satisfying Γp = CpZ
n isnot unique and most of our 
onditions simplify when stated in terms of latti
es ratherthan matri
es.Theorem 2.4 (Theorem 2.1 in [13℄). Let P be a 
ountable set, {gp}p∈P a 
olle
tionof fun
tions in L2(Rn) and {Γp}p∈P a 
olle
tion of latti
es in Rn. Assume the lo
alintegrability 
ondition (LIC):

L(f) :=
∑

p∈P

∑

m∈Γ∗
p

∫

supp f̂

∣∣∣f̂(ξ +m)
∣∣∣
2
d(Γ∗p) |ĝp(ξ)|2 dξ <∞ for all f ∈ D. (2.13)Then the GSI system ∪p∈PEΓp(gp) is a Parseval frame for L2(Rn) if, and only if,

∑

p∈P
d(Γ∗p)ĝp(ξ)ĝp(ξ + α) = δα,0 for a.e. ξ ∈ Rn (2.14)for ea
h α ∈ ∪i∈PΓ∗p.
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t that LIC, in general, is ne
essary 
an be found in [4, Example 3.2℄. Re
allthe relation between the determinants of dual latti
es d(Γ∗p) = 1/d(Γp).Proposition 2.5 (Proposition 2.4 in [13℄). Let P be a 
ountable set, {gp}p∈P a 
olle
tionof fun
tions in L2(Rn) and {Γp}p∈P a 
olle
tion of latti
es in Rn. Assume that the LICgiven by (2.13) holds. Then, for ea
h f ∈ D, the fun
tion
w(x) =

∑

p∈P

∑

k∈Γp

∣∣〈Txf, Tkgp〉
∣∣2 (2.15)is a 
ontinuous fun
tion that 
oin
ides pointwise with the absolutely 
onvergent series

w(x) =
∑

p∈P

∑

m∈Γ∗
p

ŵp(m)e2πi〈m,x〉 , (2.16)where
ŵp(m) = d(Γ∗p)

∫

Rn
f̂(ξ)f̂(ξ +m) ĝp(ξ)ĝp(ξ +m) dξ. (2.17)The fun
tion w in (2.16) is an almost periodi
 fun
tion. In 
ase the GSI systemfrom Proposition 2.5 is a Γ-SI system for some latti
e Γ, the fun
tion w is a
tually

Γ-periodi
, and 
an thus be 
onsidered as a regular Fourier series on the fundamentalparallelopiped IΓ.Proposition 2.6 (Proposition 4.1 in [13℄). Let P be a 
ountable set, {gp}p∈P a 
olle
tionof fun
tions in L2(Rn) and {Γp}p∈P a 
olle
tion of latti
es in Rn. If the GSI system
∪p∈PEΓp(gp) is a Bessel sequen
e with bound C2 > 0, then

∑

p∈P
|ĝp(ξ)|2 /d(Γp) ≤ C2 for a.e. ξ ∈ Rn. (2.18)The following result is a generalization of Proposition 5.6 in [13℄. The result statesthat the lo
al integrability 
ondition for a�ne systems A(ψ) is equivalent with lo
alintegrability of a Calderón sum (2.19), hen
e the name of the 
ondition.Proposition 2.7. Let A ∈ GLn(R) be expansive and ψ ∈ L2(Rn). Then,
∑

j∈Z

∣∣∣ψ̂(B−jξ)
∣∣∣
2
∈ L1lo
(Rn \ {0}), (2.19)if, and only if,

L(f) =
∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ +Bjm)|2 |detAj | |F DAjψ(ξ)|2 dξ

=
∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ +Bjm)|2 |ψ̂(B−jξ)|2 dξ <∞ for all f ∈ D. (2.20)In the proof of Proposition 2.7 we use the following elementary latti
e 
ountinglemma.
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es and oversampling 99Lemma 2.8. Let B ∈ GLn(R) be expansive and R > 0. Then, there exists C > 0 su
hthat
#{(ξ +BjZn) ∩ B(0, R)} ≤ Cmax (1, |detB|−j) for any j ∈ Z, ξ ∈ Rn. (2.21)Proof. Sin
e the matrix B is expansive, there exists J ∈ Z su
h that

B(0,
√
n) ⊂ B−j(B(0, R)) for all j ≤ J. (2.22)For the same reason, on
e J is �xed, there exists R0 > 0 su
h that

B−j(B(0, R)) ⊂ B(0, R0) for all j > J. (2.23)Let
Kj = {k ∈ Zn : ξ +Bjk ∈ B(0, R)} = {k ∈ Zn : B−jξ + k ∈ B−j(B(0, R))}.Using (2.22) and (2.23)

⋃

k∈Kj

(B−jξ + k + [0, 1]n) ⊂ B−j(B(0, R)) + B(0,
√
n) ⊂

{
2B−j(B(0, R)) for j ≤ J,

B(0, R0 +
√
n) for j > J.Thus,

#Kj =

∣∣∣∣
⋃

k∈Kj

(B−jξ + k + [0, 1]n)

∣∣∣∣ ≤
{
cn(2R)n |detB|−j for j ≤ J,

cn(R0 +
√
n)n for j > J,where cn = |B(0, 1)|. This immediately implies (2.21).Proof of Proposition 2.7. Assume (2.19). Let f ∈ D and 
hoose R > 1 su
h that

supp f̂ ⊂
{
ξ ∈ Rn :

1

R
< |ξ| < R

}
.Sin
e the matrix B is expansive, there exists a 
onstantK ∈ N su
h that, ea
h traje
tory

{Bjξ}j∈Z hits the above annulus at most K times. Thus,
#
{
j ∈ Z : ξ ∈ B−j(supp f̂)

}
≤ K.On the other hand, by Lemma 2.8 we have that, for any ξ ∈ Rn,

#{(ξ +BjZn) ∩ supp f̂} ≤ Cmax (1, |detB|−j).Combining the last two estimates
L(f) ≤

∑

j∈Z

‖f̂‖2
∞Cmax (1, |detB|−j)

∫

supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ

≤ ‖f̂‖2
∞C

∑

j≥0

∫

supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ + ‖f̂‖2
∞C

∑

j<0

∫

B−j(supp f̂)

∣∣∣ψ̂(ξ)
∣∣∣
2

dξ

≤ ‖f̂‖2
∞C

∫

supp f̂

∑

j≥0

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ + ‖f̂‖2
∞CK

∫

Rn

∣∣∣ψ̂(ξ)
∣∣∣
2

dξ <∞.
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onsequen
e of (2.19) and ψ ∈ L2(Rn).Conversely, if L(f) <∞ for all f ∈ D, then in parti
ular by 
hoosing f̂ = χE for a
ompa
t set E ⊂ Rn \ {0} we have
∫

E

∑

j∈Z

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ =
∑

j∈Z

∫

E

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ ≤ L(f) <∞.Sin
e the set E was arbitrarily 
hosen, the validity of (2.19) follows.Remark 1. One should add that (2.19) and thus (2.20) hold if, and only if, the Bessel-like
ondition holds on the dense subspa
e D,
∑

j∈Z

∑

k∈Zn

∣∣〈f, ψj,k〉
∣∣2 <∞ for all f ∈ D. (2.24)Indeed, this fa
t is a 
onsequen
e of [2, Lemma 3.1℄ whi
h holds for real expansivedilations.3. Oversampling a�ne systems into quasi-a�ne systemsIn this se
tion we show that the frame property is preserved when going from a�ne toquasi-a�ne systems. To 
hara
terize under what 
onditions we 
an also go from quasi-a�ne to a�ne systems, we introdu
e a new family of oversampled quasi-a�ne systems.We then show that an a�ne system is a frame if, and only if, the 
orresponding familyof quasi-a�ne systems are frames with uniform frame bounds.3.1. Properties of quasi-a�ne systemsFor a rational latti
e Λ we introdu
e the notion of a Λ-oversampled quasi-a�ne system.De�nition 4. Let A ∈ GLn(Q) be a rational, expansive matrix, and let Λ be rationallatti
e in Rn, i.e., Λ = PZn with P ∈ GLn(Q). Suppose Ψ ⊂ L2(Rn) is a �nite set.De�ne Aq

Λ
(Ψ) the Λ-oversampled quasi-a�ne system by

Aq
Λ
(Ψ) =

⋃

j∈Z

OA
−jZn

Λ (DAjΨ) .When Λ = Zn we often drop the subs
ript Λ, and we say that Aq(Ψ) = Aq
Zn(Ψ) is thestandard quasi-a�ne system.By de�nition Aq

Λ
(Ψ) is SI with respe
t to Λ. Note that we need to assume thatthe dilation A and the latti
e Λ are rational in order to guarantee latti
e stru
ture of

A−jZn + Λ for ea
h j ∈ Z. If Λ = Zn, we re
over the usual quasi-a�ne system, i.e.,
Aq

Λ
(Ψ) = Aq(Ψ), introdu
ed in [3℄.We will use the following notation throughout this paper. The translation latti
efor the a�ne system at s
ale j ∈ Z is denoted by Γj = A−jZn; its Λ-sublatti
e is

Γ̃j = A−jZn ∩ Λ and its Λ-extended superlatti
e is Kj = A−jZn + Λ. Note that Kj isthe translation latti
e for the Λ-oversampled quasi-a�ne system at s
ale j ∈ Z. Finally,for J ∈ N, let
MJ =

⋂

|j|≤J
Γj ≡

⋂

|j|≤J
AjZn,



3. Oversampling a�ne systems into quasi-a�ne systems 101and note that MJ is an integral latti
e. Summarizing, we will use the following latti
estogether with their dual latti
es:
Γj = A−jZn, Γ

∗
j = BjZn, (3.1)

Γ̃j = A−jZn ∩ Λ, Γ̃
∗
j = BjZn + Λ

∗, (3.2)
Kj = A−jZn + Λ, K

∗
j = BjZn ∩ Λ

∗, (3.3)
MJ =

⋂

|j|≤J
AjZn, M

∗
J = +

|j|≤J
BjZn = B−JZn + · · · +BJZn. (3.4)Let Ψ,Φ ⊂ L2(Rn) be �nite sets. For j ∈ Z and f ∈ L2(Rn) de�ne the a�nefun
tionals

