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ABSTRACT

In this paper, we introduce pyramid-adapted shearlet systems
for the three-dimensional setting, and show how one can con-
struct frames for L2(R3) with this particular shearlet structure.
We then introduce a generalized three-dimensional cartoon-like
image model class of piecewise C2 smooth functions with dis-
continuities on a Cα smooth surface with 1 < α ≤ 2 and show
that pyramid-adapted shearlet systems provide a nearly opti-
mally sparse approximation error rate within this model class
measured by means of non-linear, best n-term approximations.
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1. INTRODUCTION

Many important problem classes such as neuro, satellite, and
seismic imaging, or partial differential equations with shock
waves or boundary layers, are governed by anisotropic char-
acteristics. Such anisotropic features could, e.g., be singulari-
ties concentrated on lower dimensional embedded manifolds or
edges between image ‘objects’ and image ‘background’. Ad-
vances in modern technology have pushed forward the need to
efficiently handle enormous, multidimensional data with types
of anisotropic characteristics. Over the last decade there has
therefore been an intense study in developing efficient multi-
variate, directional representation systems. To analyze the abil-
ity of representation systems to reliably capture and sparsely
represent anisotropic structures, Candés and Donoho [1] in-
troduced the model situation of so-called cartoon-like images,
i.e., two-dimensional functions which are piecewise C2 smooth
apart from a C2 discontinuity curve. In recent years, it has been
shown that curvelets, contourlets, and shearlets all have the abil-
ity to essentially optimal sparsely approximate cartoon-like im-
ages measured by the L2-error of the (best) n-term approxima-
tion. Traditionally, this type of results has only been available
for band-limited generators [1,3,5,6], but recently Kutyniok and
Lim [8] showed that optimal sparsity also holds for compactly
supported shearlet generators under weak moment conditions in
dimension two.
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In the present paper we will consider sparse approxima-
tions of cartoon-like images using shearlets in dimension three.
When passing from the two-dimensional setting to the three-
dimensional setting, the complexity of anisotropic structures
changes significantly. In 2D one ‘only’ has to handle one
type of anisotropic features, namely curves, whereas in 3D
one has to handle two geometrically very different anisotropic
structures: Curves as one-dimensional features and surfaces as
two-dimensional anisotropic features. Moreover, the analysis
of sparse approximations in dimension two depends heavily
on reducing the analysis to affine subspaces of R2. Clearly,
these subspaces always have dimension and co-dimension one
in 2D. In dimension three, however, we have subspaces of co-
dimension one and two, and one therefore needs to perform the
analysis on subspaces of the ‘correct’ co-dimension.

The generalized class of cartoon-like images in 3D con-
sidered in this paper consists of three-dimensional piecewise
C2 smooth functions with discontinuities on a Cα surface for
α ∈ (1, 2]. We will give the precise definition as well as the op-
timal rate of approximation with this model in Section 2. In Sec-
tion 3 we construct so-called pyramid-adapted shearlet frames
with compactly supported generators. Finally, in Section 4,
we prove that such shearlet systems indeed deliver nearly op-
timal sparse approximations of three-dimensional cartoon-like
images.

We mention that our model image class can be extended fur-
ther to also contain three-dimensional cartoon-like images with
a piecewise Cα smooth discontinuity surface. Allowing piece-
wise Cα smoothness instead of Cα smoothness everywhere is
an essential way to model singularities along surfaces as well as
along curves. The sparsity results presented in this paper can be
extended to this generalized model class, but for brevity we will
not do this here and simply refer to [7].

We remark that even though the present paper only deals with
construction of shearlet frames for L2(R3) and sparse approx-
imations of such, it also illustrates how many of the problems
that arises when passing to higher dimensions can be handled.
The reason for this observation is the fact that the 3D setting
is the first dimension which exhibits (non-trivial, proper) sub-
spaces and anisotropic features of different dimensions. There-
fore the extension of the presented result in L2(R3) to higher
dimensions L2(Rn) should be, if not straightforward, then at



least be achievable by the methodologies developed.

2. CARTOON-LIKE IMAGE CLASS

We start by defining the 3D cartoon-like image class. Fix µ, ν >
0. By E22 (R3) we denote the set of functions f : R3 → C of the
form

f = f0 + f1χB ,

where B ⊂ [0, 1]
3 with ∂B a closed C2-surface for which the

principal curvatures are bounded by ν and fi ∈ C2(R3) with
supp f0 ⊂ [0, 1]

3 and ‖fi‖C2 ≤ µ for each i = 0, 1. A very
simple cartoon-like function f = χB with µ = 1 and ν = 1/r is
depicted in Fig. 1, where r is the radius of a ball B in R3. The
requirement that the ‘edge’ ∂B is C2 might be too restrictive
in some applications, and we therefore enlarge the cartoon-like
image model class to allow less regular images, where ∂B is
Cα smooth for 1 < α ≤ 2, and not necessarily a C2-surface.
We speak of E2α(R3) as consisting of cartoon-like 3D images
having C2 smoothness apart from a Cα discontinuity surface.

f0 = 0
f1 = 1

B

Fig. 1. A cartoon-like image f = χB , where ∂B is a sphere.

