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Abstract: We investigate Gabor frames on locally compact abelian groups
with time-frequency shifts along non-separable, closed subgroups of the
phase space. Density theorems in Gabor analysis state necessary conditions
for a Gabor system to be a frame or a Riesz basis, formulated only in terms
of the index subgroup. In the classical results the subgroup is assumed to
be discrete. We prove density theorems for general closed subgroups of the
phase space, where the necessary conditions are given in terms of the “size”
of the subgroup. From these density results we are able to extend the clas-
sical Wexler-Raz biorthogonal relations and the duality principle in Gabor
analysis to Gabor systems with time-frequency shifts along non-separable,
closed subgroups of the phase space. Even in the euclidean setting, our
results are new.

1 Introduction

Classical harmonic analysis on locally compact abelian (LCA) groups provides a natural
framework for many of the topics considered in modern time-frequency analysis. The setup
is as follows. Let (G, ) denote a second countable LCA group, and let (&, -) denote its dual
group, consisting of all characters. One then defines the translation operator Ty, A € G,

Ty : L*(G) — L*(G), (T\f)(z) = f(zA™Y), z€G,

and the modulation operator E,, v € @, as
E,: L}(G) = L*(Q), (B, f)(x) = y(z)f(z), z€G.

The central objects of this work are so-called regular Gabor systems in L?(G) with modu-
lation and translation along a closed subgroup A of G x G generated by a window function
g € L?(Q); this is a collection of functions of the following form:

G(g,A) :={m(v)g}ven, where n(v):=E,T forv= (7)€ G x G.

The tensor product G x G is called the phase-space or the time-frequency plane, and 7(v)g
is a time-frequency shift of g.
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We are interested in linear operators of the form
Cg,A : Lz(G) - LQ(A)a Cg,Af =V <f7 W(V)g>

as well as their left-inverses (if they exist) and their adjoint operators. The Cy A transform
is called an analysis operator, while its adjoint is called synthesis. In the analysis process
Cy.af of a function f € L?(G), we obtain information of the time-frequency content in the
function f.

If the operator Cy a is bounded below and above, we say that ¢ (g, A) is a Gabor frame
for L?(G). In case the two constants from these bounds can be taken to be equal, we say
that (g, A) is a tight frame; if they can be taken to be equal to one, ¥(g,A) is said to
be a Parseval frame. One can show that the property of being a frame allows for stable
reconstruction of any f € L?*(G) from its time-frequency information given by Cyaf. In
particular, if Cy A is bounded from below and above, then there exists another function
h € L*(G) such that Cj, A is a bounded operator and such that

(1o fo) = /A Conf1(v) Chafol0) dv

for all f1, fo € L?(G), where dv denotes the Haar measure on A. Two such Gabor systems
4(g9,A) and ¢(h,A) are said to be dual Gabor frames. If ¥(g,A) is a frame with Cy A
being surjective, we say that ¢ (g, A) is a Riesz family.

In case A = G x G the analysis operator Cy A is the well-known short-time Fourier
transform, usually written V,, which is an isometry for any window function g € L*(G)
satisfying ||g|| = 1. In the language of frame theory, ¥ (g, G x @) is said to be a Parseval
frame. However, for proper subgroups A C G x G window functions g € L?*(G) leading to
isometric transforms Cy A, or more generally to Gabor frames ¢(g,A) for L*(G), might
not exist.

The density theorems in Gabor analysis are such non-existence results formulated only
as necessary conditions on the subgroup A for a Gabor system to be a frame or a Riesz basis.
In particular, the subgroup A needs to possess a certain amount of density. The classical
density results are stated for uniform lattices A, i.e., discrete and co-compact subgroups
of Gx G , where the density is measured by the volume of a fundamental domain of A. For
A = P72 P € GLyg(R), in G x G = R2%, this volume is exactly |det P|. In this work we
introduce a generalization of this density measure for non-lattices so, for closed subgroups
Aofoé,weset

d(A) = N(GX@)/A((G X @)/A)

If A is a uniform lattice equipped with the counting measure, then d(A) is exactly the
measure of the fundamental domain. Note that d(A) < oo precisely when A is co-compact,
ie., (G x @) /A is compact. A typical density result says that if A is a uniform lattice and
4(g,A) is a frame for L?(G), then d(A) < 1. For separable uniform lattices A = A x I' C
G x @ this result was proved by Gréchenig in [20], and for non-separable uniform lattices
(in elementary LCA groups) it is a consequence of results by Feichtinger and Kozek [14].
Grochenig’s proof is elementary using the Poisson summation formula, while the argument
for general lattices relies, as is often the case for results on non-separable lattices, on the
theory of pseudo differential operators. We will give alternative proofs using only time-
frequency analysis techniques. More importantly, we will generalize density results to
arbitrary closed subgroups A C G x G. We will show that:
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(a) If 4(g,A) is a frame for L?(G), then d(A) < oo.
(b) If A is a discrete subgroup and ¥(g, A) is a frame, then d(A) < 1.

(c) {m(v)g}vea is a Riesz family for L?(G) if, and only if, A is a uniform lattice with
d(A) =1 and {7(v)g},en is a frame for L*(G).