Kj(f) =
∑

g∈EA−jZn(D
Aj Ψ)

|〈f, g〉|2 , N(f,Ψ) =
∑

j∈Z

Kj(f) =
∑

g∈A(Ψ)

|〈f, g〉|2 , (3.5)and quasi-a�ne fun
tionals
Kq

Λ,j(f) =
∑

g∈OA−jZn
Λ

(D
Aj Ψ)

|〈f, g〉|2 , N q
Λ
(f,Ψ) =

∑

j∈Z

Kq
Λ,j(f) =

∑

g∈Aq
Λ
(Ψ)

|〈f, g〉|2 . (3.6)Whenever unambiguous, we drop the referen
e to the set of generators and simply write
N(f) and N q

Λ
(f).Before going deeper into our investigation we illustrate the notion of a quasi-a�nesystem in a few spe
i�
 situations.Example 1. Let J ∈ N and 
onsider the quasi-a�ne system obtained by oversamplingwith respe
t to MJ = ∩|j|≤JA

jZn introdu
ed above. Sin
e A−jZn + MJ = A−jZn and
A−jZn ∩ MJ = MJ for |j| ≤ J , we see that

OA
−jZn

MJ
(DAjΨ) = EA

−jZn+MJ

(
#{MJ/MJ}−1/2DAjΨ

)
= EA

−jZn
(DAjΨ) , (3.7)for |j| ≤ J . Hen
e with this oversampling latti
e, the s
ales |j| ≤ J for the a�ne system

A(Ψ) =
⋃

j∈Z

EA
−jZn

(DAjΨ)and the MJ -oversampled quasi-a�ne system
Aq

MJ
(Ψ) =

⋃

j∈Z

OA
−jZn

MJ
(DAjΨ)
oin
ide.Example 2. Suppose A ∈ GLn(Z) is integer valued. Let Λ = AlZn for some l ∈ Z. Thenthe Λ-oversampled quasi-a�ne system is just a dilated version of standard quasi-a�nesystem (1.2). To be pre
ise, we have the following relation:

Aq
AlZn(Ψ) = DA−l(Aq(Ψ)). (3.8)
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A−jZn + Λ = A−jZn +AlZn =

{
AlZn, j < −l,
A−jZn, j ≥ −l,and that

#{AlZn/(AlZn ∩A−jZn)} =





#{AlZn/A−jZn} = d(Zn)
d(Aj+lZn)

= 1
|detAj+l| , j < −l,

#{AlZn/AlZn} = 1, j ≥ −l,whereby we have
Aq
AlZn(Ψ) =

⋃

j≥−l
EA

−jZn
(DAjΨ) ∪

⋃

j<−l
EA

lZn
(
|detA|(j+l)/2DAjΨ

)
.Re
all that

Aq(Ψ) =
⋃

j≥0

EA
−jZn

(DAjΨ) ∪
⋃

j<0

EZn
(
|detA|j/2DAjΨ

)
,and the validity of (3.8) follows by DA−lTk = TAlkDA−l and a 
hange of variables.Example 3. The quasi-a�ne system has a relatively simple algebrai
 form in one di-mension. Suppose a = p/q ∈ Q is a dilation fa
tor, where |a| > 1, p, q ∈ Z are relativelyprime. Let Λ ⊂ Z be a latti
e. For simpli
ity, we assume that Λ = pJ1qJ2rZ for some

J1, J2 ∈ N0, r ∈ N, where pq and r are relatively prime. Then, the quasi-a�ne system
Aq

Λ
(Ψ) asso
iated with a is given by

Aq
Λ
(Ψ) = {ψ̃j,k : j, k ∈ Z, ψ ∈ Ψ}.Here, for ψ ∈ L2(R) and j, k ∈ Z, we set

ψ̃j,k(x) =





|a|j/2 |q|(J2−j)/2 ψ(ajx− qJ2−jk) if j > J2,

|a|j/2 ψ(ajx− k) if − J1 ≤ j ≤ J2,

|a|j/2 |p|(j+J1)/2 ψ(ajx− pj+J1k) if j < −J1.

(3.9)Note that the above 
onvention for ψ̃j,k in the 
ase when Λ = Z be
omes the rationallydilated quasi-a�ne system (1.3) introdu
ed by the �rst author in [3℄. In parti
ular, ifthe dilation fa
tor a is an integer, this is the original quasi-a�ne system of Ron andShen [20℄. To show (3.9) note that
a−jZ + Λ = a−jZ + pJ1qJ2rZ =

{
p−j(qjZ + pJ1+jqJ2rZ) = p−jqmin(j,J2)Z for j ≥ 0

qj(p−jZ + pJ1qJ2−jrZ) = qjpmin(−j,J1)Z for j < 0

=





p−jqJ2Z for j > J2,

a−jZ for − J1 ≤ j ≤ J2,

pJ1qjZ for j < −J1.



3. Oversampling a�ne systems into quasi-a�ne systems 103Hen
e, one needs to oversample at a rate |q|j−J2 if j > J2 (or |p|−J1−j if j < −J1)to obtain the quasi-a�ne system Aq
Λ
(Ψ) from the a�ne system A(Ψ). Note that inthe intermediate range −J1 ≤ j ≤ J2, no oversampling is required and both systems
oin
ide at these s
ales. Also note that the 
hoi
e J1 = J2 
orresponds to oversamplingby MJ1 , see Example 1.Remark 2. Let Λ be a rational latti
e, and 
onsider the Λ-oversampled quasi-a�nesystem Aq

Λ
(Ψ). By de�nition this system is Λ-SI. Take a rational superlatti
e Λ′ of Λ,i.e., Λ ⊂ Λ′. Then the further oversampled system Aq

Λ′(Ψ) is obviously Λ′-SI; moreover,it 
an be written in term of Aq
Λ
(Ψ) as

Aq
Λ′(Ψ) =

1

#{Λ′/Λ}1/2

⋃

d∈[Λ′/Λ]

Td
(Aq

Λ
(Ψ)

)
.By Corollary 2.2 we have the following useful result for oversampled quasi-a�neframes:Lemma 3.1. Let A ∈ GLn(Q). Suppose Λ ⊂ Λ′ for rational latti
es Λ,Λ′. Then if

Aq
Λ
(Ψ) is a frame for L2(Rn) with bounds C1, C2, then Aq

Λ′(Ψ) is a frame for L2(Rn)with bounds C1, C2.3.2. A�ne and quasi-a�ne systems as GSI systemsSin
e a�ne and quasi-a�ne systems are GSI systems, the results from Se
tion 2.5 
anbe applied to these systems, see [13, 14℄. We restate some of these results in terms oflatti
es in Rn. The quasi-a�ne system Aq
Λ
(Ψ) introdu
ed above 
an be expressed as aGSI system (2.11) by taking P = {(j, l) : j ∈ Z, l = 1, . . . , L} and

Γp = Γ(j,l) = A−jZn + Λ (3.10)
gp(x) = g(j,l)(x) = #{Λ/(Λ ∩A−jZn)}−1/2DAjψl(x) (3.11)for all p ∈ P.By applying Proposition 2.6 to a�ne and quasi-a�ne systems we immediately havethe following result, see also [3, Proposition 4.5℄.Proposition 3.2. Suppose that Ψ ⊂ L2(Rn) and that either of the following holds:(a) A ∈ GLn(R) is expansive and A(Ψ) is a Bessel sequen
e with bound C2,(b) A ∈ GLn(Q) is expansive and Aq

Λ
(Ψ) is a Bessel sequen
e with bound C2 for somerational latti
e Λ.Then, ∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ Rn. (3.12)For the Λ-oversampled quasi-a�ne systems we have the following result on the quasi-a�ne fun
tional wq
Λ
de�ned below.



104 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSProposition 3.3. Let A ∈ GLn(Q) be expansive, Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), and let
Λ be a rational latti
e. Suppose that ea
h ψ ∈ Ψ satis�es 
ondition (2.19). Then, forea
h f ∈ D, the Λ-periodi
 fun
tion

wq
Λ
(x) =

∑

g∈Aq
Λ
(Ψ)

|〈Txf, g〉|2 =
L∑

l=1

∑

j∈Z

∑

k∈Kj

∣∣〈Txf, djTkDAjψl〉
∣∣2 , (3.13)where dj = #{Λ/(Λ ∩ A−jZn)}−1/2 and Kj is given by (3.3), is a 
ontinuous fun
tionthat 
oin
ides pointwise with the (Λ-periodi
) absolutely 
onvergent series

wq
Λ
(x) =

L∑

l=1

∑

j∈Z

∑

µ∈K∗

j

bj,l(µ)e2πi〈µ,x〉 , (3.14)where
bj,l(µ) =

∫

Rn
f̂(ξ)f̂(ξ + µ) ψ̂l(B−jξ)ψ̂l(B

−j(ξ + µ)) dξ. (3.15)Proof. The result follows by an appli
ation of Proposition 2.5 to quasi-a�ne systems. Inorder to apply Proposition 2.5 we need to verify the LIC 
ondition (2.13) for quasi-a�nesystems, i.e., that
Lq

Λ
(f) :=

L∑

l=1

∑

j∈Z

∑

µ∈K∗

j

∫

supp f̂
|f̂(ξ + µ)|2 |ψ̂l(B−jξ)|2 dξ <∞ (3.16)holds for f ∈ D. Sin
e ea
h ψ ∈ Ψ satis�es 
ondition (2.19), Proposition 2.7 tells usthat the LIC 
ondition for a�ne systems is satis�ed, i.e., that L(f) < ∞. Finally, theestimate in (3.16) follows by

Lq
Λ
(f) ≤

L∑

l=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ +Bjm)|2 |ψ̂l(B−jξ)|2 dξ ≡ L(f) <∞,where we have used that K∗

j ⊂ BjZn for all j ∈ Z. Consequently, the expression in(3.15) follows dire
tly from (2.17) by
1/d(K∗

j ) = d(Kj) =

∣∣detA−j ∣∣
#{Λ/(Λ ∩A−jZn)} .Proposition 3.4 below states a similar result for a�ne systems. The result is ageneralization of [14, Proposition 2.8℄, where the Bessel 
ondition on A(Ψ) is relaxedby (2.19). Proposition 3.4 is a dire
t 
onsequen
e of Propositions 2.5 and 2.7.Proposition 3.4. Let A ∈ GLn(R) be expansive and Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn).Suppose that ea
h ψ ∈ Ψ satis�es 
ondition (2.19). Then, for ea
h f ∈ D, the fun
tion

w(x) =
∑

g∈A(Ψ)

|〈Txf, g〉|2 =
L∑

l=1

∑

j∈Z

∑

k∈Zn

∣∣〈Txf,DAjTγψl〉
∣∣2 , (3.17)
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 fun
tion that 
oin
ides pointwise with the absolutely 
onvergentseries
w(x) =