In [7], it was shown using information theoretic arguments
(cf. [4]) that the optimal approximation rate for such 3D
cartoon-like image models f ∈ E2α(R3) which can be achieved
for almost any representation system is

‖f − fn‖22 = O(n−α/2), n→∞,

where fn is the best n-term approximation of f . This optimal
rate can be used as a benchmark for measuring the performance
of different representation systems as illustrated in the following
example.

Example 1. For a simple cartoon-like image of the form f =
χB , where B is a ball contained in [0, 1]

3, see Fig. 1, we
clearly have f ∈ E22 (R3). By the later presented Thm. 4, the
error rate of the n-term shearlet approximation fn decays as
‖f − fn‖2L2 = O(n−1(log n)2), which is optimal up a poly-
log factor. On the other hand, the corresponding error of the
best n-term Fourier series approximation of f decays asymp-
totically as n−1/3. This can be seen as follows. Let In = {k ∈
Z3 : ‖k‖2 ≤ n} and let fIn be the partial Fourier sum with
terms from In. Since the Fourier transform of f decays like

|f̂(ξ)| � ‖ξ‖−22 as ‖ξ‖2 →∞, we have

‖f − fIn‖
2
L2 =

∑
k 6∈In

|ck|2 �
∫
‖ξ‖2>n

‖ξ‖−42 dξ

=

∫ ∞
n

r−4r2dr = n−1,

where h(n) � g(n) means that h is bounded both above and
below by g asymptotically. The conclusion now follows from
the cardinality of |In| � n3 as n → ∞. A best n-term approx-
imation of f using a wavelet basis can be shown to perform
slightly better with asymptotic behavior as n−1/2. However,
this is still far from the optimally achievable rate obtained by
shearlet frames.

3. SHEARLETS

The Pyramid-Adapted Shearlet Systems are defined as follows.
We partition the frequency space into three pairs of pyramids:

P = {(ξ1, ξ2, ξ3) ∈ R3 : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1, |ξ3/ξ1| ≤ 1},
P̃ = {(ξ1, ξ2, ξ3) ∈ R3 : |ξ2| ≥ 1, |ξ1/ξ2| ≤ 1, |ξ3/ξ2| ≤ 1},
P̆ = {(ξ1, ξ2, ξ3) ∈ R3 : |ξ3| ≥ 1, |ξ1/ξ3| ≤ 1, |ξ2/ξ3| ≤ 1},

and a centered cube:

C = {(ξ1, ξ2, ξ3) ∈ R3 : ‖(ξ1, ξ2, ξ3)‖∞ < 1}.

We first consider the shearlet system associated with the pyra-
mid pair P .

Let α ∈ (1, 2]. We scale according to the scaling matrix
A2j , j ∈ Z, and represent directionality by the shear matrix Sk,
k = (k1, k2) ∈ Z2, defined by

A2j =

2jα/2 0 0
0 2j/2 0
0 0 2j/2

 , Sk =

1 k1 k2
0 1 0
0 0 1

 ,

respectively. The case α = 2 corresponds to paraboloidal scal-
ing. As α decreases, the scaling becomes less anisotropic, and
allowing α = 1 would yield isotropic scaling. The translation
lattices will be generated by the matrix Mc = diag(c1, c2, c2),
where c1 > 0 and c2 > 0. The shearlet system associated with
the pyramid P generated by ψ ∈ L2(R3) is then defined as

Ψ(ψ; c) = {2j(α+2)/4ψ(SkA2j · −m) :

j ≥ 0, |k1|, |k2| ≤ d2j(α−1)/2e,m ∈McZ3}.

The shearlet systems Ψ̃(ψ̃; c) and Ψ̆(ψ̆; c) associated with P̃
and P̆ , respectively, are defined in a similar manner (simply
switch the role of the variables in the definitions of the scaling,
shear, and translation matrix).

The partition of the frequency space into pyramids allows
us to restrict the range of the shear parameters. Without such
a partitioning as, e.g., in ‘shearlet group’ systems, one must
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Fig. 2. The essential frequency concentration of the shearlet ψ̂.

allow arbitrarily large shear parameters. For the ‘pyramid-
adapted’ systems, we can, however, restrict the shear param-
eters to [−

⌈
2(α−1)j/2

⌉
,
⌈
2(α−1)j/2

⌉
]. This fact is pivotal for

providing the shearlet system with a more uniform treatment of
the directional features.

