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Abstract Multivariate functions are typically governed by anisotropic features such

as edges in images or shock fronts in solutions of transport-dominated equations.

One major goal both for the purpose of compression as well as for an efficient anal-

ysis is the provision of optimally sparse approximations of such functions. Recently,

cartoon-like images were introduced in 2D and 3D as a suitable model class, and

approximation properties were measured by considering the decay rate of the L2

error of the best N-term approximation. Shearlet systems are to date the only rep-

resentation system, which provide optimally sparse approximations of this model

class in 2D as well as 3D. Even more, in contrast to all other directional representa-

tion systems, a theory for compactly supported shearlet frames was derived which

moreover also satisfy this optimality benchmark. This chapter shall serve as an in-

troduction to and a survey about sparse approximations of cartoon-like images by

band-limited and also compactly supported shearlet frames as well as a reference

for the state-of-the-art of this research field.

1 Introduction

Scientists face a rapidly growing deluge of data, which requires highly sophisticated

methodologies for analysis and compression. Simultaneously, the complexity of the
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data is increasing, evidenced in particular by the observation that data becomes in-

creasingly high-dimensional. One of the most prominent features of data are singu-

larities which is justified, for instance, by the observation from computer visionists

that the human eye is most sensitive to smooth geometric areas divided by sharp

edges. Intriguingly, already the step from univariate to multivariate data causes a

significant change in the behavior of singularities. Whereas one-dimensional (1D)

functions can only exhibit point singularities, singularities of two-dimensional (2D)

functions can already be of both point as well as curvilinear type. Thus, in contrast

to isotropic features – point singularities –, suddenly anisotropic features – curvi-

linear singularities – are possible. And, in fact, multivariate functions are typically

governed by anisotropic phenomena. Think, for instance, of edges in digital images

or evolving shock fronts in solutions of transport-dominated equations. These two

exemplary situations also show that such phenomena occur even for both explicitly

as well as implicitly given data.

One major goal both for the purpose of compression as well as for an efficient

analysis is the introduction of representation systems for ‘good’ approximation

of anisotropic phenomena, more precisely, of multivariate functions governed by

anisotropic features. This raises the following fundamental questions:

(P1) What is a suitable model for functions governed by anisotropic features?

(P2) How do we measure ‘good’ approximation and what is a benchmark for opti-

mality?

(P3) Is the step from 1D to 2D already the crucial step or how does this framework

scale with increasing dimension?

(P4) Which representation system behaves optimally?

Let us now first debate these questions on a higher and more intuitive level, and

later on delve into the precise mathematical formalism.

1.1 Choice of Model for Anisotropic Features

Each model design has to face the trade-off between closeness to the true situa-

tion versus sufficient simplicity to enable analysis of the model. The suggestion of

a suitable model for functions governed by anisotropic features in [9] solved this

problem in the following way. As a model for an image, it first of all requires the

L2(R2) functions serving as a model to be supported on the unit square [0,1]2. These

functions shall then consist of the minimal number of smooth parts, namely two. To

avoid artificial problems with a discontinuity ending at the boundary of [0,1]2, the

boundary curve of one of the smooth parts is entirely contained in (0,1)2. It now re-

mains to decide upon the regularity of the smooth parts of the model functions and

of the boundary curve, which were chosen to both be C2. Thus, concluding, a possi-

ble suitable model for functions governed by anisotropic features are 2D functions

which are supported on [0,1]2 and C2 apart from a closed C2 discontinuity curve;

these are typically referred to as cartoon-like images (cf. chapter [1]). This provides
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an answer to (P1). Extensions of this 2D model to piecewise smooth curves were

then suggested in [4], and extensions to 3D as well as to different types of regularity

were introduced in [11, 15].

1.2 Measure for Sparse Approximation and Optimality

The quality of the performance of a representation system with respect to cartoon-

like images is typically measured by taking a non-linear approximation viewpoint.

More precisely, given a cartoon-like image and a representation system which forms

an orthonormal basis, the chosen measure is the asymptotic behavior of the L2 error

of the best N-term (non-linear) approximation in the number of terms N. This intu-

itively measures how fast the ℓ2 norm of the tail of the expansion decays as more

and more terms are used for the approximation. A slight subtlety has to be observed

if the representation system does not form an orthonormal basis, but a frame. In this

case, the N-term approximation using the N largest coefficients is considered which,

in case of an orthonormal basis, is the same as the best N-term approximation, but

not in general. The term ‘optimally sparse approximation’ is then awarded to those

representation systems which deliver the fastest possible decay rate in N for all

cartoon-like images, where we consider log-factors as negligible, thereby providing

an answer to (P2).

1.3 Why is 3D the Crucial Dimension?

We already identified the step from 1D to 2D as crucial for the appearance of

anisotropic features at all. Hence one might ask: Is is sufficient to consider only

the 2D situation, and higher dimensions can be treated similarly? Or: Does each

dimension causes its own problems? To answer these questions, let us consider the

step from 2D to 3D which shows a curious phenomenon. A 3D function can exhibit

point (= 0D), curvilinear (= 1D), and surface (= 2D) singularities. Thus, suddenly

anisotropic features appear in two different dimensions: As one-dimensional and as

two-dimensional features. Hence, the 3D situation has to be analyzed with particular

care. It is not at all clear whether two different representation systems are required

for optimally approximating both types of anisotropic features simultaneously, or

whether one system will suffice. This shows that the step from 2D to 3D can justi-

fiably be also coined ‘crucial’. Once it is known how to handle anisotropic features

of different dimensions, the step from 3D to 4D can be dealt with in a similar way

as also the extension to even higher dimensions. Thus, answering (P3), we conclude

that the two crucial dimensions are 2D and 3D with higher dimensional situations

deriving from the analysis of those.
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1.4 Performance of Shearlets and Other Directional Systems

Within the framework we just briefly outlined, it can be shown that wavelets do

not provide optimally sparse approximations of cartoon-like images. This initiated

a flurry of activity within the applied harmonic analysis community with the aim to

develop so-called directional representation systems which satisfy this benchmark,

certainly besides other desirable properties depending in the application at hand. In

2004, Candés and Donoho were the first to introduce with the tight curvelet frames

a directional representation system which provides provably optimally sparse ap-

proximations of cartoon-like images in the sense we discussed. One year later, con-

tourlets were introduced by Do and Vetterli [7], which similarly derived an optimal

approximation rate. The first analysis of the performance of (band-limited) shearlet

frames was undertaken by Guo and Labate in [10], who proved that these shearlets

also do satisfy this benchmark. In the situation of (band-limited) shearlets the analy-

sis was then driven even further, and very recently Guo and Labate proved a similar

result for 3D cartoon-like images which in this case are defined as a function which

is C2 apart from a C2 discontinuity surface, i.e., focusing on only one of the types

of anisotropic features we are facing in 3D.

1.5 Band-Limited Versus Compactly Supported Systems

The results mentioned in the previous subsection only concerned band-limited sys-

tems. Even in the contourlet case, although compactly supported contourlets seem

to be included, the proof for optimal sparsity only works for band-limited generators

due to the requirement of infinite directional vanishing moments. However, for var-

ious applications compactly supported generators are inevitable, wherefore already

in the wavelet case the introduction of compactly supported wavelets was a major

advance. Prominent examples of such applications are imaging sciences, when an

image might need to be denoised while avoiding a smoothing of the edges, or in

the theory of partial differential equations as a generating system for a trial space in

order to ensure fast computational realizations.

So far, shearlets are the only system, for which a theory for compactly supported

generators has been developed and compactly supported shearlet frames have been

constructed [13], see also the survey paper [16]. It should though be mentioned that

these frames are somehow close to being tight, but at this point it is not clear whether

also compactly supported tight shearlet frames can be constructed. Interestingly, it

was proved in [17] that this class of shearlet frames also delivers optimally sparse

approximations of the 2D cartoon-like image model class with a very different proof

than [10] now adapted to the particular nature of compactly supported generators.

And with [15] the 3D situation is now also fully understood, even taking the two

different types of anisotropic features – curvilinear and surface singularities – into

account.
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1.6 Outline

In Sect. 2, we introduce the 2D and 3D cartoon-like image model class. Optimal-

ity of sparse approximations of this class are then discussed in Sect. 3. Sect. 4 is

concerned with the introduction of 3D shearlet systems with both band-limited and

compactly supported generators, which are shown to provide optimally sparse ap-

proximations within this class in the final Sect. 5.

2 Cartoon-like Image Class

We start by making the in the introduction of this chapter already intuitively derived

definition of cartoon-like images mathematically precise. We start with the most

basic definition of this class which was also historically first stated in [9]. We allow

ourselves to state this together with its 3D version from [11] by remarking that d

could be either d = 2 or d = 3.

For fixed µ > 0, the class E 2(Rd) of cartoon-like image shall be the set of func-

tions f : Rd → C of the form

f = f0 + f1χB,

where B ⊂ [0,1]d and fi ∈ C2(Rd) with supp f0 ⊂ [0,1]d and ‖ fi‖C2 ≤ µ for each

i= 0,1. For dimension d = 2, we assume that ∂B is a closed C2-curve with curvature

bounded by ν , and, for d = 3, the discontinuity ∂B shall be a closed C2-surface

with principal curvatures bounded by ν . An indiscriminately chosen cartoon-like

function f = χB, where the discontinuity surface ∂B is a deformed sphere in R3, is

depicted in Fig. 1.

Since ‘objects’ in images often have sharp corners, in [4] for 2D and in [15] for

3D also less regular images were allowed, where ∂B is only assumed to be piecewise

C2-smooth. We note that this viewpoint is also essential for being able to analyze

the behavior of a system with respect to the two different types of anisotropic fea-

tures appearing in 3D; see the discussion in Subsection 1.3. Letting L ∈N denote the

number of C2 pieces, we speak of the extended class of cartoon-like images E 2
L (R

d)
as consisting of cartoon-like images having C2-smoothness apart from a piecewise

C2 discontinuity curve in the 2D setting and a piecewise C2 discontinuity surface in

the 3D setting. Indeed, in the 3D setting, besides the C2 discontinuity surfaces, this

model exhibits curvilinear C2 singularities as well as point singularities, e.g., the

cartoon-like image f = χB in Fig. 2 exhibits a discontinuity surface ∂B ⊂ R
3 con-

sisting of three C2-smooth surfaces with point and curvilinear singularities where

these surfaces meet.

The model in [15] goes even one step further and considers a different regularity

for the smooth parts, say being in Cβ , and for the smooth pieces of the discontinuity,

say being in Cα with 1 ≤ α ≤ β ≤ 2. This very general class of cartoon-like images

is then denoted by E
β
α ,L(R

d), with the agreement that E 2
L (R

d) = E
β
α ,L(R

d) for α =
β = 2.
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Fig. 1 A simple cartoon-

like image f = χB ∈ E 2
L (R

3)
with L = 1 for dimension

d = 3, where the discontinuity

surface ∂ B is a deformed

sphere.
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Fig. 2 A cartoon-like image

f = χB ∈ E 2
L (R

3) with L =
3, where the discontinuity

surface ∂ B is piecewise C2

smooth.
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For the purpose of clarity, in the sequel we will focus on the first most basic

cartoon-like model where α = β = 2, and add hints on generalizations when appro-

priate (in particular, in Sect. 5.2.4).
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3 Sparse Approximations

After having clarified the model situation, we will now discuss which measure for

the accuracy of approximation by representation systems we choose, and what op-

timality means in this case.

3.1 (Non-Linear) N-term Approximations

Let C denote a given class of elements in a separable Hilbert space H with norm

‖·‖ = 〈·, ·〉1/2 and Φ = (φi)i∈I a dictionary for H , i.e., spanΦ = H , with indexing

set I. The dictionary Φ plays the role of our representation system. Later C will be

chosen to be the class of cartoon-like images and Φ a shearlet frame, but for now

we will assume this more general setting. We now seek to approximate each single

element of C with elements from Φ by ‘few’ terms of this system. Approximation

theory provides us with the concept of best N-term approximation which we now

introduce; for a general introduction to approximation theory, we refer to [6].

For this, let f ∈ C be arbitrarily chosen. Since Φ is a complete system, for any

ε > 0 there exists a finite linear combination of elements from Φ of the form

g = ∑
i∈F

ciφi with F ⊂ I finite, i.e., # |F |< ∞

such that ‖ f − g‖ ≤ ε . Moreover, if Φ is a frame with countable indexing set I, there

exists a sequence (ci)i∈I ∈ ℓ2(I) such that the representation

f = ∑
i∈I

ciφi

holds with convergence in the Hilbert space norm ‖·‖. The reader should notice that,

if Φ does not form a basis, this representation of f is certainly not the only possible

one. Letting now N ∈ N, we aim to approximate f by only N terms of Φ , i.e., by

∑
i∈IN

ciφi with IN ⊂ I, # |IN |= N,

which is termed N-term approximation to f . This approximation is typically non-

linear in the sense that if fN is an N-term approximation to f with indices IN and gN

is an N-term approximation to some g ∈ C with indices JN , then fN +gN is only an

N-term approximation to f + g in case IN = JN .

But certainly we would like to pick the ‘best’ approximation with the accuracy

of approximation measured in the Hilbert space norm. We define the best N-term

approximation to f by the N-term approximation

fN = ∑
i∈IN

ciφi,
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which satisfies that, for all IN ⊂ I, # |IN |= N, and for all scalars (ci)i∈I ,

‖ f − fN‖ ≤
∥

∥

∥ f − ∑
i∈IN

ciφi

∥

∥

∥.

Let us next discuss the notion of best N-term approximation for the special cases

of Φ forming an orthornomal basis, a tight frame, and a general frame alongside an

error estimate for the accuracy of this approximation.

3.1.1 Orthonormal Bases

Let Φ be an orthonormal basis for H . In this case, we can actually write down the

best N-term approximation fN = ∑i∈IN
ciφi for f . Since in this case

f = ∑
i∈I

〈 f ,φi〉φi,

and this representation is unique, we obtain

‖ f − fN‖H =
∥

∥

∥∑
i∈I

〈 f ,φi〉φi − ∑
i∈IN

ciφi

∥

∥

∥

=
∥

∥

∥ ∑
i∈IN

[〈 f ,φi〉− ci]φi + ∑
i∈I\IN

〈 f ,φi〉φi

∥

∥

∥

= ‖(〈 f ,φi〉− ci)i∈IN ‖ℓ2 + ‖(〈 f ,φi〉)i∈I\IN
‖ℓ2 .