L∑

l=1

∑

j∈Z

∑

m∈Zn

cj,l(m)e2πi〈Bjm,x〉, (3.18)where
cj,l(m) =

∫

Rn
f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)ψ̂l(B

−j(ξ +Bjm)) dξ. (3.19)Remark 3. As noted in [14℄ the sum over j ∈ Z in Proposition 3.4 
an be repla
ed by asum over a smaller set j ∈ J ⊂ Z. The same holds for Proposition 3.3.The series representing w and wq
Λ
are very similar. By a 
hange of variables, (3.14)be
omes

wq
Λ
(x) =

L∑

l=1

∑

j∈Z

∑

m∈Zn∩B−jΛ∗

cj,l(m)e2πi〈Bjm,x〉 , (3.20)where the 
oe�
ients cj,l(m) are given by (3.19). Sin
e Zn ∩B−jΛ∗ ⊂ Zn for all j ∈ Z,we 
an 
onsider the series for wq
Λ
in (3.20) as the series representing w in (3.18) withsome 
oe�
ients set to zero; exa
tly those 
oe�
ients cj,l(m) for whi
h m ∈ Zn\B−jΛ∗.We stress that this 
onne
tion holds without any assumptions on the rational latti
e Λ,e.g., there is no assumption on Λ being integer valued.3.3. From a�ne to quasi-a�ne systemsThe frame property 
arries over when moving from a�ne to Λ-oversampled quasi-a�nesystems for any rational latti
e Λ. This statement is the main result of this se
tion andis 
ontained in Theorem 3.5.Theorem 3.5. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let Λ be any rationallatti
e in Rn. If the a�ne system A(Ψ) is a frame for L2(Rn) with frame bounds

C1, C2, then the Λ-oversampled quasi-a�ne system Aq
Λ
(Ψ) is a frame for L2(Rn) withframe bounds C1, C2.The following lemma, whi
h is needed in the proof of Theorem 3.5, is a 
onsequen
eof [15, Lemma 23.19℄.Lemma 3.6. Suppose K,M are latti
es in Rn su
h that K ⊂ M. Then, for m ∈ K∗,

1

#{M/K}
∑

d∈[M/K]

e2πi〈m,d〉 =

{
1 m ∈ M∗,

0 m ∈ K∗ \ M∗.
(3.21)The proof of Theorem 3.5 relies on the following key result on translational averagingof a�ne fun
tionals.Lemma 3.7. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let Λ be an integrallatti
e in Rn. For ea
h J ∈ N de�ne

MJ =
⋂

|j|≤J
AjZn.



106 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSSuppose the a�ne system A(Ψ) is a frame for L2(Rn). Then
N q

Λ
(f) = lim

J→∞
1

#{(MJ + Λ)/MJ}
∑

d∈[(MJ+Λ)/MJ ]

N(Tdf) for f ∈ D, (3.22)where D is given by (1.6), N by (3.5) and N q
Λ
by (3.6).Proof. Let Ψ = {ψ1, . . . , ψL}. For f ∈ D, by (3.20),

N q
Λ
(f) = wq

Λ
(0) =

L∑

l=1

∑

j∈Z

∑

m∈Zn∩B−jΛ∗

cj,l(m), (3.23)where cj,l(m) are given in equation (3.19). So �x J ∈ N and let {d1, . . . , ds(J)} bea 
omplete set of representative of the quotient group (MJ + Λ)/MJ so that s(J) isthe order of the group. We want to express N q
Λ
(f) as an average of N(Tdrf) over

r = 1, . . . , s(J), thus we 
onsider
1

s(J)

s(J)∑

r=1

N(Tdrf) =
1

s(J)

s(J)∑

r=1

L∑

l=1

∑

|j|≤J

∑

m∈Zn

cj,l(m) e2πi〈Bjm,dr〉

+
1

s(J)

s(J)∑

r=1

L∑

l=1

∑

|j|>J

∑

m∈Zn

cj,l(m) e2πi〈Bjm,dr〉

=: I1(J) + I2(J), (3.24)whi
h follows by (3.18). By absolute 
onvergen
e of the sum above, we 
on
lude that
I2(J) → 0 as J → ∞. Assume that the following identity holds.

I1(J) =
L∑

l=1

∑

|j|≤J

∑

m∈Zn∩B−jΛ∗

cj,l(m). (3.25)Taking the limit J → ∞ in (3.24) and using equation (3.23) yield
lim
J→∞

1

s(J)

s(J)∑

r=1

N(Tdrf) = lim
J→∞

(
I1(J) + I2(J)

)
= lim

J→∞

L∑

l=1

∑

|j|≤J

∑

m∈Zn∩B−jΛ∗

cj,l(m)

= N q
Λ
(f).Hen
e, to 
omplete the proof we have only left to show (3.25). Taking K = MJ and

M = MJ + Λ in Lemma 3.6 gives us for all m̃ ∈ M∗
J :

s(J)∑

r=1

e2πi〈m̃,dr〉 =

{
s(J) m̃ ∈ M∗

J ∩ Λ∗,

0 m̃ ∈ M∗
J \ Λ∗.

(3.26)Fix j ∈ Z with |j| ≤ J . Take m̃ = Bjm. Obviously, m̃ ∈ M∗
J ∩ Λ∗ pre
isely when

m ∈ B−jM∗
J ∩B−jΛ∗, and m̃ ∈ M∗

J \ Λ∗ pre
isely when m ∈ B−jM∗
J \B−jΛ∗. Sin
e

B−j
M

∗
J = +

−J−j≤l≤J−j
BlZn ⊃ Zn,



3. Oversampling a�ne systems into quasi-a�ne systems 107we 
on
lude from equation (3.26) that, for all m ∈ Zn,
s(J)∑

r=1

e2πi〈B
jm,dr〉 =

{
s(J) m ∈ Zn ∩B−jΛ∗,

0 m ∈ Zn \B−jΛ∗,
(3.27)and this holds for all |j| ≤ J . Using these relations we arrive at:

I1(J) ≡
L∑

l=1

∑

|j|≤J

∑

m∈Zn

cj,l(m)
1

s(J)

s(J)∑

r=1

e2πi〈Bjm,dr〉

=
L∑

l=1

∑

|j|≤J

∑

m∈Zn∩B−jΛ∗

cj,l(m),whi
h 
ompletes the proof of the lemma.Proof of Theorem 3.5. Assume that the a�ne system A(Ψ) is a frame for L2(Rn) withbounds C1, C2. It su�
es to prove that Aq
Λ0

(Ψ) is a frame for integer latti
es Λ0, i.e.,
Λ0 ⊂ Zn, whi
h follows from the fa
t that any rational latti
e Λ has an integral sublatti
eof the form cZn for some c ∈ N, e.g., take c = d(Λ ∩ Zn), see equation (2.5). Hen
e, ifwe prove that Aq

cZn(Ψ) is a frame with bounds C1, C2, then, by applying Lemma 3.1,
Aq

Λ
(Ψ) is a frame with the frame bounds being preserved.So let Λ0 be an integral latti
e. By our hypothesis there are 
onstants C1, C2 > 0so that

C1 ‖f‖2 ≤ N(f) ≤ C2 ‖f‖2 ∀f ∈ L2(Rn).Fix J ∈ N and 
onsider MJ introdu
ed above. For ea
h representative d ∈ [MJ+Λ0)/MJ ]we have
C1 ‖f‖2 ≤ N(Tdf) ≤ C2 ‖f‖2 ∀f ∈ L2(Rn),where we have used that ‖Txf‖ = ‖f‖ for x ∈ Rn. Adding these equations for ea
hrepresentative d yields:

#{(MJ + Λ0)/MJ}C1 ‖f‖2 ≤
∑

d∈[(MJ+Λ0)/MJ ]

N(Tdf) ≤ #{(MJ + Λ0)/MJ}C2 ‖f‖2 .By taking the limit J → ∞, we have
C1 ‖f‖2 ≤ lim

J→∞
1

#{(MJ + Λ0)/MJ}
∑

d∈[(MJ+Λ0)/MJ ]

N(Tdf) ≤ C2 ‖f‖2for all f ∈ L2(Rn). Sin
e Λ0 is an integer latti
e, we 
an apply Lemma 3.7. This givesus
C1 ‖f‖2 ≤ N q

Λ
(f) ≤ C2 ‖f‖2for f ∈ D. Extending these inequalities to all of L2(Rn) by a standard density argument
ompletes the proof.
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ial 
ase of Theorem 3.5 in one dimension with Λ = Z was �rstshown in [14, Theorem 2.18℄. In fa
t, [14, Theorem 2.18℄ is stated for quasi-a�nesystems obtained by oversampling with respe
t to the latti
e Λ = s−1Z, where s isrelatively prime to p and q, and a = p/q is a dilation fa
tor. In this 
ase the quasi-a�nesystem Aq
Λ
(Ψ) takes a ni
e algebrai
 form:

Aq
s−1Z(Ψ) =

{
|p|j/2 |q|−j |s|−1/2 ψ(ajx− s−1q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 |s|−1/2 ψ(ajx− s−1pjk) : j < 0, k ∈ Z

}
.Hen
e, the above system is obtained by further oversampling of the standard quasi-a�ne system Aq

Z(Ψ) given by (1.3). However, our Theorem 3.5 holds for oversamplingwith respe
t to any rational latti
e Λ, su
h as in (1.4) or in Example 3. The sparser thelatti
e Λ is, the better result we have due to Lemma 3.1 on oversampling of quasi-a�nesystems.3.4. From quasi-a�ne to a�ne systemsWhen moving from quasi-a�ne to a�ne systems the frame property only 
arries overif we impose stronger 
onditions on the set of generators. Hen
e, we have only thefollowing partial 
onverse of Theorem 3.5.Theorem 3.8. Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn). If MJ -oversampledquasi-a�ne system Aq
MJ

(Ψ) is a frame for L2(Rn) with uniform frame bounds C1, C2for all J ∈ N, where MJ is given by (3.4), then the a�ne system A(Ψ) is a frame for
L2(Rn) with frame bounds C1, C2.Proof. Assume that

C1 ‖f‖2 ≤ N q
MJ

(f) ≤ C2 ‖f‖2 for all f ∈ Dholds for all J ∈ N. Sin
e s
ale j of the a�ne system and the MJ -oversampled quasi-a�ne system agrees whenever |j| ≤ J , we have by (3.7),
Kj(f) = Kq