We are now ready to introduce our 3D shearlet system. For
fixed α ∈ (1, 2] and c = (c1, c2) ∈ (R+)2, the pyramid-
adapted 3D shearlet system SH(φ, ψ, ψ̃, ψ̆; c, α) generated by
φ, ψ, ψ̃, ψ̆ ∈ L2(R3) is defined by

SH(φ, ψ, ψ̃, ψ̆; c) = Φ(φ; c1) ∪Ψ(ψ; c) ∪ Ψ̃(ψ̃; c) ∪ Ψ̆(ψ̆; c),

where

Φ(φ; c1) = {φ(· −m) : m ∈ c1Z3}.

The functions ψ, ψ̃, ψ̆ ∈ L2(R3) are called shearlets, and the
function φ is a scaling function associated the centered cube C.

We are now ready to state the general sufficient conditions
for the construction of shearlet frames.

Theorem 2 ([7]). Let φ, ψ ∈ L2(R3) be functions such that

|φ̂(ξ)| ≤ C1 min{1, |ξ1|−γ} ·min{1, |ξ2|−γ} ·min{1, |ξ3|−γ},

and

|ψ̂(ξ)| ≤ C2 ·min{1, |ξ1|δ} ·min{1, |ξ1|−γ}
·min{1, |ξ2|−γ} ·min{1, |ξ3|−γ},

for some constantsC1, C2 > 0 and δ > 2γ > 6. Define ψ̃(x) =

ψ(x2, x1, x3) and ψ̆(x) = ψ(x3, x2, x1) for x = (x1, x2, x3) ∈
R3. Then there exists the sampling constant c0 > 0 such that
the shearlet system SH(φ, ψ, ψ̃, ψ̆; c) forms a frame for L2(R3)
for all c = (c1, c2) with c2 ≤ c1 ≤ c0 provided that there exists
a positive constant M > 0 such that

|φ̂(ξ)|2 +
∑
j≥0

∑
k1,k2∈Kj

|ψ̂(STk A2jξ)|2 + | ˆ̃ψ(S̃Tk Ã2jξ)|2

+ | ˆ̆ψ(S̆Tk Ă2jξ)|2 > M

for a.e ξ ∈ R3, where Kj := [−
⌈
2(α−1)j/2

⌉
,
⌈
2(α−1)j/2

⌉
].

Thm. 2 allows us to construct compactly supported shearlet
frames generated by separable functions.The following example
gives us explicitly a family of shearlets satisfying the assump-
tions of Thm. 2.

Example 3. Let K,L ∈ N be such that L ≥ 10 and 3L
2 ≤ K ≤

3L− 2, and define a shearlet ψ ∈ L2(R3) by

ψ̂(ξ) = m1(4ξ1)φ̂(ξ1)φ̂(2ξ2)φ̂(2ξ3), ξ = (ξ1, ξ2, ξ3) ∈ R3,

where the function m0 is the low pass filter satisfying

|m0(ξ1)|2 = (cos(πξ1))2K
L−1∑
n=0

(
K − 1 + n

n

)
(sin(πξ1))2n,

for ξ1 ∈ R, the function m1 is the associated bandpass filter
defined by

|m1(ξ1)|2 = |m0(ξ1 + 1/2)|2, ξ1 ∈ R,

and φ the scaling function is given by

φ̂(ξ1) =

∞∏
j=0

m0(2−jξ1), ξ1 ∈ R.

In [7], it is shown that there exists a sampling constant c0 >
0 such that the shearlet system Ψ(ψ; c) forms a frame for
Ľ2(P) := {f ∈ L2(R3) : supp f̂ ⊂ P} for any sampling
matrix Mc with c = (c1, c2) ∈ (R+)2 and c2 ≤ c1 ≤ c0.

To obtain a frame for all of L2(R3) we simply set ψ̃(x) =

ψ(x2, x1, x3) and ψ̆(x) = ψ(x3, x2, x1) as in Thm. 2, and
choose φ(x) = φ(x1)φ(x2)φ(x3) as scaling function for x =
(x1, x2, x3) ∈ R3. Then the corresponding shearlet system
SH(φ, ψ, ψ̃, ψ̆; c, α) forms a frame for L2(R3). We refer again
to [7] for a proof of this result.