The first term ‖(〈 f ,φi〉− ci)i∈IN‖ℓ2 can be minimized by choosing ci = 〈 f ,φi〉 for

all i ∈ IN . And the second term ‖(〈 f ,φi〉)i∈I\IN
‖ℓ2 can be minimized by choosing

IN to be the indices of the N largest coefficients 〈 f ,φi〉 in magnitude. Notice that

this does not uniquely determine fN since some coefficients 〈 f ,φi〉 might have the

same magnitude. But it characterizes the set of best N-term approximations to some

f ∈ C precisely. Even more, we have complete control of the error of best N-term

approximation by

‖ f − fN‖= ‖(〈 f ,φi〉)i∈I\IN
‖ℓ2 . (1)

3.1.2 Tight Frames

Assume now that Φ constitutes a tight frame with bound A = 1 for H . In this

situation, we still have

f = ∑
i∈I

〈 f ,φi〉φi,

but this expansion is now not unique anymore. Moreover, the frame elements are

not orthogonal. Both conditions prohibit an analysis of the error of best N-term ap-

proximation as in the previously considered situation of an orthonormal basis. And
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in fact, examples can be provided to show that selecting the N largest coefficients

〈 f ,φi〉 in magnitude does not always lead to the best N-term approximation, but

merely to an N-term approximation. To be able to still analyze the approximation

error, one typically – as will be also our choice in the sequel – chooses the N-term

approximation provided by the indices IN associated with the N largest coefficients

〈 f ,φi〉 in magnitude with these coefficients, i.e.,

fN = ∑
i∈IN

〈 f ,φi〉φi.

This selection also allows for some control of the approximation in the Hilbert space

norm, which we will defer to the next subsection in which we consider the more

general case of arbitrary frames.

3.1.3 General Frames

Let now Φ form a frame for H with frame bounds A and B, and let (φ̃i)i∈I denote

the canonical dual frame. We then consider the expansion of f in terms of this dual

frame, i.e.,

f = ∑
i∈I

〈 f ,φi〉φ̃i. (2)

Notice that we could also consider

f = ∑
i∈I

〈 f , φ̃i〉φi.

Let us explain, why the first form is of more interest to us in this chapter. By def-

inition, we have (〈 f , φ̃i〉)i∈I ∈ ℓ2(I) as well as (〈 f ,φi〉)i∈I ∈ ℓ2(I). Since we only

consider expansions of functions f belonging to a subset C of H , this can, at least,

potentially improve the decay rate of the coefficients so that they belong to ℓp(I)
for some p < 2. This is exactly what is understood by sparse approximation (also

called compressible approximations in the context of inverse problems). We hence

aim to analyze shearlets with respect to this behavior, i.e., the decay rate of shearlet

coefficients. This then naturally leads to form (2). We remark that in case of a tight

frame, there is no distinction necessary, since then φ̃i = φi for all i ∈ I.

As in the tight frame case, it is not possible to derive a usable, explicit form for

the best N-term approximation. We therefore again crudely approximate the best

N-term approximation by choosing the N-term approximation provided by the in-

dices IN associated with the N largest coefficients 〈 f ,φi〉 in magnitude with these

coefficients, i.e.,

fN = ∑
i∈IN

〈 f ,φi〉φ̃i.

But, surprisingly, even with this rather crude greedy selection procedure, we obtain

very strong results for the approximation rate of shearlets as we will see in Sect. 5.
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The following result shows how the N-term approximation error can be bounded

by the tail of the square of the coefficients ci. The reader might want to compare this

result with the error in case of an orthonormal basis stated in (1).

Lemma 1. Let (φi)i∈I be a frame for H with frame bounds A and B, and let (φ̃i)i∈I

be the canonical dual frame. Let IN ⊂ I with # |IN | = N, and let fN be the N-term

approximation fN = ∑i∈IN
〈 f ,φi〉 φ̃i. Then

‖ f − fN‖
2 ≤

1

A
∑

i/∈IN

|〈 f ,φi〉|
2 . (3)

Proof. Recall that the canonical dual frame satisfies the frame inequality with

bounds B−1 and A−1. At first hand, it therefore might look as if the estimate (3)

should follow directly from the frame inequality for the canonical dual. However,

since the sum in (3) does not run over the entire index set i ∈ I, but only I \ IN , this

is not the case. So, to prove the lemma, we first consider

‖ f − fN‖ = sup{|〈 f − fN ,g〉| : g ∈ H ,‖g‖ = 1}

= sup

{

∣

∣

∣∑
i/∈IN

〈 f ,φi〉
〈

φ̃i,g
〉

∣

∣

∣ : g ∈ H ,‖g‖ = 1

}

. (4)

Using Cauchy-Schwarz’ inequality, we then have that

∣

∣

∣∑
i/∈IN

〈 f ,φi〉
〈

φ̃i,g
〉

∣

∣

∣

2

≤ ∑
i/∈IN

|〈 f ,φi〉|
2 ∑

i/∈IN

∣

∣

〈

φ̃i,g
〉∣

∣

2
≤ A−1 ‖g‖2 ∑

i/∈IN

|〈 f ,φi〉|
2 ,

where we have used the upper frame inequality for the dual frame (φ̃i)i in the second

step. We can now continue (4) and arrive at

‖ f − fN‖
2 ≤ sup

{

1

A
‖g‖2 ∑

i/∈IN

|〈 f ,φi〉|
2 : g ∈ H ,‖g‖ = 1

}

=
1

A
∑

i/∈IN

|〈 f ,φi〉|
2 .

⊓⊔

Relating to the previous discussion about the decay of coefficients 〈 f ,φi〉, let c∗

denote the non-increasing (in modulus) rearrangement of c = (ci)i∈I = (〈 f ,φi〉)i∈I ,

e.g., c∗n denotes the nth largest coefficient of c in modulus. This rearrangement cor-

responds to a bijection π : N→ I that satisfies

π : N→ I, cπ(n) = c∗n for all n ∈ N.

Strictly speaking, the rearrangement (and hence the mapping π) might not be

unique; we will simply take c∗ to be one of these rearrangements. Since c ∈ ℓ2(I),
also c∗ ∈ ℓ2(N). Suppose further that |c∗n| even decays as

|c∗n|. n−(α+1)/2 for n → ∞
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for some α > 0, where the notation h(n) . g(n) means that there exists a C > 0

such that h(n) ≤Cg(n), i.e., h(n) = O(g(n)). Clearly, we then have c∗ ∈ ℓp(N) for

p ≥ 2
α+1 . By Lemma 1, the N-term approximation error will therefore decay as

‖ f − fN‖
2 ≤

1

A
∑

n>N

|c∗n|
2 . ∑

n>N

n−α+1 ≍ N−α ,

where fN is the N-term approximation of f by keeping the N largest coefficients,

that is,

fN =
N

∑
n=1

c∗n φ̃π(n). (5)

The notation h(n) ≍ g(n), also written h(n) = Θ(g(n)), used above means that h

is bounded both above and below by g asymptotically as n → ∞, that is, h(n) =
O(g(n)) and g(n) = O(h(n)).

3.2 A Notion of Optimality

We now return to the setting of functions spaces H = L2(Rd), where the subset C

will be the class of cartoon-like images, that is, C = E 2
L (R

d). We then aim for a

benchmark, i.e., an optimality statement, for sparse approximation of functions in

E 2
L (R

d). For this, we will again only require that our representation system Φ is a

dictionary, that is, we assume only that Φ = (φi)i∈I is a complete family of functions

in L2(Rd) with I not necessarily being countable. Without loss of generality, we

can assume that the elements φi are normalized, i.e., ‖φi‖L2 = 1 for all i ∈ I. For

f ∈ E 2
L (R

d) we then consider expansions of the form

f = ∑
i∈I f

ci φi,

where I f ⊂ I is a countable selection from I that may depend on f . Relating to the

previous subsection, the first N elements of Φ f := {φi}i∈I f
could for instance be the

N terms from Φ selected for the best N-term approximation of f .

Since artificial cases shall be avoided, this selection procedure has the following

natural restriction which is usually termed polynomial depth search: The nth term in

Φ f is obtained by only searching through the first q(n) elements of the list Φ f , where

q is a polynomial. Moreover, the selection rule may adaptively depend on f , and the

nth element may also be modified adaptively and depend on the first (n−1)th chosen

elements. We shall denote any sequence of coefficients ci chosen according to these

restrictions by c( f ) = (ci)i. The role of the polynomial q is to limit how deep or how

far down in the listed dictionary Φ f we are allowed to search for the next element

φi in the approximation. Without such a depth search limit, one could choose Φ to

be a countable, dense subset of L2(Rd) which would yield arbitrarily good sparse

approximations, but also infeasible approximations in practise.
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Using information theoretic arguments, it was then shown in [8, 15], that almost

no matter what selection procedure we use to find the coefficients c( f ), we cannot

have ‖c( f )‖ℓp bounded for p < 2(d−1)
d+1

for d = 2,3.

Theorem 1 ( [8,15]). Retaining the definitions and notations in this subsection and

allowing only polynomial depth search, we obtain

max
f∈E 2

L (R
d)
‖c( f )‖ℓp =+∞, for p <

2(d− 1)

d + 1
.

In case Φ is an orthonormal basis for L2(Rd), the norm ‖c( f )‖ℓp is trivially

bounded for p ≥ 2 since we can take c( f ) = (ci)i∈I = (〈 f ,φi〉)i∈I . Although not

explicitly stated, the proof can be straightforwardly extended from 3D to higher

dimensions as also the definition of cartoon-like images can be similarly extended.

It is then intriguing to analyze the behavior of
2(d−1)

d+1 from Thm. 1. In fact, as d →∞,

we observe that
2(d−1)

d+1 → 2. Thus, the decay of any c( f ) for cartoon-like images

becomes slower as d grows and approaches ℓ2, which – as we just mentioned – is

actually the rate guaranteed for all f ∈ L2(Rd).
Thm. 1 is truly a statement about the optimal achievable sparsity level: No rep-

resentation system – up to the restrictions described above – can deliver approxima-

tions for E 2
L (R

d) with coefficients satisfying c( f ) ∈ ℓp for p < 2(d−1)
d+1

. This implies

the following lower bound

c( f )∗n & n
− d+1

2(d−1) =

{

n−3/2 : d = 2,

n−1 : d = 3.
(6)

where c( f )∗ = (c( f )∗n)n∈N is a decreasing (in modulus) arrangement of the coeffi-

cients c( f ).
One might ask how this relates to the approximation error of (best) N-term ap-

proximation discussed before. For simplicity, suppose for a moment that Φ is actu-

ally an orthonormal basis (or more generally a Riesz basis) for L2(Rd) with d = 2

and d = 3. Then – as discussed in Sect. 3.1.1 – the best N-term approximation to

f ∈ E 2
L (R

d) is obtained by keeping the N largest coefficients. Using the error esti-

mate (1) as well as (6), we obtain

‖ f − fN‖
2
L2 = ∑

n>N

|c( f )∗n|
2 & ∑

n>N

n−
d+1
d−1 ≍ N− 2

d−1 ,

i.e., the best N-term approximation error ‖ f − fN‖
2
L2 behaves asymptotically as

N− 2
d−1 or worse. If, more generally, Φ is a frame, and fN is chosen as in (5), we

can similarly conclude that the asymptotic lower bound for ‖ f − fN‖
2
L2 is N− 2

d−1 ,

that is, the optimally achievable rate is, at best, N− 2
d−1 . Thus, this optimal rate can

be used as a benchmark for measuring the sparse approximation ability of cartoon-

like images of different representation systems. Let us phrase this formally.
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Definition 1. Let Φ = (φi)i∈I be a frame for L2(Rd) with d = 2 or d = 3. We say

that Φ provides optimally sparse approximations of cartoon-like images if, for each

f ∈ E 2
L (R

d), the associated N-term approximation fN (cf. (5)) by keeping the N

largest coefficients of c = c( f ) = (〈 f ,φi〉)i∈I satisfies

‖ f − fN‖
2
L2 . N− 2

d−1 as N → ∞, (7)

and

|c∗n|. n
− d+1

2(d−1) as n → ∞, (8)

where we ignore log-factors.

Note that, for frames Φ , the bound |c∗n| . n
− d+1

2(d−1) automatically implies that

‖ f − fN‖
2 . N− 2

d−1 whenever fN is chosen as in (5). This follows from Lemma 1

and the estimate

∑
n>N

|c∗n|
2 . ∑

n>N

n−
d+1
d−1 .

∫ ∞

N
x−

d+1
d−1 dx ≤C ·N− 2

d−1 , (9)

where we have used that − d+1
d−1

+ 1 = − 2
d−1

. Hence, we are searching for a repre-

sentation system Φ which forms a frame and delivers decay of c = (〈 f ,φi〉)i∈I as

(up to log-factors)

|c∗n|. n
− d+1

2(d−1) =

{

n−3/2 : d = 2,

n−1 : d = 3.
(10)

as n → ∞ for any cartoon-like image.

3.3 Approximation by Fourier Series and Wavelets

We will next study two examples of more traditional representation systems – the

Fourier basis and wavelets – with respect to their ability to meet this benchmark.

For this, we choose the function f = χB, where B is a ball contained in [0,1]d , again

d = 2 or d = 3, as a simple cartoon-like image in E 2
L (R

d) with L = 1, analyze the

error ‖ f − fN‖
2

for fN being the N-term approximation by the N largest coefficients

and compare with the optimal decay rate stated in Definition 1. It will however turn

out that these systems are far from providing optimally sparse approximations of

cartoon-like images, thus underlining the pressing need to introduce representation

systems delivering this optimal rate; and we already now refer to Sect. 5 in which

shearlets will be proven to satisfy this property.
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Since Fourier series and wavelet systems are orthonormal bases (or more gener-

ally, Riesz bases) the best N-term approximation is found by keeping the N largest

coefficients as discussed in Sect. 3.1.1.

3.3.1 Fourier Series

The error of the best N-term Fourier series approximation of a typical cartoon-like

image decays asymptotically as N−1/d . The following proposition shows this be-

havior in the case of a very simple cartoon-like image: The characteristic function

on a ball.

Proposition 1. Let d ∈ N, and let Φ = (e2π ikx)k∈Zd . Suppose f = χB, where B is a

ball contained in [0,1]d . Then

‖ f − fn‖
2
L2 ≍ N−1/d for N → ∞,

where fN is the best N-term approximation from Φ .

Proof. We fix a new origin as the center of the ball B. Then f is a radial function

f (x) = h(‖x‖2) for x ∈ Rd . The Fourier transform of f is also a radial function and

can expressed explicitly by Bessel functions of first kind [14, 18]:

f̂ (ξ ) = rd/2
Jd/2(2πr‖ξ‖2)

‖ξ‖
d/2
2

,

where r is the radius of the ball B. Since the Bessel function Jd/2(x) decays like

x−1/2 as x → ∞, the Fourier transform of f decays like | f̂ (ξ )| ≍ ‖ξ‖
−(d+1)/2
2 as

‖ξ‖2 → ∞. Letting IN = {k ∈ Zd : ‖k‖2 ≤ N} and fIN be the partial Fourier sum

with terms from IN , we obtain

‖ f − fIN‖
2
L2 = ∑

k 6∈IN

∣

∣ f̂ (k)
∣

∣

2
≍
∫

‖ξ‖2>N
‖ξ‖

−(d+1)
2 dξ

=

∫ ∞

N
r−(d+1)r(d−1)dr =

∫ ∞

N
r−2dr = N−1.

The conclusion now follows from the cardinality of # |IN | ≍ Nd as N → ∞. ⊓⊔

3.3.2 Wavelets

Since wavelets are designed to deliver sparse representations of singularities – see

Chapter [1] – we expect this system to outperform the Fourier approach. This will

indeed be the case. However, the optimal rate will still by far be missed. The best N-

term approximation of a typical cartoon-like image using a wavelet basis performs
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only slightly better than Fourier series with asymptotic behavior as N−1/(d−1). This

is illustrated by the following result.