MJ ,j
(f) for all |j| ≤ J, f ∈ L2(Rn).Thus, for J ∈ N,

∑

|j|≤J
Kj(f) =

∑

|j|≤J
Kq

MJ ,j
(f) ≤ C2 ‖f‖2 .Letting J → ∞ yields

N(f) = lim
J→∞

∑

|j|≤J
Kj(f) ≤ lim sup

J→∞

∑

|j|≤J
Kq

MJ ,j
(f) ≤ C2 ‖f‖2 ,whereby we 
on
lude that A(Ψ) is a Bessel sequen
e with bound C2. Likewise for thelower bound:

C1 ‖f‖2 ≤
∑

|j|≤J
Kq

MJ ,j
(f) +

∑

|j|>J
Kq

MJ ,j
(f) =

∑

|j|≤J
Kj(f) +

∑

|j|>J
Kq

MJ ,j
(f). (3.28)
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lim
J→∞

∑

|j|>J
Kq

MJ ,j
(f) = 0 for f ∈ D. (3.29)Then, by equation (3.28),

C1 ‖f‖2 ≤ lim
J→∞

∑

|j|≤J
Kj(f) = N(f) for f ∈ D.Sin
e A(Ψ) satis�es the upper bound, we 
an extend this inequality to all of L2(Rn)by a density argument, hen
e the a�ne system A(Ψ) satis�es the lower bound with
onstant C1.To 
omplete the proof we need to verify (3.29). We have already showed that A(Ψ)is a Bessel sequen
e, so by Proposition 3.4 the series in (3.18) 
onverges absolutely and

L∑

l=1

∑

j∈Z

∑

m∈Zn

|cj,l(m)| <∞,where cj,l(m) is given by (3.19). Therefore, by (3.20) and Remark 3,
∑

|j|>J
Kq

MJ ,j
(f) ≡

∑

|j|>J

L∑

l=1

∑

k∈Kj

∣∣〈f, djTkDAjψl〉
∣∣2 ≤

∑

|j|>J

L∑

l=1

∑

m∈Zn∩B−jM∗

J

|cj,l(m)|

≤
∑

|j|>J

L∑

l=1

∑

m∈Zn

|cj,l(m)| → 0 as J → ∞.This shows (3.29) and 
ompletes the proof of Theorem 3.8.The following result 
ombines Theorems 3.5 and 3.8 in a more 
on
eptually trans-parent and less te
hni
al form.Theorem 3.9. Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn). Then, the a�ne system
A(Ψ) is a frame for L2(Rn) with frame bounds C1, C2 if, and only if, the Λ-oversampledquasi-a�ne system Aq

Λ
(Ψ) is a frame for L2(Rn) with uniform frame bounds C1, C2 forall integer latti
es Λ.3.5. Re
overing known equivalen
e resultsWe end this se
tion by illustrating the general nature of Theorems 3.5 and 3.8. Inparti
ular, we will show that the well known equivalen
e result of Ron and Shen [20℄ fora�ne and quasi-a�ne frames for integer dilation A ∈ GLn(Z) is a simple 
onsequen
eof these results. Moreover, we have the following generalization of their result.Proposition 3.10. Let A ∈ GLn(Z) be expansive and Ψ ⊂ L2(R). Then the followingassertions are equivalent:(i) A(Ψ) is a frame with bounds C1, C2,(ii) Aq

Λ0
(Ψ) is a frame with bounds C1, C2 for some oversampling latti
e Λ0 ⊂ Zn,(iii) Aq

Λ
(Ψ) is a frame with bounds C1, C2 for all oversampling latti
es Λ ⊂ Zn.



110 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSProof. By Theorem 3.5, we are only left to prove (ii) ⇒ (i), but this will follow froman appli
ation of Theorem 3.8. From Lemma 3.1 we have that Aq(Ψ) is a frame for
L2(Rn) with bounds C1, C2. Re
all the identity

Aq
AlZn(Ψ) = DA−l(Aq(Ψ)) for l ∈ Zfrom Example 2. This tells us, by unitarity of the dilation operator, that Aq

AlZn(Ψ) isa frame with (uniform) bounds C1, C2 for ea
h l ∈ Z. Sin
e A has integer entries, wehave
MJ ≡

⋂

|j|≤J
AjZn = AJZn for J ∈ N,and the 
on
lusion follows from Theorem 3.8.4. Dual a�ne and quasi-a�ne framesThe goal of this se
tion is to prove the equivalen
e between pairs of dual a�ne and quasi-a�ne frames in the setting of rational dilations. To a
hieve this we will use well-studiedfundamental equations of a�ne systems.De�nition 5. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) and Φ = {φ1, . . . , φL} ⊂

L2(Rn) are su
h that
L∑

l=1

∑

j∈Z

(|ψ̂l(B−jξ)|2 + |φ̂l(B−jξ)|2) <∞ for a.e. ξ. (4.1)We say that a pair (Ψ,Φ) satis�es the fundamental equations if
t̃0(ξ) :=

L∑

l=1

∑

j∈Z

ψ̂l(B
−jξ)φ̂l(B−jξ) = 1 for a.e. ξ, (4.2)

t̃α(ξ) :=
L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = 0 for a.e. ξ and all α ∈ Zn \ {0}.(4.3)Remark 5. Note that the assumption (4.1) is made to guarantee that the series in (4.2)
onverges absolutely, and hen
e the Calderón 
ondition (4.2) is meaningful. On theother hand, the series (4.3) 
onverges absolutely for a.e. ξ without any assumptions(apart from Ψ,Φ ⊂ L2(Rn), that is). Indeed, for any ψ ∈ L2(Rn) and α ∈ Rn,

∫

Rn

∑

j≤J

∣∣∣ψ̂(B−j(ξ + α))
∣∣∣
2
dξ =

∫

Rn

∑

j≤J
|detA|j |ψ̂(ξ)|2dξ =

|detA|J+1

|detA| − 1
‖ψ‖2 <∞(4.4)for any J ∈ N. Sin
e the dilation B is expansive, for any α 6= 0, there exists J ∈ Nsu
h that j ∈ Z and α ∈ BjZn implies that j ≤ J . Hen
e, by 2 |zw| ≤ |z|2 + |w|2 for
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z,w ∈ C,

∑

j∈Z:α∈BjZn

∣∣ψ̂l(B−jξ)φ̂l(B−j(ξ + α))
∣∣ ≤ 1

2

∑

j∈Z:α∈BjZn

|ψ̂l(B−jξ)|2

+ 1
2

∑

j∈Z:α∈BjZn

|φ̂l(B−j(ξ + α))|2 <∞ for a.e. ξ ∈ Rn.The last inequality is a 
onsequen
e of (4.4).We will need the following result whi
h was originally proved by Frazier, Garrigós,Wang, and Weiss [11℄ in the dyadi
 setting. Later it was extended by the �rst author[2℄ to the setting of integer, expansive dilations and by Chui, Czaja, Maggioni, andWeiss [8℄ to the setting of real, expansive dilations. We in
lude an alternative proof ofTheorem 4.1 for the sake of 
ompleteness and sin
e its te
hniques will be used later.Theorem 4.1. Let A ∈ GLn(R) be expansive. Suppose that Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn) and Φ = {φ1, . . . , φL} ⊂ L2(Rn) are su
h that

L∑

l=1

∑

j∈Z

(|ψ̂l(B−jξ)|2 + |φ̂l(B−jξ)|2) ∈ L1lo
(Rn \ {0}).Then, the a�ne systems A(Ψ) and A(Φ) form a weak pair of frames, i.e.,
‖f‖2 =

L∑

l=1

∑

j∈Z

∑

k∈Zn

〈f,DAjTkψl〉〈DAjTkφl, f〉 for all f ∈ D, (4.5)if, and only if, the fundamental equations (4.2) and (4.3) hold.Proof. The proof is based on Proposition 3.4 on a�ne systems and the idea of polar-ization as in [18, Se
tion 8℄. By our assumption on Ψ and Φ, we 
an de�ne
N(f,Ψ,Φ) =

L∑

l=1

∑

j∈Z

∑

k∈Zn

〈f,DAjTkψl〉〈DAjTkφl, f〉 for f ∈ D, (4.6)where the multiple series 
onverge absolutely. This follows immediately by Remark 1and
2 |〈f,DAjTkψl〉〈DAjTkφl, f〉| ≤ |〈f,DAjTkψl〉|2 + |〈DAjTkφl, f〉|2 .By the polarization identity

z̄w =
1

4

4∑

p=1

ip |ipz + w|2 for z,w ∈ C,we have
N(f,Ψ,Φ) =

1

4

4∑

p=1

ipN(f,Θp), where Θp = {θl,p}Ll=1, θl,p = ipψl + φl (4.7)
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e, for p = 1, 2, 3, 4,
L∑

l=1

∑

j∈Z

∣∣∣θ̂l,p(B−jξ)
∣∣∣
2
≡

L∑

l=1

∑

j∈Z

∣∣∣ipψ̂l(B−jξ) + φ̂l(B
−jξ)

∣∣∣
2

≤ 2
L∑

l=1

∑

j∈Z

(|ψ̂l(B−jξ)|2 + |φ̂l(B−jξ)|2) ∈ L1lo
(Rn \ {0}),we 
an apply Proposition 3.4 to Θp for ea
h p. This yields
N(Txf,Θp) =

L∑

l=1

∑

j∈Z

∑

m∈Zn

bj,l,p(m)e2πi〈Bjm,x〉,where
bj,l,p(m) =

∫

Rn
f̂(ξ)f̂(ξ +Bjm) θ̂l,p(B−jξ)θ̂l,p(B

−j(ξ +Bjm)) dξ, (4.8)for l = 1, . . . , L, j ∈ Z,m ∈ Zn, and the integral in (4.8) 
onverges absolutely. By thepolarization identity
z̄1w2 =

1

4

4∑

p=1

ip(ipz1 + w1)(i
pz2 + w2) for z1, z2, w1, w2 ∈ C,we have

1

4

4∑

p=1

ipθ̂l,p(B−jξ)θ̂l,p(B
−j(ξ +Bjm))

≡ 1

4

4∑

p=1

ip (ipψ̂l(B−jξ) + φ̂l(B−jξ))
(
ipψ̂l(B

−j(ξ +Bjm)) + φ̂l(B
−j(ξ +Bjm))

)

= ψ̂l(B−jξ)φ̂l(B
−j(ξ +Bjm)).Therefore, by (4.7),

w̃(x) := N(Txf,Ψ,Φ) =
L∑

l=1

∑

j∈Z

∑

m∈Zn

c̃j,l(m)e2πi〈Bjm,x〉, (4.9)where
c̃j,l(m) =

1

4

4∑

p=1

ipbj,l,p(m) =

∫

Rn
f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)φ̂l(B

−j(ξ +Bjm)) dξ.By a 
hange of summation order, using absolute 
onvergen
e of the series in (4.9), wehave
w̃(x) =