While @ might be expected, it is rather surprising that density results can be formu-
lated for non-discrete Gabor systems. This extension relies crucially on the fact that the
new measure d(A) contains information on both the subgroup A and its Haar measure.
The forward direction in (|d)) is also somewhat unexpected. The seemingly weak assumption
that 4 (g, A) is a Riesz family for some closed subgroup A of the phase space has the strong
conclusion that A is a uniform lattice and that d(A) = 1. Moreover, we will see that in
statement @ it is, in general, not possible to be quantitative, that is, if A is non-discrete
and co-compact, it will be possible to construct a frame ¥(g, A) regardless of the value of
d(A) < oco. This illustrates that the non-discrete case is rather different from the usual
Gabor theory for lattices. We will exhibit several of these differences in Section [5] and [6]

From our generalized density theorems, we are then able to extend the duality theory in
Gabor analysis to Gabor systems ¢(g, A) with time-frequency shifts along arbitrary closed
subgroups A C G x G. The most fundamental duality principle says that the Gabor system
(g, A) is a Parseval frame, i.e., the system is associated with an isometric transform Cy a,
if and only if %(d(A)fl/Qg, A°) is an orthonormal set, where A° denotes the adjoint of A.

We will prove two results that can be seen as an extension of this result. Firstly, to dual
frames, where one allows for two different window functions g, h € L?(G) in the analysis and
synthesis transforms; this extension is known as the Wexler-Raz biorthogonality relations.
Secondly to non-tight frames; this result is simply known as the duality principle. The
Wexler-Raz biorthogonality relations were previously available for non-separable, uniform
lattices A C G x G on elementary LCA groups G = R x T x Z* x F,, by the work of
Feichtinger and Kozek [14], while the duality principle was formulated (without bounds)
by Feichtinger and Zimmermann |16] for Gabor systems ¢(g, A) in L?(R™) with A being
a non-separable, full-rank lattice in R?". The authors proved in [28] both the Wexler-
Raz biorthogonality relations and the duality principle on LCA groups for separable, co-
compact subgroups A = A xI' C G x G using the theory of translation invariant systems;
an approach that does not generalize to the non-separable case.

Usually, the density /duality theory for non-separable lattice Gabor systems relies on the
theory of pseudo-differential operators and von Neumann algebra techniques. In particular,
the results of Feichtinger and Kozek |14] use concepts of function space Gelfand triples and
generalized Kohn-Nirenberg symbols. To cite from Grochenig’s book [21]:

These generalizations |density and duality results for non-separable time-frequency
lattices in the euclidean space], however, require a completely different approach
that involves the analysis of pseudo-differential operators with periodic sym-
bols.

The present paper provides density and duality theorems for Gabor systems ¥(g, A)
with time-frequency shifts along (possibly non-separable) closed subgroups A C G x G for
general second countable LCA groups G. In spite of the above comments, we are able to
develop the theory solely within the setting of time-frequency analysis. Indeed, our proofs
are based on Weil’s formula, the Fourier transform, the short-time Fourier transform, and
frame theory.
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We mention that duality results in the discrete case have been generalized in other
directions; we refer the reader to [4,10,11,22,35] and the references therein. Generalizations
of the density theorem also exist; in particular, Ramanathan and Steger [32| obtained
density results for (g, A) in L?(R™), where A is a discrete set, but not necessarily a
subgroup. We refer the reader to the survey paper by Heil |24] for a detailed account
of the history and evolution of density results in Gabor analysis. For an introduction to
Gabor analysis and frame theory, we refer to [6},21].

The paper is organized as follows: Section [2]and [3] contain preliminary facts and results
on Fourier analysis on LCA groups and frame theory, respectively. Some new results on
the non-existence of continuous Riesz families are included in Section [3} these results are
essential for our development in the later sections, however, they are also of independent
interest. In Section [ we introduce Gabor systems and show three key lemmas that will be
important in the proofs of the main results in Sections 5| and [6] In these sections we show
density and duality results for Gabor frames ¢ (g, A), where A is a closed subgroup of the
time-frequency domain G x G. Appendix [A| contains results on the Feichtinger algebra Sy
that are needed for the proofs in Section [6]

2 Harmonic analysis on LCA groups

We let G denote a second countable locally compact abelian group. To G we associate its
dual group G which consists of all characters, i.e., all continuous homomorphisms from G
into the torus T = {z € C:|2| = 1}. Under pointwise multiplication G is also a locally
compact abelian group. Throughout the paper we use multiplication as group operation
in G, G and G x G and we denote the identity element by e. By the Pontryagln duality
theorem, the dual group of G is isomorphic to GG as a topological group, i.e. G G.

We denote the Haar measure on G by pg. The (left) Haar measure on any locally
compact group is unique up to a positive constant. From ug we define L'(G) and the
Hilbert space L?(G) over the complex field in the usual way. Since G is assumed to be
second countable, these function spaces are separable. We define the Fourier transform of

f e LYG) by
Ff(w) /f w(z)duc(z), weq.

If f e LYG),f e Ll(G), and the measures on G and G are normalized so that the
Plancherel theorem holds (see [26, (31.1)]), then the function f can be recovered from f
by the inverse Fourier transform

z)=F f(z) = Fw) w(z ~(w a.e. x .
fl@) = F (@) = [ flw)w(o) dugle), G

If, in addition, f is continuous, the inversion formula holds pointwise. We assume that the
measure on a group ¢ and the measure on its dual group pgs are normalized this way,
and we refer to them as dual measures. Under this convention, the Fourier transform F is
an isometric isomorphism between L2(G) and L2(G).