Proposition 2. Let d = 2,3, and let Φ be a wavelet basis for L2(Rd) or L2([0,1]d).

Suppose f = χB, where B is a ball contained in [0,1]d . Then

‖ f − fn‖
2
L2 ≍ N− 1

d−1 for N → ∞,

where fN is the best N-term approximation from Φ .

Proof. Let us first consider wavelet approximation by the Haar tensor wavelet basis

for L2([0,1]d) of the form

{

φ0,k : |k| ≤ 2J − 1
}

∪
{

ψ1
j,k, . . .ψ

2d−1
j,k : j ≥ J, |k| ≤ 2 j−J − 1

}

,

where J ∈ N, k ∈ Nd
0 , and g j,k = 2 jd/2g(2 j ·−k) for g ∈ L2(Rd). There are only a

finite number of coefficients of the form 〈 f ,φ0,k〉, hence we do not need to consider

these for our asymptotic estimate. For simplicity, we take J = 0. At scale j ≥ 0 there

exist Θ(2 j(d−1)) non-zero wavelet coefficients, since the surface area of ∂B is finite

and the wavelet elements are of size 2− j ×·· ·× 2− j.

To illustrate the calculations leading to the sought approximation error rate,

we will first consider the case where B is a cube in [0,1]d . For this, we first

consider the non-zero coefficients associated with the face of the cube contain-

ing the point (b,c, . . . ,c). For scale j, let k be such that suppψ1
j,k ∩ supp f 6= /0,

where ψ1(x) = h(x1)p(x2) · · · p(xd) and h and p are the Haar wavelet and scal-

ing function, respectively. Assume that b is located in the first half of the interval
[

2− jk1,2
− j(k1 + 1)

]

; the other case can be handled similarly. Then

|〈 f ,ψ1
j,k〉|=

∫ b

2− jk1

2 jd/2dx1

d

∏
i=2

∫ 2− j(ki+1)

2− jki

dxi = (b−2− jk1)2
− j(d−1)2 jd/2 ≍ 2− jd/2,

where we have used that (b− 2− jk1) will typically be of size 1
4

2− j. Note that for

the chosen j and k above, we also have that 〈 f ,ψ l
j,k〉= 0 for all l = 2, . . . ,2d − 1.

There will be 2 · ⌈2c2 j(d−1)⌉ nonzero coefficients of size 2− jd/2 associated with

the wavelet ψ1 at scale j. The same conclusion holds for the other wavelets ψ l , l =
2, . . . ,2d − 1. To summarize, at scale j there will be C 2 j(d−1) nonzero coefficients

of size C 2− jd/2. On the first j0 scales, that is j = 0,1, . . . j0, we therefore have

∑
j0
j=0 2 j(d−1) ≍ 2 j0(d−1) nonzero coefficients. The nth largest coefficient c∗n is of size

n
− d

2(d−1) since, for n = 2 j(d−1), we have

2− j d
2 = n

− d
2(d−1) .

Therefore,
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‖ f − fN‖
2
L2 = ∑

n>N

|c∗n|
2 ≍ ∑

n>N

n−
d

d−1 ≍

∫ ∞

N
x−

d
d−1 dx =

d

d− 1
N− 1

d−1 .

Hence, for the best N-term approximation fN of f using a wavelet basis, we obtain

the asymptotic estimates

‖ f − fN‖
2
L2 =Θ(N− 1

d−1 ) =

{

Θ(N−1), if d = 2,

Θ(N−1/2), if d = 3,
.

Let us now consider the situation that B is a ball. In fact, in this case we can do

similar (but less transparent) calculations leading to the same asymptotic estimates

as above. We will not repeat these calculations here, but simply remark that the

upper asymptotic bound in |〈 f ,ψ l
j,k〉| ≍ 2− jd/2 can be seen by the following general

argument:

|〈 f ,ψ l
j,k〉| ≤ ‖ f‖L∞ ‖ψ l

j,k‖L1 ≤ ‖ f‖L∞‖ψ l‖L1 2− jd/2 ≤C 2− jd/2,

which holds for each l = 1, . . . ,2d − 1.

Finally, we can conclude from our calculations that choosing another wavelet

basis will not improve the approximation rate. ⊓⊔

Remark 1. We end this subsection with a remark on linear approximations. For a

linear wavelet approximation of f one would use

f ≈ 〈 f ,φ0,0〉φ0,0 +
2d−1

∑
l=1

j0

∑
j=0

∑
|k|≤2 j−1

〈 f ,ψ l
j,k〉ψ

l
j,k

for some j0 > 0. If restricting to linear approximations, the summation order is not

allowed to be changed, and we therefore need to include all coefficients from the

first j0 scales. At scale j ≥ 0, there exist a total of 2 jd coefficients, which by our

previous considerations can be bounded by C · 2− jd/2. Hence, we include 2 j times

as many coefficients as in the non-linear approximation on each scale. This implies

that the error rate of the linear N-term wavelet approximation is N−1/d , which is the

same rate as obtained by Fourier approximations.

3.3.3 Key Problem

The key problem of the suboptimal behavior of Fourier series and wavelet bases

is the fact that these systems are not generated by anisotropic elements. Let us il-

lustrate this for 2D in the case of wavelets. Wavelet elements are isotropic due to

the scaling matrix diag(2 j,2 j). However, already intuitively, approximating a curve

with isotropic elements requires many more elements than if the analyzing elements

would be anisotropic themselves, see Fig. 3a and 3b.

Considering wavelets with anisotropic scaling will not remedy the situation,

since within one fixed scale one cannot control the direction of the (now anisotrop-
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Fig. 3a Isotropic elements capturing a dis-

continuity curve.

Fig. 3b Rotated, anisotropic elements cap-

turing a discontinuity curve.

ically shaped) elements. Thus, to capture a discontinuity curve as in Fig. 3b, one

needs not only anisotropic elements, but also a location parameter to locate the el-

ements on the curve and a rotation parameter to align the elongated elements in the

direction of the curve.

Let us finally remark why a parabolic scaling matrix diag(2 j,2 j/2) will be natural

to use as anisotropic scaling. Since the discontinuity curves of cartoon-like images

are C2-smooth with bounded curvature, we may write the curve locally by a Taylor

expansion. Let’s assume it has the form (s,E(s)) with

E(s) = E(s′)+E ′(s′)s+E ′′(t)s2

near s = s′ for some |t| ∈ [s′,s]. Clearly, the translation parameter will be used to po-

sition the anisotropic element near (s′,E(s′)), and the orientation parameter to align

with (1,E ′(s′)s). If the length of the element is l, then, due to the term E ′′(t)s2, the

most beneficial height would be l2. And, in fact, parabolic scaling yields precisely

this relation, i.e.,

height ≈ length2.

Hence, the main idea in the following will be to design a system which consists

of anisotropically shaped elements together with a directional parameter to achieve

the optimal approximation rate for cartoon-like images.

4 Pyramid-Adapted Shearlet Systems

After we have set our benchmark for directional representation systems in the sense

of stating an optimality criteria for sparse approximations of the cartoon-like image

class E 2
L (R

d), we next introduce classes of shearlet systems we claim behave op-

timally. As already mentioned in the introduction of this chapter, optimally sparse

approximations were proven for a class of band-limited as well as of compactly sup-

ported shearlet frames. For the definition of cone-adapted discrete shearlets and, in

particular, classes of band-limited as well as of compactly supported shearlet frames
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leading to optimally sparse approximations, we refer to Chapter [1]. In this section,

we present the definition of discrete shearlets in 3D, from which the mentioned def-

initions in the 2D situation can also be directly concluded. As special cases, we then

introduce particular classes of band-limited as well as of compactly supported shear-

let frames, which will be shown to provide optimally approximations of E 2
L (R

3)
and, with a slight modification which we will elaborate on in Sect. 5.2.4, also for

E
β
α ,L(R

3) with 1 < α ≤ β ≤ 2.

4.1 General Definition

The first step in the definition of cone-adapted discrete 2D shearlets was a parti-

tioning of 2D frequency domain into two pairs of high-frequency cones and one

low-frequency rectangle. We mimic this step by partitioning 3D frequency domain

into the three pairs of pyramids given by

P = {(ξ1,ξ2,ξ3) ∈R
3 : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1, |ξ3/ξ1| ≤ 1},

P̃ = {(ξ1,ξ2,ξ3) ∈R
3 : |ξ2| ≥ 1, |ξ1/ξ2| ≤ 1, |ξ3/ξ2| ≤ 1},

P̆ = {(ξ1,ξ2,ξ3) ∈R
3 : |ξ3| ≥ 1, |ξ1/ξ3| ≤ 1, |ξ2/ξ3| ≤ 1},

and the centered cube

C = {(ξ1,ξ2,ξ3) ∈R
3 : ‖(ξ1,ξ2,ξ3)‖∞ < 1}.

This partition is illustrated in Fig. 4 which depicts the three pairs of pyramids and

P1

P4

(a) Pyramid P = P1 ∪ P4

and the ξ1 axis.

P5

P2

(b) Pyramid P̃ = P2 ∪ P5

and the ξ2 axis.

P3

P6

(c) Pyramids P̆ = P3 ∪ P6

and the ξ3 axis.

Fig. 4 The partition of the frequency domain: The ‘top’ of the six pyramids.

Fig. 5 depicting the centered cube surrounded by the three pairs of pyramids P , P̃ ,

and P̆.

The partitioning of frequency space into pyramids allows us to restrict the range

of the shear parameters. Without such a partitioning as, e.g., in shearlet systems

arising from the shearlet group, one must allow arbitrarily large shear parameters,
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Fig. 5 The partition of the fre-

quency domain: The centered

cube C . The arrangement of

the six pyramids is indicated

by the ‘diagonal’ lines. See

Fig. 4 for a sketch of the pyra-

mids.

ξ3
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C
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which leads to a treatment biased towards one axis. The defined partition however

enables restriction of the shear parameters to [−⌈2 j/2⌉,⌈2 j/2⌉], similar to the defi-

nition of cone-adapted discrete shearlet systems. We would like to emphasize that

this approach is key to provide an almost uniform treatment of different directions

in a sense of a ‘good’ approximation to rotation.

Pyramid-adapted discrete shearlets are scaled according to the paraboloidal scal-

ing matrices A2 j , Ã2 j or Ă2 j , j ∈ Z defined by

A2 j =





2 j 0 0

0 2 j/2 0

0 0 2 j/2



 , Ã2 j =





2 j/2 0 0

0 2 j 0

0 0 2 j/2



 , and Ă2 j =





2 j/2 0 0

0 2 j/2 0

0 0 2 j



 ,

and directionality is encoded by the shear matrices Sk, S̃k, or S̆k, k = (k1,k2) ∈ Z
2,

given by

Sk =





1 k1 k2

0 1 0

0 0 1



 , S̃k =





1 0 0

k1 1 k2

0 0 1



 , and S̆k =





1 0 0

0 1 0

k1 k2 1



 ,

respectively. The reader should note that these definitions are (discrete) special cases

of the general setup in [2]. The translation lattices will be defined through the follow-

ing matrices: Mc = diag(c1,c2,c2), M̃c = diag(c2,c1,c2), and M̆c = diag(c2,c2,c1),
where c1 > 0 and c2 > 0.

We are now ready to introduce 3D shearlet systems, for which we will make use

of the vector notation |k| ≤ K for k = (k1,k2) and K > 0 to denote |k1| ≤ K and

|k2| ≤ K.
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Definition 2. For c = (c1,c2) ∈ (R+)
2, the pyramid-adapted discrete shearlet sys-

tem SH(φ ,ψ , ψ̃, ψ̆ ;c) generated by φ ,ψ , ψ̃ , ψ̆ ∈ L2(R3) is defined by

SH(φ ,ψ , ψ̃ , ψ̆ ;c) = Φ(φ ;c1)∪Ψ(ψ ;c)∪Ψ̃(ψ̃ ;c)∪Ψ̆(ψ̆ ;c),

where

Φ(φ ;c1) =
{

φm = φ(·−m) : m ∈ c1Z
3
}

,

Ψ(ψ ;c) =
{

ψ j,k,m = 2 jψ(SkA2 j ·−m) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ McZ
3
}

,

Ψ̃(ψ̃ ;c) = {ψ̃ j,k,m = 2 jψ̃(S̃kÃ2 j ·−m) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ M̃cZ
3},

and

Ψ̆(ψ̆ ;c) = {ψ̆ j,k,m = 2 jψ̆(S̆kĂ2 j ·−m) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ M̆cZ
3},

where j ∈ N0 and k ∈ Z2. For the sake of brevity, we will sometimes also use the

notation ψλ with λ = ( j,k,m).

We now focus on two different special classes of pyramid-adapted discrete shear-

lets leading to the class of band-limited shearlets and the class of compactly sup-

ported shearlets for which optimality of their approximation properties with respect

to cartoon-like images will be proven in Sect. 5.

4.2 Band-Limited 3D Shearlets

Let the shearlet generator ψ ∈ L2(R3) be defined by

ψ̂(ξ ) = ψ̂1(ξ1)ψ̂2

(ξ2

ξ1

)

ψ̂2

(ξ3

ξ1

)

, (11)

where ψ1 and ψ2 satisfy the following assumptions:

(i) ψ̂1 ∈C∞(R), suppψ̂1 ⊂ [−4,− 1
2 ]∪ [ 1

2 ,4], and

∑
j≥0

∣

∣ψ̂1(2
− jξ )

∣

∣

2
= 1 for |ξ | ≥ 1,ξ ∈ R. (12)

(ii) ψ̂2 ∈C∞(R), suppψ̂2 ⊂ [−1,1], and

1

∑
l=−1

|ψ̂2(ξ + l)|2 = 1 for |ξ | ≤ 1,ξ ∈R. (13)

Thus, in frequency domain, the band-limited function ψ ∈ L2(R3) is almost a tensor

product of one wavelet with two ‘bump’ functions, thereby a canonical generaliza-
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tion of the classical band-limited 2D shearlets, see also Chapter [1]. This implies

the support in frequency domain to have a needle-like shape with the wavelet acting

in radial direction ensuring high directional selectivity, see also Fig. 6. The deriva-

Fig. 6 Support of two shear-

let elements ψ j,k,m in the

frequency domain. The two

shearlet elements have the

same scale parameter j = 2,

but different shearing param-

eters k = (k1,k2).

ξ1

ξ2

ξ 3

-6
-1 1

6
-5

0

5

-5

0

5

tion from being a tensor product, i.e., the substitution of ξ2 and ξ3 by the quotients

ξ2/ξ1 and ξ3/ξ1, respectively, in fact ensures a favorable behavior with respect to

the shearing operator, and thus a tiling of frequency domain which leads to a tight

frame for L2(R3).
A first step towards this result is the following observation.

Theorem 2 ( [11]). Let ψ be a band-limited shearlet defined as in this subsection.

Then the family of functions

Ψ(ψ) = {ψ j,k,m : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ 1
8
Z

3}

forms a tight frame for Ľ2(P) := { f ∈ L2(R3) : supp f̂ ⊂ P}.