∑

α∈∪j∈ZBjZn

c̃αe
2πi〈α,x〉, (4.10)
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c̃α =

∫

Rn
f̂(ξ)f̂(ξ + α)

L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B−jξ)φ̂l(B
−j(ξ + α)) dξ

=

∫

Rn
f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ, for α ∈ ∪j∈ZB

jZn. (4.11)Assume that the a�ne systems A(Ψ) and A(Φ) form a weak pair of frames. Using
‖Txf‖ = ‖f‖, this implies that the almost periodi
 fun
tion w̃(x) from (4.9) is 
onstant.To be pre
ise: w̃(x) = ‖f‖2. By uniqueness of 
oe�
ients for Fourier series of almostperiodi
 fun
tions [13, Lemma 2.5℄, this only happens if, for α ∈ ∪j∈ZB

jZn,
c̃0 = ‖f‖2 and c̃α = 0 for α 6= 0. (4.12)By (4.11), this shows that

∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2
t̃0(ξ) dξ = ‖f‖2 = ‖f̂‖2, for all f ∈ D.Sin
e D is dense in L2(Rn), this implies further that t̃0(ξ) = 1 for a.e. ξ ∈ Rn showingthat the �rst fundamental equation (4.2) holds.For a nonzero α we have by (4.11) and (4.12),

∫

Rn
f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ = 0, for all f ∈ D,for α ∈ (∪j∈ZB

jZn
) \ {0}. In parti
ular, this equality holds for α ∈ Zn \ {0}. We needto show that t̃α = 0 almost everywhere for α ∈ Zn \ {0}. The 
on
lusion is almostimmediate from Du Bois-Reynold's lemma that says that for lo
al integrable fun
tions

u on Rn satisfying ∫ uv = 0 for all v ∈ C∞
0 we have u = 0. We �x α ∈ Zn \ {0},and let IZn denote a fundamental domain of Zn. For arbitrary l ∈ Zn we 
onsider thetranslated parallelepiped Il = IZn + l ⊂ Rn and de�ne f by

f̂(ξ) =





1 for ξ ∈ Il,

t̃α(ξ) for ξ + α ∈ Il,

0 otherwise.This de�nition makes sense sin
e ∪l∈ZnIl = Rn and (Il − α) ∩ Il = ∅ for α ∈ Zn \ {0}.Furthermore, sin
e t̃α is bounded by Remark 5, we have f ∈ D. Consequently,
0 =

∫

Rn
f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ =

∫

Il

1 t̃α(ξ) t̃α(ξ) dξ =

∫

Il

∣∣t̃α(ξ)
∣∣2 dξ,whi
h implies that t̃α(ξ) vanishes almost everywhere for ξ ∈ Il. Sin
e l ∈ Zn wasarbitrarily 
hosen we dedu
e that t̃α(ξ) = 0 for a.e. ξ ∈ Rn. This shows that the se
ondfundamental equation (4.3) holds.Conversely, assume that the fundamental equations (4.2) and (4.3) hold. Equation(4.3) states that t̃α(ξ) = 0 for a.e. ξ ∈ Rn for α ∈ Zn \ {0}. By a 
hange of variables

γ = Blξ and β = Blα (l ∈ Z), this implies t̃β(γ) = 0 for β ∈ BlZn \ {0}. Sin
e this
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on
lude t̃α = 0 almost everywhere for α ∈ ∪j∈ZB
jZn \ {0}.Hen
e, by (4.11), c̃α = 0 for α ∈ ∪j∈ZB

jZn \ {0}. Therefore, w̃(x) = c̃0 = ‖f‖2 for all
x ∈ Rn so, in parti
ular,

N(f,Ψ,Φ) ≡ w̃(0) = ‖f‖2 for all f ∈ D.We 
on
lude that the a�ne systems A(Ψ) and A(Φ) form a weak pair of frames.We are now able to prove the 
hara
terization of dual a�ne and quasi-a�ne framesin terms of fundamental equations using the theory of mixed dual Gramians of Ronand Shen [19, 21, 23℄. An alternative proof using the ideas of polarization of a�nefun
tionals is presented at the end of this se
tion. In the integer 
ase Theorem 4.2 was�rst shown by Ron and Shen [20, 22℄ with some de
ay assumptions on generators Ψ and
Φ. Chui, Shi, and Stö
kler [9℄ proved the same result without any de
ay assumptions,see also [2, Theorem 4.1℄. Theorem 4.2 generalizes this result to the setting of rationaldilations.Theorem 4.2. Let A ∈ GLn(Q) be expansive. Suppose A(Ψ) and A(Φ) are Besselsequen
es in L2(Rn). Then the following assertions are equivalent:(i) A(Ψ) and A(Φ) are dual frames.(ii) Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) are dual frames for some integer oversampling latti
e Λ0 ⊂

Zn.(iii) Aq
Λ
(Ψ) and Aq

Λ
(Φ) are dual frames for all integer oversampling latti
es Λ ⊂ Zn.(iv) Ψ and Φ satisfy the fundamental equations (4.2) & (4.3).Proof. The lo
al integrability 
ondition in Theorem 4.1 is satis�ed by Proposition 3.2sin
e A(Ψ) and A(Φ) are assumed to be Bessel sequen
es. Furthermore, weak duality(4.5) of two Bessel sequen
es implies �strong� duality [2, Lemma 2.7℄, i.e., that A(Ψ)and A(Φ) are dual frames. Hen
e, by Theorem 4.1, we have (i) ⇔ (iv); this equivalen
eis well-known, even for real dilations [8, Theorem 4℄.The proof of the equivalen
es (ii) ⇔ (iii) ⇔ (iv) is based on the approa
h used in[3, Theorem 3.4℄. Let G̃j(ξ)k,l denote the mixed dual Gramian of OA−jZn

Λ
(DAjΨ) and

OA
−jZn

Λ
(DAjΦ) for j ∈ Z, see Se
tion 2.4. By Lemma 2.3 with Γ = A−jZn, this mixeddual Gramian is given as
G̃j(ξ)k,l =




|detA|j∑L

l=1 D̂Ajψ(ξ + k)D̂Ajφ(ξ + l) k − l ∈ Γ∗ ∩ Λ∗,

0 k − l ∈ Λ∗ \ Γ∗,

=





∑L
l=1 ψ̂l(ξ + k)φ̂l(ξ + l) k − l ∈ BjZn ∩ Λ∗,

0 k − l ∈ Λ∗ \BjZn,for k, l ∈ Λ∗. The mixed dual Gramian of Aq
Λ
(Ψ) and Aq

Λ
(Φ) is found by additivity ofthe jth layer mixed dual Gramian G̃j(ξ) as

G̃(ξ)k,l =
∑

j∈Z

G̃j(ξ)k,l

=
L∑

l=1

∑

j∈Z

ψ̂l(B
−j(ξ + k))φ̂l(B−j(ξ + l)) ×

{
1 k − l ∈ BjZn ∩ Λ∗,

0 k − l ∈ Λ∗ \BjZn,
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onsider k, l ∈ Λ∗ so k − l ∈ Λ∗ is trivially satis�ed. Thus, wearrive at the following expression for the mixed dual Gramian:
G̃(ξ)k,l =

L∑

l=1

∑

j∈Z:k−l∈BjZn

ψ̂l(B
−j(ξ + k))φ̂l(B−j(ξ + l)) ≡ t̃l−k(ξ + k). (4.13)Assume (ii) holds. This implies that the mixed dual Gramian G̃(ξ) is the iden-tity operator on ℓ2(Λ∗

0) for a.e. ξ ∈ IΛ∗

0
, hen
e G̃(ξ)k,l = δk,l for a.e. ξ ∈ IΛ∗

0
. Byequation (4.13), for α ∈ Λ∗

0,
δα,0 =

L∑

l=1

∑

j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) ≡ t̃α(ξ) for a.e. ξ ∈ Rn. (4.14)This implies (iv) sin
e Zn ⊂ Λ∗

0.Assume (iv) holds. We will show that this implies (iii), i.e., that G̃(ξ)k,l = δk,l fora.e. ξ ∈ IΛ∗ and all k, l ∈ Λ∗, where Λ is any integer latti
e satisfying Λ ⊂ Zn. By a
hange of variables, we see that t̃α(ξ) = 0 for a.e. ξ and all α ∈ ∪j∈ZB
jZn \ {0}. If

α ∈ Λ∗ \ ∪j∈ZB
jZn, then obviously t̃α = 0, hen
e equation (4.14) holds for α ∈ Λ∗.This shows that the mixed dual Gramian G̃(ξ) is the identity operator on ℓ2(Λ∗) fora.e. ξ ∈ IΛ∗

0
whi
h is equivalent to assertion (iii).The last impli
ation (iii) ⇒ (ii) is obvious.It is possible to give an alternative proof of Theorem 4.2 using the ideas of polar-ization from the proof of Theorem 4.1. Sin
e the equivalen
e (i) ⇔ (iv) in Theorem 4.2is well-known, we will only (re)prove (ii) ⇔ (iii) ⇔ (iv) here.Another proof of Theorem 4.2. Let Λ ⊂ Zn. For f ∈ D, we de�ne the Λ-periodi
 fun
-tion w̃q

Λ
(x) by

w̃q
Λ
(x) = N q

Λ
(Txf,Ψ,Φ) =

L∑

l=1

∑

j∈Z

∑

k∈Kj

〈Txf, djTkDAjψl〉〈djTkDAjφl, Txf〉, (4.15)where dj = #{Λ/(Λ ∩ A−jZn)}−1/2 and Kj is given by (3.3). The series in (4.15) 
on-verges absolutely sin
e Aq
Λ
(Ψ) and Aq

Λ
(Φ) are Bessel sequen
es. Applying polarizationidentities as in the proof of Theorem 4.1 yields

w̃q
Λ
(x) =

∑

α∈∪j∈ZBjZn∩Λ∗

c̃αe2πi〈α,x〉, (4.16)where the 
oe�
ients {c̃α} are given in (4.11).Assume (ii) holds. It is well-known that under the Bessel 
ondition the weak dualityof frames is equivalent to the duality of frames, see for example [7, Theorem 5.6.2℄.Hen
e, (ii) is equivalent to N q
Λ0