For v = (\,7) € G x G, we let 7(v) denote the time-frequency shift operator E\Ty. It
is clear that 7(v) is a unitary operator on L?(G). The commutator relation

ThEy = v(N)Ey T

leads to the following useful identities:
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m(v1)m(v2) = v2(A1) T(v112), (2.2)
m(v1)m(v2) = y1(A2)v2(A1) T(v2)m (1), (2.3)

where v; = (74, Ai), @ = 1,2, and 7(v)* denotes the adjoint operator of 7(v).

We let A denote a closed subgroup of G x G with measure ua. To ease notation, when
the measure is clear from the context, we write dv in place of dua (v) and likewise for other
measures. In our settings Weil’s formula will relate integrable functions over G' x G with
integrable functions on the quotient space (G x G) /A, where A is a closed subgroup of
G xG. Let ca : G x G — (G x G)/A ca(x) = XA be the canonical map from G x G
onto (G x G)/A If feLYG x G) then the function x — [, f(xv)dv with x = ea(x),
defined almost everywhere on (G x G) /A, is integrable. Furthermore, when two out of the
three Haar measures on G X G, A and (G x G)/A are given, the third can be normalized
in a unique way so that Weil’s formula

[ 1= /(GX@)/A /A FOw) dvdy (2.4)
holds.

The annihilator group A+ of A C G x G is given by
1= {(ﬂ,a) €GxG:y(@)B\) =1forall v= (7)€ A}.

The annihilator is a closed subgroup of G x G. Moreover,
A~ (Gx@G)/AY and ((GxG)/A) AL

These relations show that for the closed subgroup A the quotient (G x G) /A is compact
if, and only if, At is discrete. Finally, we define the adjoint A° of A C G x G as

A°:={peGxqG: nlprv)=nr)r(n) YveAl

The annihilator and adjoint of a closed subgroup A are identical up to a change of coor-
dinates. To see this, we introduce the mapping

:GxG = GxG, d(r,w)=(w ,z) for (z,w)eGxGq.

It is clear that ® is a measure preserving, topological group isomorphism. It follows from
that ®(A°) = AL, see also [14].

We will use the following general setup. We assume a Haar measure on GG. On the
dual group of any LCA group, we assume the dual measure (such that the Plancherel
theorem holds). Furthermore, we assume a Haar measure on the closed subgroup A of
G x G. By requiring that Weil’s formula ) holds, there is a uniquely determined
Izeasure I(GxGy/a ON (G x G) /A. From thls measure, we define the size of the subgroup

as

d(A) = G x G)/A).

HGxG) /A((
Intuitively, small values of d(A) suggest that A is “dense”, while large values of d(A)
suggest that A is “sparse”.

Remark 1. (i) In case A is co-compact, by the Plancherel identity, we see that the dis-
crete group A~ is equipped with the Haar measure d(A)_1 Le, Where pi. is the counting
measure. In particular, the canonical choice d(A) = 1 comes from the probability
measure of (G x G)/A or, equivalently, the counting measure on A+,
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(ii) In case A is a discrete, co-compact subgroup, i.e., a uniform lattice, then d(A) is
closely related to the lattice size of A. Let s(A) = pg,, a(X), where X is a Borel

section, also called a fundamental domain, of A in G x G [5,20]. Now, if we equip A
with the counting measure, then s(A) = d(A). Especially for R?, if A = PZ?" P ¢
GLg(2n), then d(A) = |det(P)].

Lemma 2.1. Let A be a closed subgroup of G x G. Then the following holds:
(1) d(A) < oo if, and only if, A is co-compact,
(ii) d(ALY) < oo if, and only if, d(A°) < oo if, and only if, A is discrete.
Furthermore, if A is discrete and co-compact, then
(iii) At C G x G and A° C G x G are discrete and co-compact subgroups,
(iv) d(A)d(AL) =1 and d(A)d(A°) =1

Proof. Statement (i) is just a reformulation of the fact that the Haar measure of an LCA
group is finite if, and only if, the group is compact. Since Al is discrete if, and only if
(G x G)/A is co-compact, statement (ii) follows from (i). Statements (iii) and (iv) for AL
can be found in [20]. The statements for A° follow by the relationship between A° and
A see also |14, Lemma 7.7.4]. O

3 Frame theory

We need a rather general variant of frames, usually called continuous frames, introduced
by Ali, Antoine, and Gazeau [1] and Kaiser |31].

Definition 3.1. Let H be a complex Hilbert space, and let (M, X, par) be a measure
space, where ¥ ,; denotes the o-algebra and s the non-negative measure. A family of
vectors { fi}reas in H is a frame for K := span { fi },ca, with respect to (M, Xy, puar) if

(a) k — fx is weakly measurable, i.e., for all f € K, the mapping M — C,k — (f, f) is
measurable, and

(b) there exist constants A, B > 0 such that
AlfIP < /M [(f, Fil° dpar (k) < B f|* - for all f € K. (3.1)

The constants A and B are called frame bounds.