Proof. For each j ≥ 0, equation (13) implies that

⌈2 j/2⌉

∑
k=−⌈2 j/2⌉

|ψ̂2(2
j/2ξ + k)|2 = 1, for |ξ | ≤ 1.

Hence, using equation (12), we obtain

∑
j≥0

⌈2 j/2⌉

∑
k1,k2=−⌈2 j/2⌉

|ψ̂(ST
k A−1

2 j ξ )|2
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= ∑
j≥0

|ψ̂1(2
− jξ1)|

2|
⌈2 j/2⌉

∑
k1=−⌈2 j/2⌉

|ψ̂2(2
j/2 ξ2

ξ1
+ k1)|

2
⌈2 j/2⌉

∑
k2=−⌈2 j/2⌉

|ψ̂2(2
j/2 ξ2

ξ1
+ k2)|

2

= 1,

for ξ = (ξ1,ξ2,ξ3) ∈ P . Using this equation together with the fact that ψ̂ is sup-

ported inside [−4,4]3 proves the theorem. ⊓⊔

By Thm. 2 and a change of variables, we can construct shearlet frames for

Ľ2(P), Ľ2(P̃), and Ľ2(P̆), respectively. Furthermore, wavelet theory provides us

with many choices of φ ∈ L2(R3) such that Φ(φ ; 1
8
) forms a frame for Ľ2(C ). Since

R3 = C ∪P ∪P̃ ∪P̆ as a disjoint union, we can express any function f ∈ L2(R3)
as f = PC f +PP f +P

P̃
f +P

P̆
f , where each component corresponds to the or-

thogonal projection of f onto one of the three pairs of pyramids or the centered

cube in the frequency space. We then expand each of these components in terms of

the corresponding tight frame. Finally, our representation of f will then be the sum

of these four expansions. We remark that the projection of f onto the four subspaces

can lead to artificially slow decaying shearlet coefficients; this will, e.g., be the case

if f is in the Schwartz class. This problem does in fact not occur in the construction

of compactly supported shearlets.

4.3 Compactly Supported 3D Shearlets

It is easy to see that the general form (11) does never lead to a function which

is compactly supported in spatial domain. Thus, we need to deviate this form by

now taking indeed exact tensor products as our shearlet generators, which has the

additional benefit of leading to fast algorithmic realizations. This however causes the

problem that the shearlets do not behave as favorable with respect to the shearing

operator as in the previous subsection, and the question arises whether they actually

do lead to at least a frame for L2(R3). The next results shows this to be true for an

even much more general form of shearlet generators including compactly supported

separable generators. The attentive reader will notice that this theorem even covers

the class of band-limited shearlets introduced in Sect. 4.2.

Theorem 3 ([15]). Let φ ,ψ ∈ L2(R3) be functions such that

|φ̂(ξ )| ≤C1 min{1, |ξ1|
−γ} ·min{1, |ξ2|

−γ} ·min{1, |ξ3|
−γ},

and

|ψ̂(ξ )| ≤ C2 · min{1, |ξ1|
δ} · min{1, |ξ1|

−γ} · min{1, |ξ2|
−γ} · min{1, |ξ3|

−γ},

for some constants C1,C2 > 0 and δ > 2γ > 6. Define ψ̃(x) = ψ(x2,x1,x3) and

ψ̆(x) = ψ(x3,x2,x1) for x = (x1,x2,x3) ∈ R3. Then there exists a constant c0 > 0
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such that the shearlet system SH(φ ,ψ , ψ̃ , ψ̆ ;c) forms a frame for L2(R3) for all

c = (c1,c2) with c2 ≤ c1 ≤ c0 provided that there exists a positive constant M > 0

such that

|φ̂ (ξ )|2 + ∑
j≥0

∑
k1,k2∈K j

|ψ̂(ST
k A2 j ξ )|2 + | ˆ̃ψ(S̃T

k Ã2 j ξ )|2 + | ˆ̆ψ(S̆T
k Ă2 j ξ )|2 > M (14)

for a.e ξ ∈ R3, where K j :=
[

−⌈2 j/2⌉,⌈2 j/2⌉
]

.

We next provide an example of a family of compactly supported shearlets satisfy-

ing the assumptions of Thm. 3. However, for applications, one is typically not only

interested in whether a system forms a frame, but in the ratio of the associated frame

bounds. In this regard, these shearlets also admit a theoretically derived estimate for

this ratio which is reasonably close to 1, i.e., to being tight. The numerically derived

ratio is even significantly closer as expected.

Example 1. Let K,L ∈ N be such that L ≥ 10 and 3L
2
≤ K ≤ 3L− 2, and define a

shearlet ψ ∈ L2(R3) by

ψ̂(ξ ) = m1(4ξ1)φ̂(ξ1)φ̂ (2ξ2)φ̂ (2ξ3), ξ = (ξ1,ξ2,ξ3) ∈ R
3, (15)

where the function m0 is the low pass filter satisfying

|m0(ξ1)|
2 = cos2K(πξ1))

L−1

∑
n=0

(

K − 1+ n

n

)

sin2n(πξ1),

for ξ1 ∈ R, the function m1 is the associated bandpass filter defined by

|m1(ξ1)|
2 = |m0(ξ1 + 1/2)|2, ξ1 ∈ R,

and φ the scaling function is given by

φ̂(ξ1) =
∞

∏
j=0

m0(2
− jξ1), ξ1 ∈ R.

In [13, 15] it is shown that φ and ψ indeed are compactly supported. Moreover,

we have the following result.

Theorem 4 ( [15]). Suppose ψ ∈ L2(R3) is defined as in (15). Then there exists a

sampling constant c0 > 0 such that the shearlet system Ψ(ψ ;c) forms a frame for

Ľ2(P) for any translation matrix Mc with c = (c1,c2) ∈ (R+)
2 and c2 ≤ c1 ≤ c0.

Proof (sketch). Using upper and lower estimates of the absolute value of the trigono-

metric polynomial m0 (cf. [5, 13]), one can show that ψ satisfies the hypothesis of

Thm. 3 as well as

∑
j≥0

∑
k1,k2∈K j

|ψ̂(ST
k A2 j ξ )|2 > M for all ξ ∈ P ,
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where M > 0 is a constant, for some sufficiently small c0 > 0. We note that this

inequality is an analog to (14) for the pyramid P . Hence, by a result similar to

Thm. 3, but for the case, where we restrict to the pyramid Ľ2(P), it then follows

that Ψ (ψ ;c) is a frame.

To obtain a frame for all of L2(R3) we simply set ψ̃(x) = ψ(x2,x1,x3) and

ψ̆(x) = ψ(x3,x2,x1) as in Thm. 3, and choose φ(x) = φ(x1)φ(x2)φ(x3) as scal-

ing function for x = (x1,x2,x3) ∈ R
3. Then the corresponding shearlet system

SH(φ ,ψ , ψ̃ , ψ̆ ;c,α) forms a frame for L2(R3). The proof basically follows from

Daubechies’ classical estimates for wavelet frames in [5, §3.3.2] and the fact that

anisotropic and sheared windows obtained by applying the scaling matrix A2 j and

the shear matrix ST
k to the effective support1 of ψ̂ cover the pyramid P in the fre-

quency domain. The same arguments can be applied to each of shearlet generators

ψ , ψ̃ and ψ̆ as well as the scaling function φ to show a covering of the entire

frequency domain and thereby the frame property of the pyramid-adapted shearlet

system for L2(R3). We refer to [15] for the detailed proof.

Theoretical and numerical estimates of frame bounds for a particular parameter

choice are shown in Table 1. We see that the theoretical estimates are overly pes-

simistic, since they are a factor 20 larger than the numerical estimated frame bound

ratios. We mention that for 2D the estimated frame bound ratios are approximately

1/10 of the ratios found in Table 1.

Table 1 Frame bound ratio for the shearlet frame from Example 1 with parameters K = 39,L = 19.

Theoretical (B/A) Numerical (B/A) Translation constants (c1,c2)

345.7 13.42 (0.9, 0.25)

226.6 13.17 (0.9, 0.20)

226.4 13.16 (0.9, 0.15)

226.4 13.16 (0.9, 0.10)

4.4 Some Remarks on Construction Issues

The compactly supported shearlets ψ j,k,m from Example 1 are, in spatial domain, of

size 2− j/2 times 2− j/2 times 2− j due to the scaling matrix A2 j . This reveals that the

shearlet elements will become ‘plate-like’ as j → ∞. For an illustration, we refer to

Fig. 7. Band-limited shearlets, on the other hand, do not have compactly support, but

their effective support (the region where the energy of the function is concentrated)

in spatial domain will likewise be of size 2− j/2 times 2− j/2 times 2− j owing to

their smoothness in frequency domain. Contemplating about the fact that intuitively

1 Loosely speaking, we say that f ∈ L2(Rd) has effective support on B if the ratio ‖ f χB‖L2 /‖ f ‖L2

is ‘close’ to 1.
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Fig. 7 Support of a shearlet

ψ̆ j,0,m from Example 1.

∼ 2− j

∼ 2− j/2

∼ 2− j/2

x3 x2

x1

such shearlet elements should provide sparse approximations of surface singulari-

ties, one could also think of using the scaling matrix A2 j = diag(2 j,2 j,2 j/2) with

similar changes for Ã2 j and Ă2 j to derive ‘needle-like’ shearlet elements in space

domain. These would intuitively behave favorable with respect to the other type of

anisotropic features occurring in 3D, that is curvilinear singularities. Surprisingly,

we will show in Sect. 5.2 that for optimally sparse approximation plate-like shear-

lets, i.e., shearlets associated with scaling matrix A2 j = diag(2 j,2 j/2,2 j/2), and sim-

ilarly Ã2 j and Ă2 j are sufficient.

Let us also mention that, more generally, non-paraboloidal scaling matrices of the

form A j = diag(2 j,2a1 j,2a2 j) for 0 < a1,a2 ≤ 1 can be considered. The parameters

a1 and a2 allow precise control of the aspect ratio of the shearlet elements, ranging

from very plate-like to very needle-like, according to the application at hand, i.e.,

choosing the shearlet-shape that is the best matches the geometric characteristics of

the considered data. The case ai < 1 is covered by the setup of the multidimensional

shearlet transform explained in Chapter [2].

Let us finish this section with a general thought on the construction of band-

limited (not separable) tight shearlet frames versus compactly supported (non-tight,

but separable) shearlet frames. It seems that there is a trade-off between compact

support of the shearlet generators, tightness of the associated frame, and separa-

bility of the shearlet generators. In fact, even in 2D, all known constructions of

tight shearlet frames do not use separable generators, and these constructions can be

shown to not be applicable to compactly supported generators. Presumably, tight-

ness is difficult to obtain while allowing for compactly supported generators, but we

can gain separability which leads to fast algorithmic realizations, see Chapter [3].

If we though allow non-compactly supported generators, tightness is possible as

shown in Sect. 4.2, but separability seems to be out of reach, which causes prob-

lems for fast algorithmic realizations.

5 Optimal Sparse Approximations

In this section, we will show that shearlets – both band-limited as well as compactly

supported as defined in Sect. 4 – indeed provide the optimal sparse approximation

rate for cartoon-like images from Sect. 3.2. Thus, letting (ψλ )λ = (ψ j,k,m) j,k,m de-

note the band-limited shearlet frame from Sect. 4.2 and the compactly supported
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shearlet frame from Sect. 4.3 in both 2D and 3D (see [1]) and d ∈ {2,3}, we aim to

prove that

‖ f − fN‖
2
L2 . N− 2

d−1 for all f ∈ E
2
L (R

d),

where – as debated in Sect. 3.1 – fN denotes the N-term approximation using the N

largest coefficients as in (5). Hence, in 2D we aim for the rate N−2 and in 3D we aim

for the rate N−1 with ignoring log-factors. As mentioned in Sect. 3.2, see (10), in

order to prove these rate, it suffices to show that the nth largest shearlet coefficient

c∗n decays as

|c∗n|. n
− d+1

2(d−1) =

{

n−3/2 : d = 2,

n−1 : d = 3.

According to Dfn. 1 this will show that among all adaptive and non-adaptive

representation systems shearlet frames behave optimal with respect to sparse ap-

proximation of cartoon-like images. That one is able to obtain such an optimal ap-

proximation error rate might seem surprising, since the shearlet system as well as

the approximation procedure will be non-adaptive.

To present the necessary hypotheses, illustrate the key ideas of the proofs, and

debate the differences between the arguments for band-limited and compactly sup-

ported shearlets, we first focus on the situation of 2D shearlets. We then discuss

the 3D situation, with a sparsified proof, mainly discussing the essential differ-

ences to the proof for 2D shearlets and highlighting the crucial nature of this case

(cf. Sect. 1.3).

5.1 Optimal Sparse Approximations in 2D

As discussed in the previous section, in the case d = 2, we aim for the estimates

|c∗n| . n−3/2 and ‖ f − fN‖
2
L2 . N−2 (up to log-factors). In Sect. 5.1.1 we will first

provide a heuristic analysis to argue that shearlet frames indeed can deliver these

rates. In Sect. 5.1.2 and 5.1.3 we then discuss the required hypotheses and state the

main optimality result. The subsequent subsections are then devoted to proving the

main result.

5.1.1 A Heuristic Analysis

We start by giving a heuristic argument (inspired by a similar argument for curvelets

in [4]) on why the error ‖ f − fN‖
2
L2 satisfies the asymptotic rate N−2. We emphasize

that this heuristic argument applies to both the band-limited and also the compactly

supported case.

For simplicity we assume L = 1, and let f ∈ E 2
L (R

2) be a 2D cartoon-like im-

age. The main concern is to derive the estimate (19) for the shearlet coefficients
〈

f , ψ̊ j,k,m

〉

, where ψ̊ denotes either ψ or ψ̃ . We consider only the case ψ̊ = ψ , since
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the other case can be handled similarly. For compactly supported shearlet, we can

think of our generators having the form ψ(x) = η(x1)φ(x2), x = (x1,x2), where η
is a wavelet and φ a bump (or a scaling) function. It will become important, that the

wavelet ‘points’ in the x1-axis direction, which corresponds to the ‘short’ direction

of the shearlet. For band-limited generators, we can think of our generators having

the form ψ̂(ξ ) = η̂(ξ2/ξ1)φ̂ (ξ2) for ξ = (ξ1,ξ2). We, moreover, restrict our anal-

ysis to shearlets ψ j,k,m since the frame elements ψ̃ j,k,m can be handled in a similar

way.

We now consider three cases of coefficients
〈

f ,ψ j,k,m

〉

:

(a) Shearlets ψ j,k,m whose support does not overlap with the boundary ∂B.

(b) Shearlets ψ j,k,m whose support overlaps with ∂B and is nearly tangent.

(c) Shearlets ψ j,k,m whose support overlaps with ∂B, but not tangentially.

Fig. 8 Sketch of the three

cases: (a) the support of ψ j,k,m

does not overlap with ∂ B,

(b) the support of ψ j,k,m does

overlap with ∂ B and is nearly

tangent, (c) the support of

ψ j,k,m does overlap with ∂ B,

but not tangentially. Note

that only a section of the

discontinuity curve ∂ B is

shown, and that for the case

of band-limited shearlets only

the effective support is shown.