(f,Ψ,Φ) = ‖f‖2 for all f ∈ L2(Rn). Sin
e ‖Txf‖ = ‖f‖,this implies that w̃q
Λ0

(x) = ‖f‖2. By uniqueness of 
oe�
ients of the Fourier series of
w̃q

Λ0
, this happens only when

c̃α = ‖f‖2 δα,0 for α ∈ ∪j∈ZB
jZn ∩ Λ

∗.
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jZn ∩ Λ∗. In parti
ular, sin
e Zn ⊂ Λ∗, we have

t̃α(ξ) = δα,0 for a.e. ξ and α ∈ Zn. This is pre
isely assertion (iv).Assume (iv) holds. By a 
hange of variables, this implies that t̃α(ξ) = δα,0 for a.e.
ξ and all α ∈ ∪j∈ZB

jZn. Therefore,
c̃α = ‖f‖2 δα,0 for α ∈ ∪j∈ZB

jZn,and we note that these equations are independent of Λ. Hen
e, by (4.16), for any
Λ ⊂ Zn,

N q
Λ
(f,Ψ,Φ) = w̃q

Λ
(0) = c̃0 = ‖f‖2 for all f ∈ D.By a density argument, this equality holds for all f ∈ L2(Rn), and assertion (iii) follows.Remark 6. It is apparent from the proof above that the equivalen
e of (ii), (iii), and(iv) in Theorem 4.2 holds under the weaker assumption that Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) areBessel sequen
es in L2(Rn) for some Λ0 ⊂ Zn.5. Diagonal a�ne systemsIn this se
tion we study a parti
ularly interesting sub
lass of generators where the equiv-alen
e between a�ne and quasi-a�ne frames exhibits the largest degree of symmetry.This is a 
lass of diagonal a�ne systems for whi
h the o�-diagonal fun
tions tα de�nedbelow vanish. We show that the 
lass of diagonal a�ne frames 
onsists pre
isely ofquasi-a�ne frames having a 
anoni
al dual quasi-a�ne frame. This extends a result ofWeber and the �rst author [5℄ from the setting of integer dilations to that of rationaldilations.De�nition 6. For a given dilation matrix A and Ψ ⊂ L2(Rn) we introdu
e the familyof fun
tions {tα}α∈Zn on Rn by:

tα(ξ) =
∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) for ξ ∈ Rn. (5.1)In parti
ular,
t0(ξ) =

∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2.We say that the a�ne system A(Ψ) is diagonal if tα(ξ) = 0 a.e. for all α ∈ Zn \ {0}.Note that the series in (5.1) 
onverges absolutely for a.e. ξ in light of Remark 5. Inaddition, if Ψ ⊂ L2(Rn) generates an a�ne Bessel sequen
e A(Ψ) with bound C2, or aquasi-a�ne Bessel sequen
e Aq
Λ
(Ψ) for some latti
e Λ, then ea
h tα is well de�ned andessentially bounded in light of Proposition 3.2 and

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

∣∣ψ̂(B−jξ)ψ̂(B−j(ξ + α))
∣∣ ≤ 1

2

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

|ψ̂(B−jξ)|2

+ 1
2

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

|ψ̂(B−j(ξ + α))|2 ≤ C2.



5. Diagonal a�ne systems 117Now, with the extra assumption tα(ξ) = 0 a.e. for α ∈ Zn \ {0}, we have the followingequivalen
e result.Theorem 5.1. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn) and let C1, C2 > 0 be 
on-stants. Suppose that the a�ne system A(Ψ) is diagonal. Then the following assertionsare equivalent:(i) the a�ne system A(Ψ) is a frame for L2(Rn) with bounds C1, C2.(ii) the quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) with bounds C1, C2 for someinteger latti
e Λ0 ⊂ Zn.(iii) the quasi-a�ne system Aq
Λ
(Ψ) is a frame for L2(Rn) with bounds C1, C2 for allinteger latti
es Λ ⊂ Zn.(iv)

C1 ≤
∑

ψ∈Ψ

∑

j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ Rn.Proof. Let Λ ⊂ Zn be a latti
e in Rn. For �xed f ∈ D, let w and wq
Λ
be the fun
-tions introdu
ed in (3.13) and (3.17). By a 
hange of summation order, using absolute
onvergen
e of the series, these fun
tions 
an be written as

w(x) =
∑

α∈∪j∈ZBjZn

cα e2πi〈α,x〉, wq
Λ
(x) =

∑

α∈∪j∈ZBjZn∩Λ∗

cα e2πi〈α,x〉, (5.2)where
cα =

∫

Rn
f̂(ξ)f̂(ξ + α)

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) dξ

=

∫

Rn
f̂(ξ)f̂(ξ + α) tα(ξ) dξ, for α ∈ ∪j∈ZB

jZn. (5.3)Our standing assumption in this theorem is that tα(ξ) = 0 a.e. for α ∈ Zn \ {0}.By a 
hange of variables, this implies tα(ξ) = 0 a.e. for α ∈ ∪j∈ZB
jZn \ {0}. Thus theexpressions in (5.2) redu
e to

w(x) = wq
Λ
(x) = c0 =

∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2
t0(ξ)dξ for all x ∈ Rn,hen
e w and wq

Λ
are equal and 
onstant fun
tions of x. Therefore

N(f) = w(0) = wq
Λ
(0) = N q

Λ
(f)for f ∈ D. Sin
e D is dense in L2(Rn), we �nd that (i) ⇔ (ii) ⇔ (iii). Note that (i) ⇒(iii) also follows dire
tly from Theorem 3.5.We will verify that (i) ⇔ (iv). In terms of the tα-fun
tions, assertion (iv) reads,

C1 ≤ t0(ξ) ≤ C2 almost everywhere. By the above and an appli
ation of the Plan
hereltheorem, assertion (i) is equivalent to
C1〈f̂ , f̂〉 ≤ 〈t0f̂ , f̂〉 ≤ C2〈f̂ , f̂〉 for f ∈ L2(Rn). (5.4)This implies that

C1 ≤ t0(ξ) ≤ C2 for a.e. ξ ∈ Rn,whi
h, on the other hand, 
learly implies (5.4).



118 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSAs a 
orollary we have the following 
onverse of Theorem 3.5.Corollary 5.2. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let A(Ψ) be diagonal.Suppose that the Λ0-oversampled quasi-a�ne system Aq
Λ0

(Ψ) is a frame for L2(Rn) withbounds C1, C2 for some integer latti
e Λ0 ⊂ Zn. Then, the a�ne system A(Ψ) is a framefor L2(Rn) with bounds C1, C2.As a dire
t 
onsequen
e of Theorem 3.5 and Corollary 5.2 we generalize the equiva-len
e of a�ne and quasi-a�ne Parseval frames due to the �rst author [3, Theorem 3.4℄,see also [14, Theorem 2.17℄.Theorem 5.3. Suppose A ∈ GLn(Q) is expansive and Ψ ⊂ L2(Rn). Then the followingassertions are equivalent:(i) the a�ne system A(Ψ) is a Parseval frame for L2(Rn)(ii) the quasi-a�ne system Aq
Λ0

(Ψ) is a Parseval frame for L2(Rn) for some integerlatti
e Λ0 ⊂ Zn(iii) the quasi-a�ne systemAq
Λ
(Ψ) is a Parseval frame for L2(Rn) for all integer latti
es

Λ ⊂ ZnProof. The impli
ation (i) ⇒ (iii) is a spe
ial 
ase of Theorem 3.5, and (iii) ⇒ (ii)is obvious. Proposition 3.2 and the proof of Proposition 3.3 show that the lo
al inte-grability 
ondition (3.16) for the quasi-a�ne system is satis�ed, hen
e we 
an applyTheorem 2.4 to Aq
Λ
(Ψ). By equations (2.14), (3.10) and (3.11) this implies that tα = 0for α ∈ Zn \ {0}, hen
e the a�ne system is diagonal. An appli
ation of Corollary 5.2gives us (ii) ⇒ (i).5.1. Canoni
al dual quasi-a�ne framesOur next aim is to 
hara
terize when the 
anoni
al dual of a quasi-a�ne frame isalso a quasi-a�ne frame. To a
hieve this we need the following result resembling [5,Proposition 1℄.Theorem 5.4. Let A ∈ GLn(Q) be expansive. Suppose the Aq

Λ0
(Ψ) is a frame for some

Λ0 ⊂ Zn, whi
h has a dual quasi-a�ne frame Aq
Λ0

(Φ). Then, for any S ∈ B(L2(Rn))we have
S ∈ Cψ(Aq

Λ0
) for all ψ ∈ Ψ ⇔ S ∈ {DA, Tλ : λ ∈ Λ0}′Note that we need to assume a mu
h stronger hypothesis than the assumption of[5, Proposition 1℄ saying that the quasi-a�ne system Aq

Zn(Ψ) is 
omplete in L2(Rn).Proof. The fa
t that Aq
Λ0

(Ψ) and Aq
Λ0

(Φ) are dual frames implies that the fundamentalequations (4.2) and (4.3) hold, see Remark 6. By Theorem 4.1, the a�ne system A(Ψ)is 
omplete in L2(Rn).Suppose that S ∈ Cψ(Aq
Λ0

). Sin
e the quasi-a�ne system Aq
Λ0

(Ψ) is Λ0-SI, S must
ommute with translations Tλ, λ ∈ Λ0. Likewise, sin
e the a�ne system A(Ψ) is a partof the quasi-a�ne system Aq
Λ0

(Ψ) (up to normalizing 
onstants), S ∈ Cψ(A). Sin
ethe a�ne system A(Ψ) is 
omplete in L2(Rn) and A(Ψ) is dilation-invariant, S must
ommute with the dilation operator DA.Conversely, if S ∈ {DA, Tλ : λ ∈ Λ0}′, then 
learly S belongs to the lo
al 
ommutant
Cψ(Aq

Λ0
) for any 
hoi
e of ψ ∈ L2(Rn).