A frame { fi }.c ) is said to be tight if we can choose A = B; if, furthermore, A = B = 1,
then {fr},cas is @ Parseval frame. When { fi.},cp, is a frame for its closed linear span K,
we say that {fr},cps is a basic frame. If I = H, we say {fi},car is total If {fi},car is
weakly measurable and the upper bound in the inequality holds, then {fi},cas is a
Bessel family with constant B.

To a Bessel family F' := {fr}, ) for £ C H, we associate the analysis operator Cp
given by

Cr:H = L*(M,un), [ (ke (f, fi)-

The frame condition (3.1)) simply says that this operator on K is bounded below and above
by VA and VB, respectively, hence Cr|k is an injective, bounded linear operator with
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closed range. The adjoint D of Cr is the so-called synthesis operator; it is given weakly
by

Dp: L*(M,puy) — H, c— /M c(k) fro dpnr (k).

For two Bessel families F' = {fy},ca and G = {gi}reps we define the mized frame
operator Sp.g = DpCq. If F is a frame, the frame operator Sp := Spr is a bounded,
invertible, self-adjoint and positive operator. The Bessel families F' and G are said to be
dual frames for H it Spq = Iy, ie.,

(f.9) = /M (f. 9k) (Fir 9) dpuas (K) for all fg € M. (3.2)

In this case we say that the following assignment

;= / (F. i) fudpna (k) for f € H,
M

holds in the weak sense. Dual frames for subspaces K of H are defined similarly. Two
dual frames are indeed frames for H, see, e.g., [27]. On the other hand, given a frame
F = {fr}penr for H one can always find at least one dual frame; the canonical choice is
{S P ! fk} keM: The following result is well-known in frame theory.

Theorem 3.2. Let H be a Hilbert space, and let A, B > 0. Then the following statements
are equivalent:

(1) {fr}rem is a frame for H with bounds A and B;

(11) {fx}renm is a Bessel family in H with bound B and there exists another Bessel family
{grYrer in H with bound A=Y such that (3.2) holds.

Frames as defined in Definition [3.1| are often called continuous frames, with the notion
discrete frames reserved for the case, where M is countable and pjy is the counting measure.
We will not adapt this terminology. A family of vectors { fx }reasr will be called continuous
if pps is non-atomic and discrete if ups is purely atomic on o-finite subsets. Recall that
a set £ € X of positive measure is an atom if for any measurable subset F' of E either
pr(F) =0or pp(E\F) =0. A measure is called purely atomic if every measurable set of
positive measure contains an atom and non-atomic if there are no atoms. Every measure
can be uniquely decomposed as a sum of a purely atomic and a non-atomic measure in the
sense of Johnson [30].

Let us explain our terminology of discrete and continuous frames. For a € L?(M, pupr)
the support K := suppa is o-finite, hence we can write K = U;c;M; U N, where each M;
is an atom of finite measure, I is at most countable, and IV is an atomless measurable set.
Assume first pps is atomic whenever restricted to the subalgebra Y = {ENK : E € X},
where K is a o-finite set. Then s (N) = 0. Since we are interested in L?-functions, we will
either tacitly ignore such null sets or simply say we have equality up to sets of measure zero.
Functions, or rather equivalence classes of functions, in L?(M, uys) are constant on every
atom of M, hence any frame k — f will also be constant on atoms (up to sets of measure
zero). Moreover, a € L*(M, par) is of the form Y-, ; a; L, for some coefficients a; € C.
Let f; denote the value of k +— f;, on M;. Then the synthesis operator on a € L?(M, )
is

Dra = Z,uM(Mi)aifi for all f € H, (3.3)

el
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which is indeed a discrete representation. Assume, on the other hand, that uas is non-
atomic on each o-finite subset K of M. In the decomposition K = U;e;M; U N, we
now have K = N since K is atomless. We can write K = U;c;K;, where K; is of finite
measure. Then, by a classical result of Sierpinski |37, Lemma 52.a], the measure up; takes
a continuum of values [0, uas(K;)] on the measurable subsets of K;, which justifies the
name continuous frame.

If F'= {fx}ycas is a basic frame with bounds A and B and if CF has dense range, then
Cr|x is invertible on all of L?(M, uar), and we say that {fi},c, is a basic Riesz family
with bounds A and B. Equivalently, one can define basic Riesz families with bounds A and
B as families of vectors F' = { fi,};.c,, for which D defined on simple, integrable functions
is bounded below and above by VA and /B, respectively, i.e.,

2

AlallZza < H/M a(k) fidpnr (k)| < Bllall72(a

for all simple functions a on M with finite support. If M is countable and equipped with
the counting measure, a basic Riesz family is simply a Riesz basis for its closed linear span,
also called a Riesz sequence.

Our notion of discrete frames might appear overly technical compared to the usual
definition (i.e., M countable and pjs the counting measure). However, it allows us to
classify the following two pathological “continuous” examples as discrete frames.

Example 1. Consider the following two examples with a “continuous” index set M = R:

(a) Let H = (*(Z), let {eg},ey be its standard orthonormal basis, and equip M = R with
a purely atomic measure, whose atoms are the intervals [n,n + 1), n € Z, each with
measure 1. Define {fx}rens C H by fx = ep), k € R.