B

∂ B

(a)(c) (b)

It turns out that only coefficients from case (b) will be significant. Case (b) is,

loosely speaking, the situation, where the wavelet η crosses the discontinuity curve

over the entire ‘height’ of the shearlet, see Fig. 8.

Case (a). Since f is C2-smooth away from ∂B, the coefficients
∣

∣

〈

f ,ψ j,k,m

〉∣

∣ will

be sufficiently small owing to the approximation property of the wavelet η . The

situation is sketched in Fig. 8.

Case (b). At scale j > 0, there are about O(2 j/2) coefficients, since the shearlet

elements are of length 2− j/2 (and ‘thickness’ 2− j) and the length of ∂B is finite. By

Hölder’s inequality, we immediately obtain

∣

∣

〈

f ,ψ j,k,m

〉∣

∣≤ ‖ f‖L∞

∥

∥ψ j,k,m

∥

∥

L1 ≤C1 2−3 j/4‖ψ‖L1 ≤C2 ·2
−3 j/4

for some constants C1,C2 > 0. In other words, we have O(2 j/2) coefficients bounded

by C2 · 2−3 j/4. Assuming the case (a) and (c) coefficients are negligible, the nth
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largest coefficient c∗n is then bounded by

|c∗n| ≤C ·n−3/2,

which was what we aimed to show; compare to (8) in Dfn. 1. This in turn implies

(cf. estimate (9)) that

∑
n>N

|c∗n|
2 ≤ ∑

n>N

C ·n−3 ≤C ·

∫ ∞

N
x−3dx ≤C ·N−2.

By Lemma 1, as desired it follows that

‖ f − fN‖
2
L2 ≤

1

A
∑

n>N

|c∗n|
2 ≤C ·N−2,

where A denotes the lower frame bound of the shearlet frame.

Case (c). Finally, when the shearlets are sheared away from the tangent position

in case (b), they will again be small. This is due to the frequency support of f and

ψλ as well as to the directional vanishing moment conditions assumed in Setup 1

or 2, which will be formally introduced in the next subsection.

Summarising our findings, we have argued, at least heuristically, that shearlet

frames provide optimal sparse approximation of cartoon-like images as defined in

Dfn. 1.

5.1.2 Required Hypotheses

After having build up some intuition on why the optimal sparse approximation rate

is achievable using shearlets, we will now go into more details and discuss the hy-

potheses required for the main result. This will along the way already highlight some

differences between the band-limited and compactly supported case.

For this discussion, assume that f ∈ L2(R2) is piecewise CL+1-smooth with a

discontinuity on the line L : x1 = sx2, s ∈ R, so that the function f is well approx-

imated by two 2D polynomials of degree L > 0, one polynomial on either side of

L , and denote this piecewise polynomial q(x1,x2). We denote the restriction of q

to lines x1 = sx2 + t, t ∈R, by pt(x2) = q(sx2 + t,x2). Hence, pt is a 1D polynomial

along lines parallel to L going through (x1,x2) = (t,0); these lines are marked by

dashed lines in Fig. 9b.

We now aim at estimating the absolute value of a shearlet coefficient
〈

f ,ψ j,k,m

〉

by
∣

∣

〈

f ,ψ j,k,m

〉∣

∣≤
∣

∣

〈

q,ψ j,k,m

〉∣

∣+
∣

∣

〈

(q− f ),ψ j,k,m

〉∣

∣ . (16)

We first observe that
∣

∣

〈

f ,ψ j,k,m

〉∣

∣ will be small depending on the approximation

quality of the (piecewise) polynomial q and the decay of ψ in the spatial domain.

Hence it suffices to focus on estimating
∣

∣

〈

q,ψ j,k,m

〉∣

∣.
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L̂ : ξ2 =−sξ1

L : x1 = sx2

S : x1 =− k

2 j/2 x2

ξ2

ξ1 x1

x2

Fig. 9a Shaded region: The effective part of

supp ψ̂ j,k,m in the frequency domain.

Fig. 9b Shaded region: The effective part

of suppψ j,k,m in the spatial domain. Dashed

lines: the direction of line integration I(t).

For this, let us consider the line integration along the direction (x1,x2) = (s,1) as

follows: For t ∈ R fixed, define integration of qψ j,k,m along the lines x1 = sx2 + t,

x2 ∈ R, as

I(t) =

∫

R

pt(x2)ψ j,k,m(sx2 + t,x2)dx2,

Observe that
∣

∣

〈

q,ψ j,k,m

〉∣

∣ = 0 is equivalent to I ≡ 0. For simplicity, let us now as-

sume m = (0,0). Then

I(t) = 2
3
4 j

∫

R

pt(x2)ψ(SkA2 j(sx2 + t,x2))dx2

= 2
3
4 j

L

∑
ℓ=0

cℓ

∫

R

xℓ2ψ(SkA2 j(sx2 + t,x2))dx2

= 2
3
4 j

L

∑
ℓ=0

cℓ

∫

R

xℓ2ψ(A2 j Sk/2 j/2+s(t,x2))dx2,

and, by the Fourier slice theorem [12] (see also (28)), it follows that

|I(t)|= 2
3
4 j
∣

∣

∣

L

∑
ℓ=0

2−
ℓ
2 j

(2π)ℓ
cℓ

∫

R

( ∂

∂ξ2

)ℓ
ψ̂(A−1

2 j S−T

k/2 j/2+s
(ξ1,0))e

2π iξ1tdξ1

∣

∣

∣.

Note that

∫

R

( ∂

∂ξ2

)ℓ
ψ̂(A−1

2 j S−T

k/2 j/2+s
(ξ1,0))e

2π iξ1tdξ1 = 0 for almost all t ∈R

if and only if
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( ∂

∂ξ2

)ℓ
ψ̂(A−1

2 j S−T

k/2 j/2+s
(ξ1,0)) = 0 for almost all ξ1 ∈ R.

Therefore, to ensure I(t) = 0 for any 1D polynomial pt of degree L > 0, we require

the following condition:

( ∂

∂ξ2

)ℓ
ψ̂ j,k,0(ξ1,−sξ1) = 0 for almost all ξ1 ∈R and ℓ= 0, . . . ,L.

These are the so-called directional vanishing moments (cf. [7]) in the direction (s,1).
We now consider the two cases, band-limited shearlets and compactly supported

shearlets, separately.

If ψ is a band-limited shearlet generator, we automatically have

( ∂

∂ξ2

)ℓ
ψ̂ j,k,m(ξ1,−sξ1) = 0 for ℓ= 0, . . . ,L if |s+

k

2 j/2
| ≥ 2− j/2, (17)

since suppψ̂ ⊂ D , where D = {ξ ∈ R2 : |ξ2/ξ1| ≤ 1} as discussed in Chapter [1].

Observe that the ‘direction’ of suppψ j,k,m is determined by the line S : x1 =

− k

2 j/2 x2. Hence, equation (17) implies that, if the direction of suppψ j,k,m, i.e., of

S is not close to the direction of L in the sense that |s+ k

2 j/2 | ≥ 2− j/2, then

|
〈

q,ψ j,k,m

〉

|= 0.

However, if ψ is a compactly supported shearlet generator, equation (17) can

never hold, since it requires that suppψ̂ ⊂ D . Therefore, for compactly supported

generators, we will assume that ( ∂
∂ξ2

)lψ̂ , l = 0,1, has sufficient decay in Dc to

force I(t) and hence |
〈

q,ψ j,k,m

〉

| to be sufficiently small. It should be emphasized

that the drawback that I(t) will only be ‘small’ for compactly supported shearlets

(due to the lack of exact directional vanishing moments) will be compensated by the

perfect localization property which still enables optimal sparsity.

Thus, the developed conditions ensure that both terms on the right hand side of

(16) can be effectively bounded.

This discussion gives naturally rise to the following hypotheses for optimal

sparse approximation. Let us start with the hypotheses for the band-limited case.

Setup 1. The generators φ ,ψ , ψ̃ ∈ L2(R2) are band-limited and C∞ in the

frequency domain. Furthermore, the shearlet system SH(φ ,ψ , ψ̃;c) forms a

frame for L2(R2) (cf. the construction in Chapter [1] or Sect. 4.2).

In contrast to this, the conditions for the compactly supported shearlets are as

follows:
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Setup 2. The generators φ ,ψ , ψ̃ ∈ L2(R2) are compactly supported, and the

shearlet system SH(φ ,ψ , ψ̃ ;c) forms a frame for L2(R2). Furthermore, for all

ξ = (ξ1,ξ2) ∈R2, the function ψ satisfies

(i) |ψ̂(ξ )| ≤C ·min{1, |ξ1|
δ} ·min{1, |ξ1|

−γ} ·min{1, |ξ2|
−γ}, and

(ii)
∣

∣

∣

∂
∂ξ2

ψ̂(ξ )
∣

∣

∣≤ |h(ξ1)|
(

1+ |ξ2|
|ξ1|

)−γ
,

where δ > 6, γ ≥ 3, h ∈ L1(R), and C a constant, and ψ̃ satisfies analogous

conditions with the obvious change of coordinates (cf. the construction in

Sect. 4.3).

Conditions (i) and (ii) in Setup 2 are exactly the decay assumptions on ( ∂
∂ξ2

)lψ̂ ,

l = 0,1, discussed above that guarantees control of the size of I(t).

5.1.3 Main Result

We are now ready to present the main result, which states that under Setup 1 or

Setup 2 shearlets provide optimally sparse approximations for cartoon-like images.

Theorem 5 ( [10, 17]). Assume Setup 1 or 2. Let L ∈ N. For any ν > 0 and µ >
0, the shearlet frame SH(φ ,ψ , ψ̃;c) provides optimally sparse approximations of

functions f ∈ E 2
L (R

2) in the sense of Dfn. 1, i.e.,

‖ f − fN‖
2
L2 = O(N−2(logN)3), as N → ∞, (18)

and

|c∗n|. n−3/2(logn)3/2, as n → ∞, (19)

where c = {〈 f , ψ̊λ 〉 : λ ∈ Λ, ψ̊ = ψ or ψ̊ = ψ̃} and c∗ = (c∗n)n∈N is a decreasing (in

modulus) rearrangement of c.

5.1.4 Band-Limitedness versus Compactly Supportedness

Before we delve into the proof of Thm. 5, we first carefully discuss the main dif-

ferences between band-limited shearlets and compactly supported shearlets which

requires adaptions of the proof.

In the case of compactly supported shearlets, we can consider the two cases

|suppψ̊λ ∩ ∂B| 6= 0 and |suppψ̊λ ∩ ∂B| = 0. In case the support of the shearlet

intersects the discontinuity curve ∂B of the cartoon-like image f , we will estimate

each shearlet coefficient 〈 f , ψ̊λ 〉 individually using the decay assumptions on ψ̂
in Setup 2, and then apply a simple counting estimate to obtain the sought esti-

mates (18) and (19). In the other case, in which the shearlet does not interact with
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the discontinuity, we are simply estimating the decay of shearlet coefficients of a

C2 function. The argument here is similar to the approximation of smooth functions

using wavelet frames and rely on estimating coefficients at all scales using the frame

property.

In the case of band-limited shearlets, it is not allowed to consider two cases

|suppψλ ∩ ∂B| = 0 and |suppψλ ∩ ∂B| 6= 0 separately, since all shearlet elements

ψλ intersect the boundary of the set B. In fact, one needs to first localize the cartoon-

like image f by compactly supported smooth window functions associated with

dyadic squares using a partition of unity. Letting fQ denote such a localized version,

we then estimate 〈 fQ,ψλ 〉 instead of directly estimating the shearlet coefficients

〈 f ,ψλ 〉. Moreover, in the case of band-limited shearlets, one needs to estimate the

sparsity of the sequence of the shearlet coefficients rather than analyzing the decay

of individual coefficients.

In the next subsections we present the proof – first for band-limited, then for

compactly supported shearlets – in the case L = 1, i.e., when the discontinuity curve

in the model of cartoon-like images is smooth. Finally, the extension to L 6= 1 will

be discussed for both cases simultaneously.

We will first, however, introduce some notation used in the proofs and prove a

helpful lemma which will be used in both cases: band-limited and compactly sup-

ported shearlets. For a fixed j, we let Q j be a collection of dyadic squares defined

by

Q j = {Q = [ l1
2 j/2 ,

l1+1

2 j/2 ]× [ l2
2 j/2 ,

l2+1

2 j/2 ] : l1, l2 ∈ Z}.

We let Λ denote the set of all indices ( j,k,m) in the shearlet system and define

Λ j = {( j,k,m) ∈ Λ : −⌈2 j/2⌉ ≤ k ≤ ⌈2 j/2⌉,m ∈ Z
2}.

For ε > 0, we define the set of ‘relevant’ indices on scale j as

Λ j(ε) = {λ ∈ Λ j : | 〈 f ,ψλ 〉|> ε}

and, on all scales, as

Λ(ε) = {λ ∈ Λ : | 〈 f ,ψλ 〉|> ε}.

Lemma 2. Assume Setup 1 or 2. Let f ∈ E 2
L (R

2). Then the following assertions

hold:

(i) For some constant C, we have

#
∣

∣Λ j(ε)
∣

∣ = 0 for j ≥
4

3
log2(ε

−1)+C (20)

(ii) If

#
∣

∣Λ j(ε)
∣

∣. ε−2/3, (21)

for j ≥ 0, then
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# |Λ(ε)|. ε−2/3 log2(ε
−1), (22)

which, in turn, implies (18) and (19).

Proof. (i). Since ψ ∈ L1(R2) for both the band-limited and compactly supported

setup, we have that

| 〈 f ,ψλ 〉| =
∣

∣

∣

∫

R2
f (x)2

3 j
4 ψ(SkA2 j x−m)dx

∣

∣

∣

≤ 2
3 j
4 ‖ f‖∞

∫

R2
|ψ(SkA2 j x−m)|dx

= 2−
3 j
4 ‖ f‖∞ ‖ψ‖1 . (23)

As a consequence, there is a scale jε such that | 〈 f ,ψλ 〉| < ε for each j ≥ jε . It

therefore follows from (23) that

# |Λ(ε)|= 0 for j >
4

3
log2(ε

−1)+C.

(ii). By assertion (i) and estimate (21), we have that

# |Λ(ε)| ≤C ε−2/3 log2(ε
−1).

From this, the value ε can be written as a function of the total number of coefficients

n = # |Λ(ε)|. We obtain

ε(n)≤C n−3/2(log2(n))
3/2 for sufficiently large n.

This implies that

|c∗n| ≤C n−3/2(log2(n))
3/2

and

∑
n>N

|c∗n|
2 ≤C N−2(log2(N))3 for sufficiently large N > 0,

where c∗n as usual denotes the nth largest shearlet coefficient in modulus. ⊓⊔

5.1.5 Proof for Band-Limited Shearlets for L = 1

Since we assume L = 1, we have that f ∈ E 2
L (R

2) = E 2(R2). As mentioned in

the previous section, we will now measure the sparsity of the shearlet coefficients

{〈 f , ψ̊λ 〉 : λ ∈ Λ}. For this, we will use the weak ℓp quasi norm ‖·‖wℓp defined as

follows. For a sequence s = (si)i∈I , we let, as usual, s∗n be the nth largest coefficient

in s in modulus. We then define:

‖s‖wℓp = sup
n>0

n
1
p |s∗n| .