5. Diagonal a�ne systems 119Remark 7. Note that if S ∈ {DA, Tλ : λ ∈ Λ0}′, then S 
ommutes with all translation
Tλ, λ ∈ Rn. Indeed, by TAjλ = DA−jTλDAj , S must 
ommute with TAjλ for j ∈ Zand λ ∈ Λ0. Sin
e A is expansive, ∪j∈ZA

jΛ0 is dense in Rn. Hen
e, by 
ontinuityof x 7→ Txf for f ∈ L2(Rn), we have S ∈ {DA, Tλ : λ ∈ Rn}′. In fa
t, we have thefollowing lemma whi
h is a straightforward generalization of [5, Lemma 2℄.Lemma 5.5. Let A ∈ GLn(R) be expansive, Λ a latti
e, and S ∈ B(L2(Rn)). Then,
S ∈ {DA, Tλ : λ ∈ Λ}′ if, and only if, S is a B-dilation periodi
 Fourier multiplier, i.e.,there exists a fun
tion s ∈ L∞(Rn) su
h that

Ŝf(ξ) = s(ξ)f̂(ξ) for a.e. ξ,where s(ξ) = s(Bξ) for a.e. ξ.Proof. Assume S ∈ {DA, Tλ : λ ∈ Λ}′. By TAjλ = DA−jTλDAj , S 
ommutes with TAjλfor j ∈ Z and λ ∈ Λ, i.e.,
STk = TkS for k ∈ ∪j∈ZA

j
Λ. (5.5)The union ∪j∈ZA

jΛ is dense in Rn sin
e A is expansive. For x ∈ Rn take {kn}n∈N from
∪j∈ZA

jΛ su
h that kn → x. By 
ontinuity of x 7→ Txf for f ∈ L2(Rn), kn → x implies
Tknf → Txf in the L2 norm, i.e., Tkn → Tx in the strong operator topology. Hen
e, byequation (5.5), we have STx = TxS, proving that S is a Fourier multiplier. Finally, by
DAS = SDA and

F DASf(ξ) =

∫

Rn
DASf(x)e−2πix·ξdx = |detA|−1/2 s(B−1ξ)f̂(B−1ξ),and

F SDAf(ξ) = s(ξ)

∫

Rn
DAf(x)e−2πix·ξdx = |detA|−1/2 s(ξ)f̂(B−1ξ),we have B-periodi
ity of the symbol s.Conversely, assume S is a Fourier multiplier with a B-dilation periodi
 symbol. Theoperator S 
ommutes with all translations by the Fourier multiplier property and withdilationsDA by the B-dilation periodi
ity of the symbol and the two displayed equationsabove.Theorem 5.6. Let A ∈ GLn(Q) be expansive. Suppose the oversampled quasi-a�nesystem Aq

Λ0
(Ψ) is a frame for L2(Rn) for some integer latti
es Λ0 ⊂ Zn. Then the
anoni
al dual frame of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ) for some set of fun
tions Φ ⊂

L2(Rn) with 
ardinality #Φ = #Ψ if, and only if,
tα(ξ) =

∑

ψ∈Ψ

∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0 for all α ∈ Zn \ {0}. (5.6)Moreover, in the positive 
ase Aq
Λ
(Ψ) is a frame for all integer latti
es Λ ⊂ Zn and its
anoni
al dual frame is Aq

Λ
(Φ).
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Λ0

be the frame operator of the quasi-a�ne system Aq
Λ0

(Ψ). Sin
e Aq
Λ0

(Ψ)is a frame, equation (3.12) is satis�ed, hen
e the expression for wq
Λ0

in (5.2) holds for
f ∈ D.Assume that the 
anoni
al dual of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ), i.e., Sq

Λ0
∈ Cψ(Aq

Λ0
)for all ψ ∈ Ψ. By Theorem 5.4 and Remark 7, Sq

Λ0
∈ {DA, Tλ : λ ∈ Rn}′, hen
e

wq
Λ0

(x) =
〈
Sq

Λ0
Txf, Txf

〉
=
〈
TxS

q
Λ0
f, Txf

〉
=
〈
Sq

Λ0
f, f

〉
∀x ∈ Rn,whi
h shows that wq

Λ0
is 
onstant for every f ∈ D.For ea
h f ∈ D we express wq

Λ0
as the Λ0-periodi
 Fourier series (5.2). Su
h a Fourierseries is identi
ally 
onstant if, and only if,

cα ≡
∫

Rn
f̂(ξ)f̂(ξ + α) tα(ξ) dξ = 0 for all α ∈

(⋃

j∈Z

BjZn ∩ Λ
∗
0

)
\ {0} ,by the uniqueness of the Fourier 
oe�
ients. In parti
ular, this equality holds for

α ∈ Zn \ {0} sin
e Zn ⊂ Λ ∗
0 . Fix α ∈ Zn \ {0}. Let IΛ ∗

0
denote a fundamental domainof Λ ∗

0 and, for l ∈ Λ ∗
0 , let Il = IΛ ∗

0
+ l. De�ne f by

f̂(ξ) :=





1 for ξ ∈ Il,

tα(ξ) for ξ + α ∈ Il,
0 otherwise.Sin
e tα is bounded by the Bessel bound C2, we have f ∈ D. Now,

0 =

∫

Rn
f̂(ξ)f̂(ξ + α) tα(ξ)dξ =

∫

Il

tα(ξ)tα(ξ)dξ =

∫

Il

|tα(ξ)|2 dξ,for ea
h l ∈ Λ ∗
0 . Sin
e ∪l∈Λ ∗

0
Il = Rn we dedu
e that tα(ξ) = 0 for a.e. ξ ∈ Rn, and thetheorem is half proved.Conversely, assume tα(ξ) = 0 for α ∈ Zn\{0}. Then tα(ξ) = 0 for α ∈ (∪j∈ZB

jZn
)\

{0} by a 
hange of variables. In parti
ular, tα(ξ) = 0 for α ∈ (∪j∈ZB
jZn ∩ Λ ∗

0

) \ {0},hen
e wq
Λ0

(x) = c0 for every x ∈ Rn, i.e., wq
Λ0

is 
onstant on Rn for every f ∈ D.Therefore, for every x ∈ Rn,
〈
Sq

Λ0
Txf, Txf

〉
= wq

Λ0
(x) = wq

Λ0
(0) =

〈
Sq

Λ0
f, f

〉 for f ∈ D.This equality extends to all f ∈ L2(Rn) by a density argument, hen
e
〈(
T−xS

q
Λ0
Tx − Sq

Λ0

)
f, f

〉
= 0 for f ∈ L2(Rn).We 
on
lude that Sq

Λ0
Tx = TxS

q
Λ0

for all x ∈ Rn, in other words, Sq
Λ0

is a Fouriermultiplier:
Ŝq

Λ0
f(ξ) = s(ξ)f̂(ξ) for a.e. ξ ∈ Rn and all f ∈ L2(Rn), (5.7)



6. Broken symmetry between the integer and rational 
ase 121for some symbol s ∈ L∞(Rn). We 
laim the symbol of Sq
Λ0

is
s(ξ) = t0(ξ) =

∑

ψ∈Ψ

∑

j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2
.This fun
tion is obviously a B-dilation periodi
 fun
tion, that is, s(ξ) = s(Bξ). ByProposition 3.2 the fun
tion is bounded by the upper frame bound s(ξ) ≤ C2 for a.e. ξ,so s ∈ L∞(Rn). By the Plan
herel theorem, we see

wq
Λ0

(0) = 〈Sq
Λ0
f, f〉 =

〈
Ŝq

Λ0
f, f̂

〉 for all f ∈ D,and, by (5.3) with α = 0, that
c0 =

∫

Rn
f̂(ξ)f̂(ξ)

∑

ψ∈Ψ

∑

j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2

dξ.Sin
e wq
Λ0

(x) = c0 for all x ∈ Rn, we have, in parti
ular,
〈
Ŝq

Λ0
f, f̂

〉
= wq

Λ0
(0) = c0 = 〈sf̂ , f̂〉 for all f ∈ D.Therefore, s is a B-dilation periodi
 symbol of Sq

Λ0
implying that Sq

Λ0

ommutes with

DA, see Lemma 5.5. The frame operator Sq
Λ0

belongs therefore to {DA, Tλ : λ ∈ Λ0}′.As a result we �nd that (Sq
Λ0

)−1 ∈ Cψ(Aq
Λ0

) for ψ ∈ Ψ. This is equivalent to the
anoni
al dual of Aq
Λ0

(Ψ) having the quasi-a�ne stru
ture with the same number ofgenerators.6. Broken symmetry between the integer and rational 
aseThe goal of this se
tion is to illustrate fundamental di�eren
es between integer andrational 
ases. That is, a mere fa
t that a quasi-a�ne system is a frame does not implythat an a�ne system must be a frame as well. This kind of phenomenon 
annot happenfor integer dilations where we have a perfe
t equivalen
e of the frame property betweena�ne and quasi-a�ne systems. Moreover, this 
annot happen for Parseval frames dueto Theorem 5.3, or more generally, for a�ne frames having duals by Theorem 4.2.Moreover, Theorem 6.1 shows the optimality of our results. That is, the assumption ofuniformity of frame bounds of quasi-a�ne systems in Theorem 3.8 
annot be removedin general.Theorem 6.1. Let 1 < a ∈ Q \ Z be a rational non-integer dilation fa
tor. Then, thereexists a fun
tion ψ ∈ L2(R) su
h that Aq
Λ
(ψ) is a frame for any oversampling latti
e

Λ ⊂ Z, but yet, A(ψ) is not a frame.Remark 8. In the light of Theorem 3.8, the frame bounds of the quasi-a�ne systems
Aq

Λ
(ψ) are not uniform for all latti
es Λ ⊂ Z. In fa
t, we will see that the lower framebound of Aq

Λ
(ψ) drops to 0 as a latti
e Λ gets sparser and sparser. Consequently, in thelimiting 
ase, when no oversampling is present, we obtain an a�ne system A(ψ) whi
his not a frame due to the failure of the lower frame bound.