(b) Let H = L*([0,1]), and let M = R. Fix a € R and define pas = Y-, o7 Onta, where &,
denotes the Dirac measure at = € R. Define {fx}renr C H by fr(z) = >z,

It is not difficult to show that both in case (a) and (b) the family {fx}rers is a Parseval
frame; it is even a Riesz family. Since the measure in both cases is purely atomic, the
frame { fx}rens is said to be discrete.

There has recently been some interest in the study of (continuous) Riesz families |2}/36],
also called Riesz-type frames in [18|. Example [I[(b) is a concrete version of [2, Proposition
3.7]. The following result shows, however, that this concept brings little new to the well-
studied subject of (discrete) Riesz sequences. To be more concise, Proposition shows
that norm bounded, basic Riesz families necessarily are discrete.

Proposition 3.3. Let (M,%, uyr) be a measure space. Suppose that { fx}ken is a basic
Riesz family in H that is essentially norm bounded, i.e., C := suppcys || fx]l < 0o. Then
{frtrem is a discrete family. Furthermore, it holds that

Elgg un (E) >0, where ¥ ={E € X : uy(E) > 0}. (3.4)
0

Proof. Let a be an integrable simple function on M. From the computation

| atwsan@| < [ jawiilanm < [ aw)an,
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we see that the lower Riesz bound implies
VAl all 2y < Cllall i -

For a =1 with F € ¥ and 0 < pp(E) < oo, this in turn implies that
VAuy(E)'? < Cuy(E),

and hence jups(E) > A/C?. This shows the furthermore-part.

Let K = U;cr K; be any o-finite set, where each K; is of finite measure. We need to show
that pps restricted to the subalgebra Y = {ENK : E € ¥} is purely atomic. Suppose
on the contrary that it is not. Then there is an atomless set IV of positive measure in Y.
For some ¢9 € I the intersection N N K;, has positive measure. Clearly, Ny := N N K, is
also atomless, hence we can split this set into two sets of positive measure. The smallest
in measure of these two sets, say Ny, is of measure pps(N1) < ppr(No)/2. Continuing this
way we obtain sets of arbitrarily small measure, contradicting . O

From we see that for norm-bounded Riesz families, the atoms M; in the repre-
sentation are bounded from below in measure. Hence, even if we consider the sum
in as a Riemann type sum, there is a bound to any refinement.

If we assume that M is a Hausdorff topological group and that u,s satisfies certain
weak regularity assumptions, e.g., M being a locally compact group with the usual left
Haar measure, then the existence of a norm-bounded Riesz family forces the group M to
be discrete.

Proposition 3.4. Let M be a Hausdorff topological group with a left Haar measure pyr
(as defined by Fremlin [17, Def. 441D]). If { fx}kem is a norm bounded basic Riesz family,
then M is a discrete group.

Proof. From Proposition 4430 in |17] we know that pps is not non-atomic if and only
if there is the discrete topology on M. However, by Proposition [3.3] the measure pps is
clearly not non-atomic, thus the result follows. O

We end this section with a Riesz family variant of Theorem [3.2]

Theorem 3.5 (|28]). Let H be a Hilbert space, let A, B > 0, and let M be a countable index
set equipped with the counting measure. Then the following statements are equivalent:

(1) {fx}renm is a basic Riesz family (i.e., a Riesz sequence) in H with bounds A and B;

(1) {fr}trem is a Bessel family H with bound B and there exists a Bessel family {gx } ke
in H with bound A~ such that (fi, ge) = Ok, k, 0 € M.

4 Gabor systems

The Gabor system ¢ (g, A) = {m(v)g}ven is regular when A is a closed subgroup of G x G.
If A is not a subgroup, e.g., merely a set of points, the Gabor system is irreqular. If
A = A xT for closed subgroups A C G and I' C @7 we say that 4 (g, A) = {E,T\g}renyer
is a separable Gabor system. If A is not assumed to have this form, ¥(g,A) is non-
separable. In this work we shall consider non-separable, regular Gabor systems.
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The analysis, synthesis, and the (mixed) frame operator for Gabor Bessel systems are
defined as in Section In particular, the (mixed) frame operator for two Gabor Bessel
systems generated by the functions g, h € L?(G) takes the form

Sgn: L*(G) = L*(G), Syn= /A< -, m(v)g)ym(v)hdv.

If g = h, we recover the frame operator S; = Sy 4, also simply denoted by S.
It is straightforward to show that the frame operator commutes with time-frequency
shifts with respect to the group A.

Lemma 4.1. Let g, h € L*(G), AC Gx@, and let 4(g, A) and (h, A) be Bessel systems.
If A is a closed subgroup of G x G, then the following holds:

(1) Sgnm(v) =m(v)Syn for allv € A,
(ii) If {m(v)g}ven is a frame, then
S7ln()=7(w)S™ and STV2m(v) =x(v)STV?  for allv € A.
Remark 2. Lemma implies that the canonical dual frame of a Gabor frame again is a

Gabor system ¢(S~1g, A) and that the Gabor system ¥(S~'/2g, A) is a Parseval frame.
In particular, if %(g, A) is a Riesz basis, then 4(S~'/2g, A) is an orthonormal basis.