One can show [19] that this definition is equivalent to
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‖s‖wℓp =
(

sup
{

# |{i : |si|> ε}|ε p : ε > 0
}

) 1
p
.

We will only consider the case ψ̊ = ψ since the case ψ̊ = ψ̃ can be handled

similarly. To analyze the decay properties of the shearlet coefficients (〈 f ,ψλ 〉)λ at

a given scale parameter j ≥ 0, we smoothly localize the function f near dyadic

squares. Fix the scale parameter j ≥ 0. For a non-negative C∞ function w with sup-

port in [0,1]2, we then define a smooth partition of unity

∑
Q∈Q j

wQ(x) = 1, x ∈ R
2,

where, for each dyadic square Q ∈ Q j, wQ(x) = w(2 j/2x1 − l1,2
j/2x2 − l2). We will

then examine the shearlet coefficients of the localized function fQ := f wQ. With this

smooth localization of the function f , we can now consider the two separate cases,

|suppwQ ∩∂B|= 0 and |suppwQ ∩∂B| 6= 0. Let

Q j = Q
0
j ∪Q

1
j ,

where the union is disjoint and Q0
j is the collection of those dyadic squares Q ∈ Q j

such that the edge curve ∂B intersects the support of wQ. Since each Q has side

length 2− j/2 and the edge curve ∂B has finite length, it follows that

#|Q0
j |. 2 j/2. (24)

Similarly, since f is compactly supported in [0,1]2, we see that

#|Q1
j |. 2 j. (25)

The following theorems analyzes the sparsity of the shearlets coefficients for each

dyadic square Q ∈ Q j.

Theorem 6 ( [10]). Let f ∈ E 2(R2). For Q ∈ Q0
j , with j ≥ 0 fixed, the sequence of

shearlet coefficients {dλ := 〈 fQ,ψλ 〉 : λ ∈ Λ j} obeys

∥

∥

∥
(dλ )λ∈Λ j

∥

∥

∥

wℓ2/3
. 2−

3 j
4 .

Theorem 7 ( [10]). Let f ∈ E 2(R2). For Q ∈ Q1
j , with j ≥ 0 fixed, the sequence of

shearlet coefficients {dλ := 〈 fQ,ψλ 〉 : λ ∈ Λ j} obeys

∥

∥

∥(dλ )λ∈Λ j

∥

∥

∥

wℓ2/3
. 2−

3 j
2 .

As a consequence of these two theorems, we have the following result.

Theorem 8 ( [10]). Suppose f ∈ E 2(R2). Then, for j ≥ 0, the sequence of the shear-

let coefficients {cλ := 〈 f ,ψλ 〉 : λ ∈ Λ j} obeys
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∥

∥

∥(cλ )λ∈Λ j

∥

∥

∥

wℓ2/3
. 1.

Proof. Using Thm. 6 and 7, by the p-triangle inequality for weak ℓp spaces, p ≤ 1,

we have

‖〈 f ,ψλ 〉‖
2/3

wℓ2/3 ≤ ∑
Q∈Q j

∥

∥〈 fQ,ψλ 〉
∥

∥

2/3

wℓ2/3

= ∑
Q∈Q0

j

∥

∥〈 fQ,ψλ 〉
∥

∥

2/3

wℓ2/3 + ∑
Q∈Q1

j

∥

∥〈 fQ,ψλ 〉
∥

∥

2/3

wℓ2/3

≤ C #
∣

∣Q
0
j

∣

∣ 2− j/2 +C #
∣

∣Q
1
j

∣

∣ 2− j.

Equations (24) and (25) complete the proof. ⊓⊔

We can now prove Thm. 5 for the band-limited setup.

Proof (Thm. 5 for Setup 1). From Thm. 8, we have that

#
∣

∣Λ j(ε)
∣

∣≤Cε−2/3,

for some constant C > 0, which, by Lemma 2, completes the proof. ⊓⊔

5.1.6 Proof for Compactly Supported Shearlets for L = 1

To derive the sought estimates (18) and (19) for dimension d = 2, we will study two

separate cases: Those shearlet elements ψλ which do not interact with the disconti-

nuity curve, and those elements which do.

Case 1. The compact support of the shearlet ψλ does not intersect the boundary of

the set B, i.e., |suppψλ ∩∂B|= 0.

Case 2. The compact support of the shearlet ψλ does intersect the boundary of the

set B, i.e., |suppψλ ∩∂B| 6= 0.

For Case 1 we will not be concerned with decay estimates of single coefficients

〈 f ,ψλ 〉, but with the decay of sums of coefficients over several scales and all shears

and translations. The frame property of the shearlet system, the C2-smoothness of

f , and a crude counting argument of the cardinal of the essential indices λ will

be enough to provide the needed approximation rate. The proof of this is similar

to estimates of the decay of wavelet coefficients for C2 smooth functions. In fact,

shearlet and wavelet frames gives the same approximation decay rates in this case.

Due to space limitation of this exposition, we will not go into the details of this

estimate, but rather focus on the main part of the proof, Case 2.

For Case 2 we need to estimate each coefficient 〈 f ,ψλ 〉 individually and, in par-

ticular, how |〈 f ,ψλ 〉| decays with scale j and shearing k. Without loss of generality

we can assume that f = f0 + χB f1 with f0 = 0. We let then M denote the area of

integration in 〈 f ,ψλ 〉, that is,
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M = suppψλ ∩B.

Further, let L be an affine hyperplane (in other and simpler words, a line in R2)

that intersects M and thereby divides M into two sets Mt and Ml , see the sketch in

Fig. 10. We thereby have that

〈 f ,ψλ 〉= 〈χM f ,ψλ 〉= 〈χMt f ,ψλ 〉+
〈

χMl
f ,ψλ

〉

. (26)

The hyperplane will be chosen in such way that the area of Mt is sufficiently small.

In particular, area(Mt) should be small enough so that the following estimate

∣

∣〈χMt f ,ψλ 〉
∣

∣≤ ‖ f‖L∞ ‖ψλ‖L∞ area(Mt)≤ µ 23 j/4 area(Mt) (27)

do not violate (19). If the hyperplane L is positioned as indicated in Fig. 10, it

can indeed be shown by crudely estimating area(Mt) that (27) does not violate es-

timate (19). We call estimates of this form, where we have restricted the integration

to a small part Mt of M, truncated estimates. Hence, in the following we assume

that (26) reduces to 〈 f ,ψλ 〉=
〈

χMl
f ,ψλ

〉

.

Fig. 10 Sketch of suppψλ ,

Ml , Mt , and L . The lines of

integrations are shown.

L

Mt

Ml

∂ B

suppψλ

New origin

For the term
〈

χMl
f ,ψλ

〉

we will have to integrate over a possibly much large part

Ml of M. To handle this, we will use that ψλ only interacts with the discontinuity

of χMl
f along a line inside M. This part of the estimate is called the linearized

estimate, since the discontinuity curve in
〈

χMl
f ,ψλ

〉

has been reduced to a line. In
〈

χMl
f ,ψλ

〉

we are, of course, integrating over two variables, and we will as the inner

integration always choose to integrate along lines parallel to the ‘singularity’ line L ,

see Fig. 10. The important point here is that along these lines, the function f is C2-

smooth without discontinuities on the entire interval of integration. This is exactly

the reason for removing the Mt -part from M. Using the Fourier slice theorem we will
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then turn the line integrations along L in the spatial domain into line integrations

in the frequency domain. The argumentation is as follows: Consider g : R2 → C

compactly supported and continuous, and let p : R → C be a projection of g onto,

say, the x2 axis, i.e., p(x1) =
∫

R
g(x1,x2)dx2. This immediately implies that p̂(ξ1) =

ĝ(ξ1,0) which is a simplified version of the Fourier slice theorem. By an inverse

Fourier transform, we then have

∫

R

g(x1,x2)dx2 = p(x1) =
∫

R

ĝ(ξ1,0)e
2π ix1ξ1 dξ1, (28)

and hence
∫

R

|g(x1,x2)|dx2 =
∫

R

|ĝ(ξ1,0)|dξ1. (29)

The left-hand side of (29) corresponds to line integrations of g along vertical lines

x1 = constant. By applying shearing to the coordinates x ∈R
2, we can transform L

into a line of the form
{

x ∈R2 : x1 = constant
}

, whereby we can apply (29) directly.

We will make this idea more concrete in the proof of the following key estimate

for linearized terms of the form 〈χMl
f ,ψλ 〉. Since we assume the truncated estimate

as negligible, this will in fact allow us to estimate 〈 f ,ψλ 〉.

Theorem 9. Let ψ ∈ L2(R2) be compactly supported, and assume that ψ satisfies

the conditions in Setup 2. Further, let λ be such that suppψλ ∩ ∂B 6= /0. Suppose

that f ∈ E (R2) and that ∂B is linear on the support of ψλ in the sense

suppψλ ∩∂B ⊂ L

for some affine hyperplane L of R2. Then,

(i) if L has normal vector (−1,s) with |s| ≤ 3,

|〈 f ,ψλ 〉|.
2−3 j/4

∣

∣k+ 2 j/2s
∣

∣

3
,

(ii) if L has normal vector (−1,s) with |s| ≥ 3/2,

|〈 f ,ψλ 〉|. 2−9 j/4,

(iii) if L has normal vector (0,s) with s ∈ R, then

|〈 f ,ψλ 〉|. 2−11 j/4.

Proof. Fix λ , and let f ∈ E (R2). We can without loss of generality assume that f

is only nonzero on B.

Cases (i) and (ii). We first consider the cases (i) and (ii). In these cases, the

hyperplane can be written as

L =
{

x ∈ R
2 : 〈x− x0,(−1,s)〉= 0

}
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for some x0 ∈ R2. We shear the hyperplane by S−s for s ∈R and obtain

S−sL =
{

x ∈R
2 : 〈Ssx− x0,(−1,s)〉= 0

}

=
{

x ∈R
2 :
〈

x− S−sx0,(Ss)
T (−1,s)

〉

= 0
}

=
{

x ∈R
2 : 〈x− S−sx0,(−1,0)〉= 0

}

=
{

x = (x1,x2) ∈ R
2 : x1 = x̂1

}

, where x̂ = S−sx0,

which is a line parallel to the x2-axis. Here the power of shearlets comes into play,

since it will allow us to only consider line singularities parallel to the x2-axis. Of

course, this requires that we also modify the shear parameter of the shearlet, that is,

we will consider the right hand side of

〈

f ,ψ j,k,m

〉

= 〈 f (Ss·),ψ j,k̂,m〉

with the new shear parameter k̂ = k+2 j/2s. The integrand in 〈 f (Ss·),ψ j,k̂,m〉 has the

singularity plane exactly located on the line x1 = x̂1, i.e., on S−sL .

To simplify the expression for the integration bounds, we will fix a new origin

on S−sL , that is, on x1 = x̂1; the x2 coordinate of the new origin will be fixed in the

next paragraph. Since f is only nonzero of B, the function f will be equal to zero on

one side of S−sL , say, x1 < x̂1. It therefore suffices to estimate

〈 f0(Ss·)χΩ ,ψ j,k̂,m〉

for f0 ∈Cβ (R2) and Ω = R+×R. Let us assume that k̂ < 0. The other case can be

handled similarly.

Since ψ is compactly supported, there exists some c > 0 such that suppψ ⊂
[−c,c]2. By a rescaling argument, we can assume c = 1. Let

P j,k :=
{

x ∈ R
2 : |x1 + 2− j/2kx2| ≤ 2− j, |x2| ≤ 2− j/2

}

, (30)

With this notation we have suppψ j,k,0 ⊂P j,k. We say that the shearlet normal direc-

tion of the shearlet box P j,0 is (1,0), thus the shearlet normal of a sheared element

ψ j,k,m associated with P j,k is (1,k/2 j/2). Now, we fix our origin so that, relative to

this new origin, it holds that

suppψ j,k̂,m ⊂ P j,k̂ +(2− j,0) =: P̃ j,k.

Then one face of P̃ j,k̂ intersects the origin.

Next, observe that the parallelogram P̃ j,k has sides x2 =±2− j/2,

2 jx1 + 2 j/2k̂x2 = 0, and

2 jx1 + 2 j/2k̂x2 = 2.
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As it is only a matter of scaling, we replace the right hand side of the last equation

with 1 for simplicity. Solving the two last equalities for x2 gives the following lines:

L1 : x2 =−
2 j/2

k̂
x1, and

L2 : x2 =−
2 j/2

k̂
x1 +

2− j/2

k̂
,

We shows that

∣

∣

∣

〈

f0(Ss·)χΩ ,ψ j,k̂,m

〉∣

∣

∣.

∣

∣

∣

∣

∫ K1

0

∫ L1

L2

f0(Ssx)ψ j,k̂,m(x)dx2dx1,

∣

∣

∣

∣

(31)

where the upper integration bound for x1 is K1 = 2− j −2− jk̂; this follows from solv-

ing L2 for x1 and using that |x2| ≤ 2− j/2. We remark that the inner integration over

x2 is along lines parallel to the singularity line ∂Ω = {0}×R; as mentioned, this

allows us to better handle the singularity and will be used several times throughout

this section.

We consider the one-dimensional Taylor expansion for f0(Ss·) at each point x =
(x1,x2) ∈ L2 in the x2-direction:

f0(Ssx) = a(x1)+ b(x1)

(

x2 +
2 j/2

k̂
x1

)

+ c(x1,x2)

(

x2 +
2 j/2

k̂
x1

)2

,

where a(x1),b(x1) and c(x1,x2) are all bounded in absolute value by C(1+ |s|)2.

Using this Taylor expansion in (31) yields

∣

∣

∣

〈

f0(Ss·)χΩ ,ψ
j,k̂,m

〉∣

∣

∣
. (1+ |s|)2

∣

∣

∣

∣

∣

∫ K1

0

3

∑
l=1

Il(x1)dx1

∣

∣

∣

∣

∣

, (32)

where

I1(x1) =

∣

∣

∣

∣

∫ L2

L1

ψ
j,k̂,m(x)dx2

∣

∣

∣

∣

, (33)

I2(x1) =

∣

∣

∣

∣

∫ L2

L1

(x2 +K2)ψ j,k̂,m(x)dx2

∣

∣

∣

∣

, (34)

I3(x1) =

∣

∣

∣

∣

∣

∫ −2− j/2/k̂

0
(x2)

2 ψ j,k̂,m(x1,x2 −K2)dx2

∣

∣

∣

∣

∣

, (35)

and

K2 =
2 j/2

k̂
x1.

We next estimate each integral I1 – I3 separately.
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Integral I1. We first estimate I1(x1). The Fourier slice theorem, see also (28),

yields directly that

I1(x1) =
∣

∣

∣

∫

R

ψ j,k̂,m(x)dx2

∣

∣

∣=
∣

∣

∣

∫

R2
ψ̂ j,k̂,m(ξ1,0)e2π ix1ξ1dξ1

∣

∣

∣.