122 PAPER IV. AFFINE AND QUASI-AFFINE FRAMES FOR RATIONAL DILATIONSWe will need the following well-known result, see [16, Theorem 13.0.1℄ or the proofof [10, Lemma 3.4℄Theorem 6.2. Suppose that ψ ∈ L2(R) is su
h that ψ̂ ∈ L∞(R) and
ψ̂(ξ) =O(|ξ|δ) as ξ → 0,

ψ̂(ξ) =O(|ξ|−1/2−δ) as |ξ| → ∞,for some δ > 0. Then the a�ne system A(ψ) is a Bessel sequen
e.We de�ne the spa
e Ľ2(K), invariant under all translations, by
Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}for measurable subsets K of R.Proof of Theorem 6.1. Choose δ > 0 so that 1

a(a+1) < δ < 1
a2+1 . De�ne ψ ∈ L2(R) as

ψ̂ = 1(−a2δ,−δ)∪(δ,a2δ). First, we shall show that the a�ne system A(ψ) is not a frame.To a
hieve this we will follow the idea from [5, Example 2℄. We will need the followingstandard identity, whi
h 
an be shown by the periodization argument
∑

k∈Z

|〈f, Tkψ〉|2 =

∫ 1

0

∣∣∣
∑

k∈Z

f̂(ξ + k)ψ̂(ξ + k)
∣∣∣
2
dξ for any f ∈ L2(R). (6.1)Let Kδ = (1 − a2δ, a2δ). By the restri
tion on δ, we have

Kδ ⊂ (δ, a2δ) ⊂ (δ, 1 − δ) and Kδ − 1 ⊂ (−a2δ,−δ) ⊂ (−1 + δ,−δ).Hen
e, by a dire
t 
al
ulation using (6.1) we have for any f ∈ L2(R)

∑

k∈Z

|〈f, Tkψ〉|2 =

∫

Kδ

|f̂(ξ− 1) + f̂(ξ)|2dξ+

∫

(δ,1−a2δ)
|f̂(ξ)|2dξ+

∫

(a2δ,1−δ)
|f̂(ξ− 1)|2dξ.(6.2)In parti
ular, by restri
ting (6.2) to a subspa
e Ľ2(Lδ), where

Lδ = (−∞,−1 + δ) ∪ (Kδ − 1) ∪ (−δ, δ) ∪Kδ ∪ (1 − δ,∞),we obtain a 
onvenient formula
∑

k∈Z

|〈f, Tkψ〉|2 =

∫

Kδ

|f̂(ξ − 1) + f̂(ξ)|2dξ for any f ∈ Ľ2(Lδ). (6.3)For any natural number N and su�
iently small ε = ε(N) > 0, we de�ne a fun
tion
fN ∈ L2(R) by

f̂N =
N∑

k=0

(1I+
k
− 1I−

k
), (6.4)where

I+
k =

(
a−k

a+ 1
− ε,

a−k

a+ 1

)
, I−k =

(
− a−k

a+ 1
− ε,− a−k

a+ 1

)
. (6.5)



6. Broken symmetry between the integer and rational 
ase 123Intuitively, one might think of f̂N as a linear 
ombination of point masses
ε
N∑

k=0

(δa−k/(a+1) − δ−a−k/(a+1)).We 
laim that
DajfN ∈ Ľ2(Lδ) for all j ∈ Z. (6.6)Indeed, (6.6) follows immediately from

aj(I+
k ∪ I−k ) ⊂





(−δ, δ) j ≤ k − 1,

(Kδ − 1) ∪Kδ j = k, k + 1,

(−∞,−1 + δ) ∪ (1 − δ,∞) j ≥ k + 2,for k = 0, . . . , N and for su�
iently small ε = ε(N) > 0, i.e.,
0 < ε < min

{
a−N+1

(
δ − 1

a(a+ 1)

)
, a−N−2

(
a2

a+ 1
− 1 + δ

)}
.Let S be the frame operator 
orresponding to the a�ne system A(ψ). Note thatby Theorem 6.2, S is bounded. Our goal is to show that S is not bounded from below.Combining (6.3)�(6.6) we have

‖SfN‖2 =
∑

j∈Z

∑

z∈Z

|〈fN ,DajTzψ〉|2 =
∑

j∈Z

∑

z∈Z

|〈DajfN , Tzψ〉|2

=
N+1∑

j=0

a−j
∫

Kδ

|f̂N (a−j(ξ − 1)) + f̂N(a−jξ)|2dξ = 4ε.Here, we used that for ξ ∈ Kδ

f̂N (a−j(ξ − 1)) + f̂N (a−jξ) =





1I+0
(ξ) − 1I−0

(ξ − 1) j = 0,

0 j = 1, . . . , N,

1aN+1I+
N

(ξ) − 1aN+1I−
N

(ξ − 1) j = N + 1.The presen
e of 
an
ellations at s
ales j = 1, . . . , N is due to translation-dilation linkageof the quadruple of points {±a/(a + 1),±1/(a + 1)}. On the other hand,
‖fN‖2 = ‖f̂N‖2 = 2ε(N + 1).Sin
e N is arbitrary, this shows that the frame operator S is not bounded from below.Consequently, A(ψ) is not a frame.Next, we will show that Aq

Λ
(ψ) is a frame for any 
hoi
e of latti
e Λ ⊂ Z. Sin
e

A(ψ) is a Bessel sequen
e, Theorem 3.5 yields that Aq
Λ
(ψ) is a Bessel sequen
e as well.Hen
e, it remains to establish the lower frame bound for Aq

Λ
(ψ).Let a = p/q, where p, q ∈ N are relatively prime, and l ∈ N be su
h that Λ = lZ.Let

J1 = max{j ∈ N0 : pj divides l}, J2 = max{j ∈ N0 : qj divides l}.
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es a−jZ + Λ = a−jZ ⇐⇒ l is aninteger multiple of a−j. Clearly, this is equivalent to l being divisible by qj if j > 0 or
l divisible by p−j if j < 0. Therefore,

a−jZ + Λ = a−jZ ⇐⇒ −J1 ≤ j ≤ J2. (6.7)Consequently,
a−jZ + Λ =

1

cj
a−jZ for some cj ≥ 2, where j < −J1 or j > J2. (6.8)The properties (6.7) and (6.8) enable us to identify the quasi-a�ne system Aq

Λ
(ψ).At the s
ales −J1 ≤ j ≤ J2, the quasi-a�ne system Aq

Λ
(ψ) 
oin
ides with the a�nesystem A(ψ). However, outside of this �nite range of s
ales the quasi-a�ne system isobtained by oversampling the a�ne system at a rate cj ≥ 2. This will lead to a simpleform of the frame operator Sq

Λ
of the quasi-a�ne system Aq

Λ
(ψ).Indeed, suppose that j < −J1 or j > J2. By De�nition 4 and (6.8) the quasi-a�nesystem Aq

Λ
(ψ) at the s
ale j is

Oa
−jZ

Λ (Dajψ) = Ea
−jZ+Λ

(
1

|Λ/(Λ ∩ a−jZ)|1/2Dajψ

)
= Ea

−j/cjZ((cj)
−1/2Dajψ).Hen
e,

∑

g∈Oa−jZ

Λ
(D

ajψ)

|〈f, g〉|2 =
1

cj

∑

k∈Z

|〈f, Ta−jk/cjDajψ〉|2

=
∑

k∈Z

1

cjaj

∣∣∣∣
∫

R
f̂(ξ)ψ̂(a−jξ)e2πikξ/(a

jcj)dξ

∣∣∣∣
2

=

∫

R
|f̂(ξ)|2|ψ̂(a−jξ)|2dξ.The last step is a 
onsequen
e of the fa
t that supp ψ̂(a−j ·) ⊂ (−aj, aj) and that cj ≥ 2.Combining this with (6.7) yields

∥∥Sq
Λ
f
∥∥2 =

J2∑

j=−J1

∑

k∈Z

|〈f,DajTkψ〉|2+
( ∑

j<−J1

+
∑

j>J2

)∫

(−aj+2δ,−ajδ)∪(aj δ,aj+2δ)
|f̂(ξ)|2dξ

≥
J2∑

j=−J1

|〈Da−jf, Tkψ〉|2 +

(∫

|ξ|<a−J1+1δ
+

∫

|ξ|>aJ2+1δ

)
|f̂(ξ)|2dξ. (6.9)By (6.2),

∑

k∈Z

|〈Da−jf, Tkψb〉|2

= aj
∫

Kδ

|f̂(aj(ξ− 1))+ f̂(ajξ)|2dξ+aj
∫ 1−a2δ

δ
|f̂(ajξ)|2dξ+aj

∫ 1−δ

a2δ
|f̂(aj(ξ− 1))|2dξ.

=

∫

ajKδ

|f̂(ξ − aj) + f̂(ξ)|2dξ +

∫

aj(a2δ−1,−δ)∪aj (δ,1−a2δ)
|f̂(ξ)|2dξ. (6.10)
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es 125Take any f ∈ L2(R) with ‖f‖ = 1 and let η =
∥∥Sq

Λ
(f)
∥∥2. By equations (6.9) and(6.10), ∫Z |f̂ |2 ≤ η, where

Z = {ξ : |ξ| < a−J1+1δ} ∪ {ξ : |ξ| > aJ2+1δ} ∪
J2⋃

j=−J1

{ξ : ajδ < |ξ| < aj(1 − a2δ)}.Using (6.10) one 
an show that
Ij :=

∫

ajδ<|ξ|<aj+1δ
|f̂(ξ)|2dξ

≤ 2

∫

aj+1δ<|ξ|<aj+2δ
|f̂(ξ)|2dξ+2

∫

ajKδ

|f̂(ξ−aj)+ f̂ (ξ)|2dξ+

∫

ajδ<|ξ|<aj(1−a2δ)
|f̂(ξ)|2dξ

≤ 2

∫

aj+1δ<|ξ|<aj+2δ
|f̂(ξ)|2dξ + 2η. (6.11)Thus, we have a bound Ij ≤ 2(Ij+1 + η). Combining this with the fa
t that IJ2+1 ≤ ηyields Ij ≤ 6 · 2J2−jη for j ≤ J2. Consequently,

‖f‖2 ≤
∫

Z
|f̂(ξ)|2dξ +

J2∑

j=−J1+1

Ij ≤ 6 · 2J1+J2η.This proves that the frame operator Sq
Λ
of Aq

Λ
(ψ) is bounded from below by a 
onstantdepending only on J1 and J2, thus 
ompleting the proof of Theorem 6.1.Remark 9. By Theorem 3.8, the frame bounds of the quasi-a�ne systems Aq

Λ
(ψ) are notuniform for all Λ ⊂ Z. More pre
isely, the lower frame bound of Aq

Λ
(ψ) must approa
h0 for some 
hoi
e of sparser and sparser latti
es Λ. By analyzing the proof of Theorem6.1 it is not di�
ult to show that this happens for the family of latti
es ΛJ = (pq)JZ as

J → ∞. This is due to the fa
t that in this 
ase the quasi-a�ne system Aq
Λ
(ψ) 
oin
ideswith the a�ne system A(ψ) at the s
ales −J ≤ j ≤ J and the same argument as in the�rst part of the proof of Theorem 6.1 applies.Theorem 6.1 says that the lower frame bound is not preserved in general when wemove from a quasi-a�ne system Aq

Λ
(Ψ) to the 
orresponding a�ne system A(Ψ) forrational non-integer dilations. It is not known whether the same 
ould happen with theupper bound. This leads to the following open problem.Question 1. Let Ψ ⊂ L2(Rn) and A ∈ GLn(Q). Suppose that Aq

Λ0
(Ψ) is a Besselsequen
e for some oversampling latti
e Λ0 ⊂ Zn. Is A(Ψ) ne
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