We are interested in those pairs (g, A) C (L%(G), G x @) for which % (g, A) is a Gabor
frame for L?(G), that is, closed subgroups A C G' x G and window functions g € L?(G)
for which there exists constants 0 < A < B < oo such that

Al < /A (7 (w)g) 2 dv < B|f|]

for all f € L*(G).
We will need the following well-known Plancherel theorem for the short-time Fourier
transform V, := 0.GxC"

Lemma 4.2 (|20]). For f, f1, fa, 9, h € L*(G) the following assertions are true:
(i) Vof € TG % G) and [VyfI12, 56 = S 11, 70)0) 2 v = g2 1512
(i)
/G | m@)g)(m(w)h, fo)| dv < || fill | fall gl ()] < oo, (4.1)

xG
(iii)
/G (. m@)g) @), f2) dv = (fr, fo) s g). (4.2)

xXG

Proof. Statement (i) and (iii) can be found in [20]. The inequality (4.1)) follows directly

from the following computation:

1/2 1/2
L _ltrwamen < ([ (el a) ([ eemn] )
— Il gl 1]
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Lemma shows that for any non-zero function g € L?(G) the system 4 (g, G X Q) is
a tight frame with bound 4 = llgll?. More generally, if (g, h) # 0, then ¥(g,G x G) and
4 (h,G x G) are dual frames, and we have a (weak) reproducing formula:

1

== ™V TV 1% or a 2 .
f= iz | _rwgnehay torall 1 € )

4.1 Three key lemmas

In this subsection we prove three observations that will be important in the subsequent
sections.

Lemma 4.3. Let x = (z,w) € (G x é) and p = (o, ) € A° C G x G. If A is a closed
subgroup of G x G, then the equality

(hy 7 (12)g) () f1, fo) = /

(GxG)/A

w(a)p(z) / (m(X)" f1, m(V)g) (m(v)h, w(X)" f2) dv dx

A
holds for all f1, f2,9,h € L*(G).
Proof. If p € A°, then by Lemma iii) we have that, for fi, f2,9,h € L*(G),

(ho (1) g) () s fo) = /G _(E ) w0 f2) dx

By Weil’s formula for the closed subgroup A, the above equality becomes

(W) g) () fr, fo) = /GXG/A / ) oo 7O ) m () g) (m (x s fo) s .

Forxz(a:,w)EGxéandu:(a,ﬁ)EAOCGxéwehave

(m () f1, 7 () m () g) (), fa) = w(@) Bz) (w(X)* f1, 7 () g) (x (), 7(x)* f2),

which follows from [2.2), (2.3), and n(v)m(p) = m(u)w(v) for v € A, pu € A°. This
completes the proof. O

Lemma 4.4. Let A be a closed, co-compact subgroup of G X CA}, and let g,h € L*(G). If
Y (g,A) and 9 (h,A) are dual frames, then

(h,m(p)g) = d(A)dpue for all pe A°.

Proof. Let p = (o, ) € A° and take f € L*(G). By Lemma we have that

b ()g)(m (), f) = /

(Gx@G)/A

o(@)B(x) /A ()" £, 7 (0)g) (m (), 7 ()" ) d .

Since {m(v)g}ven and {m(v)h},ea are dual frames by assumption, this equation simplifies
to

h w()g) (m (), £) = /  L(@)B) () w00 ) d

(GxG)/A

_ / _ w(@)B(@) di (f. ).
(GxG)/A
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The function y — u(x) := w(a)B(z) is continuous on the compact domain (G x G)/A,
and it satisfies p(x1x2) = w(x1)u(x2). Therefore, |25, Lemma 23.19| implies that, for all

feL*(G),

(h.m(w)g) (r () f. ) = {‘;W (f:) i i

It follows that (h,7(u)g) = d(A)d,e for p € A°. O

Lemma 4.5. Let A be a closed subgroup of G X @, and let f1, fa,9,h € L3(G). If9(g,A)
and 4 (h,A) are Bessel systems with Bessel bound B, and By, respectively, then for fized
f1 and fa, the mapping

p: GxEC, xe/ V" f1, 71 (0)g) (r ()b w(X)* o) dv

is continuous, constant on cosets of A (i.e., A-periodic), and p(x) < B;/2Bi/2||f1|H|f2||
for all x € G x G. Furthermore, the generators g and h satisfy: |(h, g)| < d(A)B;/QB}l/Q.

Proof. By the Cauchy-Schwarz inequality, we see that

/ ()" f1, 7 () g <u>h,w<x>*f2>|dudx

/ 0" r@ia)Pav) ([ 100 o rtm )

2
< BB fill 2]l (4.3)

This computation shows that ¢ is well-defined and bounded. The continuity of ¢ can
be shown using the Bessel property of 4(g,A) and ¢ (h,A) and the strong continuity of
v+ 7(v). The fact that the mapping ¢ is A-periodic is easily verified. We have only left
to prove the furthermore-part. By Lemma[4.2] the mapping x — (f1,7(x)g)(m(x)h, f2) lies
in L' (G x G) We can therefore apply Weil’s formula for the subgroup A to find that

/ (T 00g) (00 f) dx = / A / (Fram()g) (rO )b, fo) dvdy. (4.4)
GxG @x@)/aJa

For any y = (z,w) € G x G and v = (\,7) € G x G we have, by (2.2),

(f1, 7T(><V)g> (m(xv)h, f2) = (7 (X)" fr, 7(v)g) (m (V) h, w(X)" f2)-
With this, equation (4.4)) becomes

[ mtoaeon = [ ] im0l m0 ) i

(4.5)
Lemma [4.2] together with (4.3)) and (4.5)), yields
sl =| [ thmaeon. ) v
xG
< [ o 100" 1m0 ) 0 ] o
GxG)/A
<[ BEBPIAI
(GxG)/A
The bound on |(h, g)| now follows from taking fi = fo. O
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5 Density results

Our first density result shows that co-compactness of A C G x Gisa necessary condition
for the frame property of a Gabor system ¥(g, A).