By the assumptions from Setup 2 we have, for all ξ = (ξ1,ξ2,ξ3) ∈ R2,

∣

∣ψ̂ j,k̂,m(ξ )
∣

∣. 2−3 j/4
∣

∣h(2− jξ1)
∣

∣

(

1+
∣

∣

∣

2− j/2ξ2

2− jξ1
+ k̂

∣

∣

∣

)−γ

for some h ∈ L1(R). Hence, we can continue our estimate of I1 by

I1(x1).
∫

R

2−3 j/4
∣

∣h(2− jξ1)
∣

∣(1+
∣

∣k̂
∣

∣)−γ dξ1,

and further, by a change of variables,

I1(x1).
∫

R

2 j/4 |h(ξ1)| (1+ |k̂|)−γ dξ1 . 2 j/4(1+ |k̂|)−γ , (36)

since h ∈ L1(R).
Integral I2. We start estimating I2(x1) by

I2(x1)≤

∣

∣

∣

∣

∫

R

x2 ψ j,k̂,m(x)dx2

∣

∣

∣

∣

+ |K2|

∣

∣

∣

∣

∫

R

ψ j,k̂,m(x)dx2

∣

∣

∣

∣

=: S1 + S2.

Applying the Fourier slice theorem again and then utilizing the decay assumptions

on ψ̂ yields

S1 =

∣

∣

∣

∣

∫

R

x2ψ j,k̂,m(x)dx2

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

R

(

∂

∂ξ2
ψ̂ j,k̂,m

)

(ξ1,0)e2π ix1ξ1 dξ1

∣

∣

∣

∣

.

∫

R

2− j/22−3 j/4
∣

∣h(2− jξ1)
∣

∣(1+ |k̂|)−γ dξ1 . 2− j/4(1+ |k̂|)−γ .

Since |x1| ≤ −k̂1/2 j, we have K2 ≤ 2− j/2. The following estimate of S2 then follows

directly from the estimate of I1:

S2 . |K2|2
j/4 (1+ |k̂|)−γ . 2− j/4 (1+ |k̂|)−γ .

From the two last estimate, we conclude that I2(x1). 2− j/4 (1+ |k̂|)−γ .

Integral I3. Finally, we estimate I3(x1) by

I3(x1)≤

∣

∣

∣

∣

∣

∫ 2− j/2/k̂

0
(x2)

2 ‖ψ
j,k̂,m‖L∞ dx2

∣

∣

∣

∣

∣
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. 23 j/4

∣

∣

∣

∣

∣

∫ −2− j/2/k̂

0
(x2)

2 dx2

∣

∣

∣

∣

∣

. 2−3 j/4 |k̂|−3. (37)

We see that I2 decays faster than I1, hence we can leave I2 out of our analysis.

Applying (36) and (37) to (32), we obtain

∣

∣

∣

〈

f0(Ss·)χΩ ,ψ j,k̂,m

〉∣

∣

∣. (1+ |s|)2

(

2−3 j/4

(1+ |k̂|)γ−1
+

2−7 j/4

|k̂|2

)

. (38)

Suppose that s ≤ 3. Then (38) reduces to

∣

∣

〈

f ,ψ j,k,m

〉∣

∣.
2−3 j/4

(1+ |k̂|)γ−1
+

2−7 j/4

|k̂|2

.
2−3 j/4

(1+ |k̂|)3
,

since γ ≥ 4. This proves (i).

On the other hand, if s ≥ 3/2, then

∣

∣

〈

f ,ψ j,k,m

〉∣

∣. 2−9 j/4.

To see this, note that

2−
3
4 j

(1+ |k+ s2 j/2|)3
=

2−
9
4 j

(2− j/2 + |k/2− j/2+ s|)3
≤

2−
9
4 j

|k/2 j/2 + s|3

and

|k/2 j/2 + s| ≥ |s|− |k/2 j/2| ≥ 1/2− 2− j/2 ≥ 1/4

for sufficiently large j ≥ 0, since |k| ≤
⌈

2 j/2
⌉

≤ 2 j/2 + 1, and (ii) is proven.

Case (iii). Finally, we need to consider the case (iii), in which the normal

vector of the hyperplane L is of the form (0,s) for s ∈ R. For this, let Ω̃ =
{

x ∈ R2 : x2 ≥ 0
}

. As in the first part of the proof, it suffices to consider coeffi-

cients of the form
〈

χΩ̃ f0,ψ j,k,m

〉

, where suppψ j,k,m ⊂ P j,k − (2− j,0) = P̃ j,k with

respect to some new origin. As before, the boundary of P̃ j,k intersects the origin.

By the assumptions in Setup 2, we have that

(

∂

∂ξ1

)ℓ

ψ̂(0,ξ2) = 0 for ℓ= 0,1,

which implies that

∫

R

xℓ1ψ(x)dx1 = 0 for all x2 ∈ R and ℓ= 0,1.

Therefore, we have
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∫

R

xℓ1ψ(Skx)dx1 = 0 for all x2 ∈ R,k ∈ R, and ℓ= 0,1, (39)

since a shearing operation Sk preserves vanishing moments along the x1 axis. Now,

we employ Taylor expansion of f0 in the x1-direction (that is, again along the sin-

gularity line ∂Ω̃ ). By (39) everything but the last term in the Taylor expansion

disappears, and we obtain

∣

∣

〈

χΩ̃ f0,ψ j,k,m

〉∣

∣. 23 j/4
∫ 2− j/2

0

∫ 2− j

−2− j
(x1)

2 dx1dx2

. 23 j/4 2− j/2 2−3 j = 2−11 j/4,

which proves claim (iii). ⊓⊔

We are now ready show the estimates (21) and (22), which by Lem. 2(ii) com-

pletes the proof of Thm. 5.

For j ≥ 0, fix Q ∈ Q0
j , where Q0

j ⊂ Q j is the collection of dyadic squares that

intersects L . We then have the following counting estimate:

#
∣

∣M j,k,Q

∣

∣. |k+ 2 j/2s|+ 1 (40)

for each |k| ≤
⌈

2 j/2
⌉

, where

M j,k,Q :=
{

m ∈ Z
2 : |suppψ j,k,m ∩L ∩Q| 6= 0

}

To see this claim, note that for a fixed j and k we need to count the number

of translates m ∈ Z2 for which the support of ψ j,k,m intersects the discontinuity

line L : x1 = sx2 + b, b ∈ R, inside Q. Without loss of generality, we can assume

that Q =
[

0,2− j/2
]2

, b = 0, and suppψ j,k,0 ⊂ C ·P j,k, where P j,k is defined as

in (30). The shearlet ψ j,k,m will therefore be concentrated around the line Sm : x1 =

− k

2 j/2 x2 + 2− jm1 + 2− j/2m2, see also Fig. 9b. We will count the number of m =

(m1,m2) ∈ Z2 for which these two lines intersect inside Q since this number, up to

multiplication with a constant independent of the scale j, will be equal to #|M j,k,Q|.

First note that since the size of Q is 2− j/2 × 2− j/2, only a finite number of m2

translates can make Sm ∩L ∩Q 6= /0 whenever m1 ∈ Z is fixed. For a fixed m2 ∈ Z,

we then estimate the number of relevant m1 translates. Equating the x1 coordinates

in L and Sm yields

(

k

2 j/2
+ s

)

x2 = 2− jm1 + 2− j/2m2.

Without loss of generality, we take m2 = 0 which then leads to

2− j |m1| ≤ 2− j/2
∣

∣

∣
k+ 2 j/2s

∣

∣

∣
|x2| ≤ 2− j

∣

∣

∣
k+ 2 j/2s

∣

∣

∣
,

hence |m1| ≤
∣

∣k+ 2 j/2s
∣

∣. This completes the proof of the claim.
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For ε > 0, we will consider the shearlet coefficients larger than ε in absolute

value. Thus, we define:

M j,k,Q(ε) =
{

m ∈ M j,k,Q :
∣

∣

〈

f ,ψ j,k,m

〉∣

∣> ε
}

,

where Q ∈ Q0
j . Since the discontinuity line L has finite length in [0,1]2, we have

the estimate #|Q0
j |. 2 j/2. Assume L has normal vector (−1,s) with |s| ≤ 3. Then,

by Thm. 9(i), |
〈

f ,ψ j,k,m

〉

|> ε implies that

|k+ 2 j/2s| ≤ ε−1/32− j/4. (41)

By Lem. 2(i) and the estimates (40) and (41), we have that

# |Λ(ε)| .

4
3 log2(ε

−1)+C

∑
j=0

∑
Q∈Q0

j

∑
{k̂:|k̂|≤ε−1/32− j/4}

#
∣

∣M j,k,Q(ε)
∣

∣

.

4
3 log2(ε

−1)+C

∑
j=0

∑
Q∈Q0

j

∑
{k̂:|k̂|≤ε−1/32− j/4}

(|k̂|+ 1)

.

4
3 log2(ε

−1)+C

∑
j=0

#
∣

∣Q
0
j

∣

∣ (ε−2/32− j/2)

. ε−2/3

4
3 log2(ε

−1)+C

∑
j=0

1 . ε−2/3 log2(ε
−1),

where, as usual, k̂ = k+ s2 j/2. By Lem. 2(ii), this leads to the sought estimates.

On the other hand, if L has normal vector (0,1) or (−1,s) with |s| ≥ 3, then

| 〈 f ,ψλ 〉|> ε implies that

j ≤
4

9
log2(ε

−1),

which follows by assertions (ii) and (iii) in Thm. 9. Hence, we have

# |Λ(ε)|.

4
9 log2(ε

−1)

∑
j=0

∑
k

∑
Q∈Q0

j

#
∣

∣M j,k,Q(ε)
∣

∣ .

Note that #
∣

∣M j,k,Q

∣

∣ . 2 j/2, since #
∣

∣{m ∈ Z2 : |suppψλ ∩Q| 6= 0}
∣

∣ . 2 j/2 for each

Q ∈ Q j, and that the number of shear parameters k for each scale parameter j ≥ 0

is bounded by C2 j/2. Therefore,

# |Λ(ε)|.

4
9 log2(ε

−1)

∑
j=0

2 j/2 2 j/2 2 j/2 =

4
9 log2(ε

−1)

∑
j=0

23 j/2 . 2
4
9 ·

3
2 ·log2(ε

−1) . ε−2/3.
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This implies our sought estimate (21) which, together with the estimate for |s| ≤ 3,

completes the proof of Thm. 5 for L = 1 under Setup 2. ⊓⊔

5.1.7 The Case L 6= 1

We now turn to the extended class of cartoon-lime images E 2
L (R

2) with L 6= 1, i.e.,

in which the singularity curve is only required to be piecewise C2. We say that

p ∈ R2 is a corner point if ∂B is not C2 smooth in p. The main focus here will be

to investigate shearlets that interact with one of the L corner points. We will argue

that Thm. 5 also holds in this extended setting. The rest of the proof, that is, for

shearlets not interacting with corner points, is of course identical to that presented

in Sect. 5.1.5 and 5.1.6.

In the compactly supported case one can simply count the number of shearlets

interacting with a corner point at a given scale. Using Lem. 2(i), one then arrives at

the sought estimate. On the other hand, for the band-limited case one needs to mea-

sure the sparsity of the shearlet coefficients for f localized to each dyadic square.

We present the details in the remainder of this section.

Band-limited Shearlets In this case, it is sufficient to consider a dyadic square

Q ∈ Q0
j with j ≥ 0 such that Q contains a singular point of edge curve. Especially,

we may assume that j is sufficiently large so that the dyadic square Q ∈Q0
j contains

a single corner point of ∂B. The following theorem analyzes the sparsity of the

shearlet coefficients for such a dyadic square Q ∈ Q0
j .

Theorem 10. Let f ∈ E 2
L (R

2) and Q ∈Q0
j with j ≥ 0 be a dyadic square containing

a singular point of the edge curve. The sequence of shearlet coefficients {dλ :=
〈 fQ,ψλ 〉 : λ ∈ Λ j} obeys

∥

∥

∥(dλ )λ∈Λ j

∥

∥

∥

wℓ2/3
≤C.

The proof of Thm. 10 is based on a proof of an analog result for curvelets [4]. Al-

though the proof in [4] considers only curvelet coefficients, essentially the same ar-

guments, with modifications to the shearlet setting, can be applied to show Thm. 10.

Finally, we note that the number of dyadic squares Q ∈Q0
j containing a singular

point of ∂B is bounded by a constant not depending on j; one could, e.g., take

L as this constant. Therefore, applying Thm. 10 and repeating the arguments in

Sect. 5.1.5 completes the proof of Thm. 5 for L 6= 1 for Setup 1.

Compactly Supported Shearlets In this case, it is sufficient to consider the fol-

lowing two cases.

Case 1. The shearlet ψλ intersects a corner point, in which two C2 curves ∂B0 and

∂B1, say, meet (see Fig. 11a).

Case 2. The shearlet ψλ intersects two edge curves ∂B0 and ∂B1, say, simultane-

ously, but it does not intersect a corner point (see Fig. 11b).

We aim to show that # |Λ(ε)|. ε−
2
3 in both cases. By Lem. 2, this will be suffi-

cient.
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B1

B0

L1

L0

∂ B1

∂ B0

B1

B0

L1

L0

∂ B1

∂ B0

Fig. 11a A shearlet ψλ intersecting a corner

point, in which two edge curves ∂ B0 and ∂ B1

meet. L0 and L1 are tangents to the edge

curves ∂ B0 and ∂ B1 in this corner point.

Fig. 11b A shearlet ψλ intersecting two edge

curves ∂ B0 and ∂ B1 which are part of the

boundary of sets B0 and B1. L0 and L1 are

tangents to the edge curves ∂ B0 and ∂ B1 in

points contained in the support of ψλ .

Case 1. Since there exist only finitely many corner points with total number not

depending on scale j ≥ 0 and the number of shearlets ψλ intersecting each of corner

points is bounded by C2 j/2, we have

# |Λ(ε)|.

4
3 log2 (ε

−1)

∑
j=0

2 j/2 . ε−
2
3 .

Case 2. As illustrated in Fig. 11b, we can write the function f as

f0χB0
+ f1χB1

= ( f0 − f1)χB0
+ f1 in Q,

where f0, f1 ∈ C2([0,1]2) and B0,B1 are two disjoint subsets of [0,1]2. As we indi-

cated before, the rate for optimal sparse approximation is achieved for the smooth

function f1. Thus, it is sufficient to consider f := g0χB0
with g0 = f0 − f1 ∈

C2([0,1]2). By a truncated estimate, we can replace two boundary curves ∂B0 and

∂B1 by hyperplanes of the form

Li =
{

x ∈ R
2 : 〈x− x0,(−1,si)〉= 0

}

for i = 0,1.