4. SPARSE APPROXIMATIONS

We now consider approximations of three-dimensional cartoon-
like images using shearlet frames introduced in the previous
section. For an orthonormal basis, the best n-term approxima-
tion is obtained by keeping the n largest coefficients in modulus.
Since our shearlet system forms a non-tight frame, and, in par-
ticular, not a basis, we need to comment on the approximation
procedure used to construct our n-term shearlet approximation.
Suppose SH(φ, ψ, ψ̃, ψ̆; c, α) forms a frame for L2(R3) with
frame boundsA andB. Since the shearlet system is a countable
set of functions, we can write it in the form (σi)i∈I for some
countable index set I . By basic frame theory [2], there exists
a canonical dual frame (σ̃i)i∈I of (σi)i∈I with frame bounds
B−1 and A−1. As our n-term approximation fn of a cartoon-
like image f ∈ E2α(R3) by the frame SH(φ, ψ, ψ̃; c), we then
take

fn =
∑
i∈In

〈f, σi〉σ̃i,

where (〈f, σi〉)i∈In are the n largest coefficients 〈f, σi〉 in mag-
nitude. Using the frame property this yields, for any positive
integer n,

‖f − fn‖22 ≤
1

A

∑
i>n

|θ(f)|2i ,



where |θ(f)|i denote the ith largest shearlet coefficient in abso-
lute value. The approximation procedure does not always yield
the best n-term approximation, but, surprisingly, even with this
rather crude selection procedure, we can prove an nearly opti-
mally sparse approximation rate for the class of generalized 3D
cartoon-like images as the following result shows.

Theorem 4 ( [7]). Let α ∈ (1, 2], c ∈ (R+)2, and let φ, ψ,
ψ̃, ψ̆ ∈ L2(R3) be compactly supported. Suppose that, for all
ξ = (ξ1, ξ2, ξ3) ∈ R3, the function ψ satisfies:

(i) |ψ̂(ξ)| ≤ C ·min{1, |ξ1|δ} ·min{1, |ξ1|−γ}
·min{1, |ξ2|−γ} ·min{1, |ξ3|−γ},

(ii)
∣∣∣ ∂∂ξi ψ̂(ξ)

∣∣∣ ≤ |h(ξ1)|
(

1 + |ξ2|
|ξ1|

)−γ (
1 + |ξ3|

|ξ1|

)−γ
,

for i = 1, 2, where δ > 8, γ ≥ 4, h ∈ L1(R), and C a constant,
and suppose that ψ̃ and ψ̆ satisfy analogous conditions with
the obvious change of coordinates. Further, suppose that the
shearlet system SH(φ, ψ, ψ̃, ψ̆; c, α) forms a frame for L2(R3).

Then, for any ν > 0 and µ > 0, the shearlet frame
SH(φ, ψ, ψ̃, ψ̆; c, α) provides nearly optimally sparse approxi-
mations of functions f ∈ E2α(R3) in the sense that

‖f − fn‖2L2 =

{
O(n−α/2+τ ), if α < 2,

O(n−1(log n)2), if α = 2,
(4.1)

as n→∞, where

τ = τ(α) =
3(2− α)(α− 1)(α+ 2)

2(9α2 + 17α− 10)
,

and fn is the n-term approximation obtained by choosing the n
largest shearlet coefficients of f .

We remark that a large class of generators ψ, ψ̃, and ψ̆ satisfy
conditions (i) and (ii) in Thm. 4, e.g., the shearlet system from
Example 3, when L and K is chosen sufficiently large.

Condition (i) in Thm. 4 can be interpreted as both a condition
ensuring almost separable behavior and a control of the essen-
tial support support of the shearlets in frequency domain (see
Fig. 2). Conditions (i) and (ii) together guarantee weak direc-
tional vanishing moments of the shearlets (see [3] for a precise
definition), which is crucial for having fast decay of the shear-
let coefficients when the corresponding shearlet intersects the
discontinuity surface ∂B in a non-tangential way.

For α = 2, we say that shearlets provide almost optimally
sparse approximations since the error rate in (4.1) is only a poly-
log factor (log n)2 away from the optimal rate O(n−1). How-
ever, for α ∈ (1, 2) we are a power of N with exponent τ away
from the optimal rate. The exponent τ is small, and satisfies
0 < τ(α) < 0.04 for α ∈ (1, 2) and τ(α) → 0 for α → 1+ or
α→ 2−, see also Figure 3.

Let us mention that a slightly better estimate τ(α) can be
obtained satisfying τ(α) < 0.037 for α ∈ (1, 2); we can, how-
ever, with the current proof of Thm. 4 not make τ(α) arbitrarily
small.

α

1 1.2 1.4 1.6 1.8 2
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Fig. 3. Graph of α
2 − τ(α) and the optimal rate α

2 (dashed) as
a function of α. The difference τ(α) between the two graphs
shows the optimality gap.
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