Theorem 5.1. Let A be a closed subgroup of G x G, and let g € L*(@). If 9(g,A) is a
frame for L*(G) with bounds 0 < A < B < oo, then the following holds:

(i) the quotient group (G x G)/A is compact, i.e., d(A) < oo,
(ii) Ad(A) < |lg]* < Bd(A).

Proof. By Lemma the mapping x +— [(f, 7(x)g)|? lies in L'(G x @) Weil’s formula for
the subgroup A then gives

/ i m 09 dx = / /| o) dv dy
GxG (GxG)/A

/GXG /A/ ()" f 7 ()9 dv d (5.1)

where [(f,7(xv)g)| = [(m(x)*f,m(v)g)| follows from (2.2). The frame assumption of
{m(v)g}ven states that

Allf|? < /r J)dv < B|f|? forall f € L*(G).

Integrating the lower frame inequality for (y)*f over (G x G)/A yields the following:

AlfI? dy = A/ o dx</ / W o w(0)g) P dv dy.
(GxG)/A (GxG)/A GxG)/A

By Lemma ) and (5.1)) the term on the far right equals || FI? lgll*. We conclude that

A dy < gl* < .
(GxG)/A

The measure of the quotient group (G x G)/A is finite if, and only if (G x G)/A is compact.
This proves (i) and the lower inequality in (ii). To get the upper bound in (ii), we look at
the upper frame inequality and proceed as above to find:

2117112 = T\ dv < B f||? dy.
ol 151 /G e < B /(me N

O

The assertions of Theorem are not true in general if we assume that ¢ (g, A) is a
basic frame, i.e., a frame for its closed linear span, instead of assuming that (g, A) is a
total frame. Density results for basic frames in the case of lattice Gabor systems in L?(R™)
have recently been obtained in [19]; we will not consider such extensions here.

Let us consider some implications of the density result in Theorem for a couple of
specific locally compact abelian groups. The first result shows an extreme behavior for the
p-adic numbers. From Lemma we know that for the short-time Fourier transform any
nonzero window will generate a Gabor frames. However, for the p-adic numbers no other
time-frequency subgroup will have a frame generator.
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Corollary 5.2. For a prime number p, consider the p-adic numbers Q,. Let A be a closed
subgroup of Q, x Q,. If 9(g,A) is a frame for some g € L*(Q,), then A = Q, x Q.

Proof. The result follows from Theorem[5.1]together with the fact that the only co-compact
subgroup of Q, x Q, is the entire group itself. O

Corollary 5.3. Let g € L?>(R"). If the system 4(g,A) is a reqular Gabor frame for
L?(R™), then the closed subgroup A is of the form A(ZF x R*™*) for some A € GLg(2n)
and 0 < k < 2n.

Proof. Any closed subgroup A of R?" is isomorphic to {0}¢ x ZF x R2**~C for 0 < k+/ <
2n. The subgroup {0} x ZF x R?"~#=¢ is co-compact exactly when ¢ = 0. Hence, by
Theorem the subgroup A is of the form A(ZF x R?"~F) for some A € GLg(2n) and
0<k<2n. [l

The next results relate the norm of a Gabor frame generator to the subgroup size d(A).

Corollary 5.4. Let A be a closed subgroup of G x @, and let g € L*(G). If 9(g,A) is a
tight frame with bound A, then 9(g, A°) is an orthogonal system with ||g||* = d(A)A.

Proof. The canonical dual frame of 4(g, A) is 9 (4 g, A). From Theorem we know that
A is co-compact and ||g||? = d(A). By Lemmait follows that ¢ (g, A) is an orthogonal
system with <%g,g> =d(A). O]

Corollary 5.5. Let A be a closed subgroup of G x @, and let g € L*(G). If 9(g,A) is a
frame, then HS*I/QgH2 =d(A).

Proof. Lemma and Remark [2| show that ¢(S~/2g, A) is a Parseval frame. The result
now follows from Corollary O

If we in addition to co-compactness in Theorem [5.1] assume that A is discrete, i.e., a
uniform lattice, we have a quantitative density theorem.

Theorem 5.6. Let A be a discrete subgroup of G X G equipped with the counting measure,
and let g € L*(G). If 9(g,A) is a frame for L*>(G), then A is a uniform lattice with
d(A) < 1.