In the sequel, we assume maxi=0,1 |si| ≤ 3 and mention that the other cases can be

handled similarly. Next define

Mi
j,k,Q =

{

m ∈ Z
2 : |suppψ j,k,m ∩Li ∩Q| 6= 0

}

for i = 0,1,

for each Q ∈ Q̃0
j , where Q̃0

j denotes the dyadic squares containing the two distinct

boundary curves. By an estimate similar to (40), we obtain

#
∣

∣

∣M
0
j,k,Q ∩M1

j,k,Q

∣

∣

∣. min
i=0,1

(|k+ 2 j/2si|+ 1). (42)
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Applying Thm. 9(i) to each of the hyperplanes L0 and L1, we also have

|〈 f ,ψ j,k,m〉| ≤C ·max
i=0,1

{ 2−
3
4 j

|2 j/2si + k|3

}

. (43)

Let k̂i = k + 2 j/2si for i = 0,1. Without loss of generality, we may assume that

k̂0 ≤ k̂1. Then, (42) and (43) imply that

#
∣

∣M0
j,Q ∩M1

j,Q

∣

∣. |k̂0|+ 1 (44)

and

|〈 f ,ψ j,k,m〉|.
2−

3
4 j

|k̂0|3
. (45)

Using (44) and (45), we now estimate # |Λ(ε)| as follows:

# |Λ(ε)| .

4
3 log2(ε

−1)+C

∑
j=0

∑
Q∈Q̃0

j

∑
k̂0

(1+ |k̂0|)

.

4
3 log2(ε

−1)+C

∑
j=0

#
∣

∣

∣
Q̃0

j

∣

∣

∣
(ε−2/32− j/2). ε−2/3.

Note that #|Q̃0
j | ≤C since the number of Q ∈ Q j containing two distinct boundary

curves ∂B0 and ∂B1 is bounded by a constant independent of j. The result is proved.

⊓⊔

5.2 Optimal Sparse Approximations in 3D

When passing from 2D to 3D, the complexity of anisotropic structures changes

significantly. In particular, as opposed to the two dimensional setting, geometric

structures of discontinuities for piecewise smooth 3D functions consist of two mor-

phologically different types of structure, namely surfaces and curves. Moreover, as

we saw in Sect. 5.1, the analysis of sparse approximations in 2D heavily depends

on reducing the analysis to affine subspaces of R2. Clearly, these subspaces always

have dimension one in 2D. In dimension three, however, we have subspaces of di-

mension one and two, and therefore the analysis needs to performed on subspaces

of the ‘correct’ dimension.

This issue manifests itself when performing the analysis for band-limited shear-

lets, since one needs to replace the Radon transform used in 2D with a so-called

X-ray transform. For compactly supported shearlets, one needs to perform the anal-

ysis on carefully chosen hyperplanes of dimension two. This will allow for using

estimates from the two dimensional setting in a slice by slice manner.
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As in the two dimensional setting, analyzing the decay of individual shearlet

coefficients 〈 f ,ψλ 〉 can be used to show optimal sparsity for compactly supported

shearlets while the sparsity of the sequence of shearlet coefficients with respect to

the weak ℓp quasi norm should be analyzed for band-limited shearlets.

5.2.1 A Heuristic Analysis

As in the heuristic analysis for the 2D situation debated in Sect. 5.1.1, we can again

split the proof into similar three cases as shown in Fig. 12.

(a) Sketch of shearlets whose

support does not intersect the

surface ∂ B.

(b) Sketch of shearlets whose

support overlaps with ∂ B and

is nearly tangent.

(c) Sketch of shearlets whose

support overlaps with ∂ B in a

non-tangentially way.

Fig. 12 The three types of shearlets ψ j,k,m and boundary ∂ B interactions considered in the heuristic

3D analysis. Note that only a section of ∂ B is shown.

Only case (b) differs significantly from the 2D setting, so we restrict out attention

to that case.

For case (b) there are at most O(2 j) coefficients at scale j > 0, since the plate-like

elements are of size 2− j/2 times 2− j/2 (and ‘thickness’ 2− j). By Hölder’s inequality,

we see that

∣

∣

〈

f ,ψ j,k,m

〉∣

∣≤ ‖ f‖L∞

∥

∥ψ j,k,m

∥

∥

L1 ≤C1 2− j ‖ψ‖L1 ≤C2 ·2
− j

for some constants C1,C2 > 0. Hence, we have O(2 j) coefficients bounded by C2 ·
2− j.

Assuming the coefficients in case (a) and (c) to be negligible, the nth largest

shearlet coefficient c∗n is therefore bounded by

|c∗n| ≤C ·n−1,

which in turn implies

∑
n>N

|c∗n|
2 ≤ ∑

n>N

C ·n−2 ≤C ·

∫ ∞

N
x−2dx ≤C ·N−1.
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Hence, we meet the optimal rates (7) and (8) from Dfn. 1. This, at least heuristically,

shows that shearlets provide optimally sparse approximations of 3D cartoon-like

images.

5.2.2 Main Result

The hypotheses needed for the band-limited case, stated in Setup 3, are a straight-

forward generalization of Setup 1 in the two-dimensional setting.

Setup 3. The generators φ ,ψ , ψ̃ , ψ̆ ∈ L2(R3) are band-limited and C∞ in the

frequency domain. Furthermore, the shearlet system SH(φ ,ψ , ψ̃ , ψ̆ ;c) forms

a frame for L2(R3) (cf. the construction in Sect. 4.2).

For the compactly supported generators we will also use hypotheses in the spirit

of Setup 2, but with slightly stronger and more sophisticated assumption on vanish-

ing moment property of the generators i.e., δ > 8 and γ ≥ 4.

Setup 4. The generators φ ,ψ , ψ̃ , ψ̆ ∈ L2(R3) are compactly supported, and

the shearlet system SH(φ ,ψ , ψ̃ , ψ̆ ;c) forms a frame for L2(R3). Furthermore,

the function ψ satisfies, for all ξ = (ξ1,ξ2,ξ3) ∈R3,

(i) |ψ̂(ξ )| ≤C ·min{1, |ξ1|
δ} min{1, |ξ1|

−γ} min{1, |ξ2|
−γ} min{1, |ξ3|

−γ},

and

(ii)
∣

∣

∣

∂
∂ξi

ψ̂(ξ )
∣

∣

∣
≤ |h(ξ1)|

(

1+ |ξ2|
|ξ1|

)−γ (

1+ |ξ3|
|ξ1|

)−γ
,

for i = 2,3, where δ > 8, γ ≥ 4, h ∈ L1(R), and C a constant, and ψ̃ and ψ̆
satisfy analogous conditions with the obvious change of coordinates (cf. the

construction in Sect. 4.3).

The main result can now be stated as follows.

Theorem 11 ( [11, 15]). Assume Setup 3 or 4. Let L = 1. For any ν > 0 and µ > 0,

the shearlet frame SH(φ ,ψ , ψ̃, ψ̆ ;c) provides optimally sparse approximations of

functions f ∈ E 2
L (R

3) in the sense of Dfn. 1, i.e.,

‖ f − fN‖
2
L2 . N−1(logN)2), as N → ∞,

and

|c∗n|. n−1(logn), as n → ∞,

where c = {〈 f , ψ̊λ 〉 : λ ∈ Λ, ψ̊ = ψ , ψ̊ = ψ̃ , or ψ̊ = ψ̆} and c∗ = (c∗n)n∈N is a de-

creasing (in modulus) rearrangement of c.
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We now give a sketch of proof for this theorem, and refer to [11, 15] for detailed

proofs.

5.2.3 Sketch of Proof of Theorem 11

Band-limited Shearlets The proof of Thm. 11 for band-limited shearlets follows

the same steps as discussed in Sect. 5.1.5 for the 2D case. To indicate the main steps,

we will use the same notation as for the 2D proof with the straightforward extension

to 3D.

Similar to Thm. 6 and 7, one can prove the following results on the sparsity of

the shearlets coefficients for each dyadic square Q ∈ Q j.

Theorem 12 ( [11]). Let f ∈ E 2(R3). Q ∈ Q0
j , with j ≥ 0 fixed, the sequence of

shearlet coefficients {dλ := 〈 fQ,ψλ 〉 : λ ∈ Λ j} obeys

‖(dλ )λ∈Λ j
‖wℓ1 . 2−2 j.

Theorem 13 ( [11]). Let f ∈ E 2(R3). For Q ∈Q1
j , with j ≥ 0 fixed, the sequence of

shearlet coefficients {dλ := 〈 fQ,ψλ 〉 : λ ∈ Λ j} obeys

‖(dλ )λ∈Λ j
‖ℓ1 . 2−4 j.

The proofs of Thm. 12 and 13 follow the same principles as the proofs of the analog

results in 2D, Thm. 6 and 7, with one important difference: In the proof of Thm. 6

and 7 the Radon transform (cf. (28)) is used to deduce estimates for the integral

of edge-curve fragments. In 3D one needs to use a different transform, namely the

so-called X-ray transform, which maps a function on R
3 into the sets of its line

integrals. The X-ray transform is then used to deduce estimates for the integral of

the surface fragments. We refer to [11] for a detailed exposition.

As a consequence of Thm. 12 and 13, we have the following result.

Theorem 14 ( [11]). Suppose f ∈ E 2(R3). Then, for j ≥ 0, the sequence of the

shearlet coefficients {cλ := 〈 f ,ψλ 〉 : λ ∈ Λ j} obeys

‖(cλ )λ∈Λ j
‖wℓ1 . 1.

Proof. The result follows by the same arguments used in the proof of Thm. 8. ⊓⊔

By Thm. 14, we can now prove Thm. 11 for the band-limited setup and for f ∈
E 2

L (R
3) with L = 1. The proof is very similar to the proof of Thm. 5 in Sect. 5.1.5,

wherefore we will not repeat it.

Compactly Supported Shearlets In this section we will consider the key estimates

for the linearized term for compactly supported shearlets in 3D. This is an exten-

sion of Thm. 9 to the three-dimensional setting. Hence, we will assume that the

discontinuity surface is a plane, and consider the decay of the shearlet coefficients

of shearlets interacting with such a discontinuity.
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Theorem 15 ( [15]). Let ψ ∈ L2(R3) be compactly supported, and assume that ψ
satisfies the conditions in Setup 4. Further, let λ be such that suppψλ ∩ ∂B 6= /0.

Suppose that f ∈ E 2(R3) and that ∂B is linear on the support of ψλ in the sense

that

suppψλ ∩∂B ⊂ H

for some affine hyperplane H of R3. Then,

(i) if H has normal vector (−1,s1,s2) with s1 ≤ 3 and s2 ≤ 3,

|〈 f ,ψλ 〉|. min
i=1,2

{

2− j

∣

∣ki + 2 j/2si

∣

∣

3

}

,

(ii) if H has normal vector (−1,s1,s2) with s1 ≥ 3/2 or s2 ≥ 3/2,

|〈 f ,ψλ 〉|. 2−5 j/2,

(iii) if H has normal vector (0,s1,s2) with s1,s2 ∈ R, then

|〈 f ,ψλ 〉|. 2−3 j,

Proof. Fix λ , and let f ∈ E 2(R3). We first consider the case (ii) and assume s1 ≥
3/2. The hyperplane can be written as

H =
{

x ∈ R
3 : 〈x− x0,(−1,s1,s2)〉= 0

}

for some x0 ∈R3. For x̂3 ∈R, we consider the restriction of H to the slice x3 = x̂3.

This is clearly a line of the form

L =
{

x = (x1,x2) ∈R
2 :
〈

x− x′0,(−1,s1)
〉

= 0
}

for some x′0 ∈R2, hence we have reduced the singularity to a line singularity, which

was already considered in Thm. 9. We apply now Thm. 9 to each on slice, and we

obtain

|〈 f ,ψλ 〉|. 2 j/4 2−9 j/4 2− j/2 = 2−5 j/2.

The first term 2 j/4 in the estimate above is due to the different normalization factor

used for shearlets in 2D and 3D, the second term is the conclusion from Thm. 9,

and the third is the length of the support of ψλ in the direction of x3. The case

s2 ≥ 3/2 can be handled similarly with restrictions to slices x2 = x̂2 for x̂2 ∈R. This

completes the proof of case (ii).

The other two cases, i.e., case (i) and (ii), are proved using the same slice by slice

technique and Thm. 9. ⊓⊔

Neglecting truncated estimates, Thm. 15 can be used to prove the optimal sparsity

result in Thm. 11. The argument is similar to the one in Sect. 5.1.6 and will not

be repeated here. Let us simply argue that the decay rate |〈 f ,ψλ 〉| . 2−5 j/2 from

Thm. 15(ii) is what is needed in the case si ≥ 3/2. It is easy to see that in 3D an
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estimate of the form

# |Λ(ε)|. ε−1.

will guarantee optimal sparsity. Since we in the estimate |〈 f ,ψλ 〉| . 2−5 j/2 have

no control of the shearing parameter k = (k1,k2), we have to use a crude counting

estimate, where we include all shears at a given scale j, namely 2 j/2 · 2 j/2 = 2 j.

Since the number of dyadic boxes Q where ∂B intersects the support of f is of order

23 j/2, we arrive at

# |Λ(ε)|.

2
5

log2(ε
−1)

∑
j=0

25 j/2 ≍ ε−1.

5.2.4 Some Extensions

Paralleling the two-dimensional setting (see Sect. 5.1.7), we can extend the optimal-

ity result in Thm. 11 to the cartoon-like image class E 2
L (R

3) for L ∈N, in which the

discontinuity surface ∂B is allowed to be piecewise C2 smooth.

Moreover, the requirement that the ‘edge’ ∂B is piecewise C2 might be too re-

strictive in some applications. Therefore, in [15], the cartoon-like image model class

was enlarged to allow less regular images, where ∂B is piecewise Cα smooth for

1 < α ≤ 2, and not necessarily a C2. This class E
β
α ,L(R

3) was introduced in Sect. 2

consisting of generalized cartoon-like images having Cβ smoothness apart from a

piecewise Cα discontinuity curve. The sparsity results presented above in Thm. 11

can be extended to this generalized model class for compactly supported shearlets

with a scaling matrix dependent on α . The optimal approximation error rate, as

usual measured in ‖ f − fN‖
2
L2 , for this generalized model is N−α/2; compare this to

N−1 for the case α = 2 considered throughout this chapter. For brevity we will not

go into details of this, but mention the approximation error rate obtained by shearlet

frames is slightly worse than in the α = β = 2 case, since the error rate is not only

a poly-log factor away from the optimal rate, but a small polynomial factor; and we

refer to [15] the precise statement and proof.

5.2.5 Surprising Observations

Capturing anisotropic phenomenon in 3D is somewhat different from capturing

anisotropic features in 2D as discussed in Sect. 1.3. While in 2D we ‘only’ have to

handle curves, in 3D a more complex situation can occur since we find two geomet-

rically very different anisotropic structures: curves and surfaces. Curves are clearly

one-dimensional anisotropic features and surfaces two-dimensional features. Since

our 3D shearlet elements are plate-like in spatial domain by construction, one could

think that these 3D shearlet systems would only be able to efficiently capture two-

dimensional anisotropic structures, and not one-dimensional structures. Nonethe-

less, surprisingly, as we have discussed in Sect. 5.2.4, these 3D shearlet systems
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still perform optimally when representing and analyzing 3D data E 2
L (R

3) that con-

tain both curve and surface singularities (see e.g., Fig. 2).
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