Proof. By Theorem [5.1] it follows that A is a uniform lattice. From Corollary [5.5] we have
that ||S~/2g||? = d(A). Taking f = S~'/2g in the upper frame inequality for 4(S~1/2g, A)
yields, using that A is discrete, that |[S~1/2¢g||> < 1. We conclude that d(A) < 1. O

In Theorem the assumption that A is discrete is essential for the bound d(A) < 1.
Indeed, in Example |2/ in Section we will show that in L2(R") for A C R?" separable
and co-compact, but non-discrete, it will always be possible to construct a frame ¥4 (g, A)
regardless of the value of d(A). The construction relies on the duality principle, which is
why the example is relegated to Section [6.5

Theorem 5.7. Let A be a closed subgroup of G X é»’, and let g € L?(G). Then 9(g,A)
is a total Riesz family for L*(G) if, and only if, A is a uniform lattice, d(A) = 1, and
9(g,A) is a frame.

14 of



Jakobsen, Lemvig Density and duality theorems for regular Gabor frames

Proof. Assume that ¢(g,A) is a total Riesz family. By Proposition and Theo-
rem the subgroup A is discrete and co-compact. Hence, ¥(g,A) is a Riesz basis,
and 4(S~12g, A) is therefore an orthonormal basis for L?(G), see Remark [2| Tt follows
that |[S~'/2¢||> = 1. Furthermore, by Corollary we have that |[S™1/2¢|? = d(A).
Hence d(A) = 1.

For the converse implication note that ||S~1/2¢g||? = d(A) = 1 by Corollary By
isometry of the time-frequency shifts we see that (7(v)g, m(v)S~'g) =1 for all v € A. By
Theorem 5.4.7 and Proposition 5.4.8 in [6], it follows that ¢ (g, A) and 4(S~1g, A) are dual
Riesz bases, and we conclude that ¥(g, A) is a Riesz basis. Alternatively, we can arrive at
this conclusion as follows. Again by isometry of 7(v), we see that || (r)S~/2g||> =1 for
all v € A. Hence 9(S~1/2g, A) is a discrete Parseval frame whose elements have norm 1,
and thus it is actually an orthonormal basis. As (g, A) is the image of the orthonormal
basis 4(S~1/2g, A) under the bounded, invertible operator S/2, it follows that (g, A) is
a Riesz basis for L?(G). Here, we tacitly used Lemma O

Owing to Theorem 5.6 discrete Gabor frames ¥ (g, A), for which d(A) = 1, are called
critically sampled. Let us for a moment consider critically sampled separable Gabor systems
that are systems of the form %(g, A x A+) = {ETxg} xep yenr for some closed subgroup
A of G. The following density result is a slightly stronger variant of Theorem for the
special case of separable critical sampling.

Corollary 5.8. Let A be a closed subgroup of G, and let g € L*(G). If {EyTrg} e yent
is a frame for L*(G), then A is a uniform lattice of G and {EyTrg} ep qenr 45 a Riesz
basts.

Proof. By Theoremm the quotient group (G x G)/(A x AL) = (G/A x G/AL) has to be
compact. This only happens if both G /A and G 1 At are compact. Hence A is a co-compact
subgroup of G and G/At = A is compact in G. The latter conclusion implies that A is

discrete. Thus A is a uniform lattice. The fact that {£,T\g} ep enr is @ Riesz basis now
follows from Theorem O

From Corollary [5.8 we see that if there are no uniform lattices in G, then there do not
exist any separable, critically sampled Gabor frames for L?(G). For the Priifer p-group
G = Z(p*) the only uniform lattice is the Priifer p-group itself, therefore there is only one
type of critically sampled Gabor system, namely {T)g}rez(pe)-

Corollary has the following direct implications.

Corollary 5.9. Let g € L*(G).
(i) If {Trg}req is a frame for L*(G), then G is discrete.

(i1) If {EVQ}'yeé is a frame for L*(G), then G is compact.

Let us end this section with commenting on yet another difference between discrete
and non-discrete Gabor systems. For a full-rank lattice A in R*", Bekka [3] proved (using
von Neumann algebra techniques) that there exists g € L?(R") so that ¥(g, A) is a frame
if, and only if, there exists g € L?(R") so that ¥(g,A) is total, i.e., the linear span of
the functions in (g, A) is dense in L?(R™). This equivalence is not true for non-discrete
Gabor systems, e.g., take A = R"™ x {0}". Then {7(v)g}ven = {Trg} \crn, and it follows
from Corollary that no g € L?(R) can generate a Gabor frame since R” is not discrete,
see also |7]. However, for any function g such that g(w) # 0 for a.e. w € I@", we see that

0= (Tag, f) = (E_x, /) = F Y Gf)(—\) forall \eR
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implies that f = 0, hence {T\g},cgn is total. This argument obviously also works for

A =Gx{0} CGx G. In general, co-compactness of A C G x @ is not necessary for
9(g,A) to be total.

6 Duality results

To simplify the formulation of the duality result and to avoid working with infinite subgroup
sizes, we introduce the following variant of d(A):

d(A) = d(a) = f(Gxé)/A ldy if (G x G)/A is compact,
1 otherwise.

The precise value of a(A) for non-co-compact subgroups A is not important as we just
need that d(A) is finite for all closed subgroups.

6.1 The Wexler-Raz biorthogonality relations

Theorem 6.1. Let A be a closed subgroup of G x @, and let g, h € L*(G). Suppose that
9(9,A) and 4 (h,A) are Bessel systems. Then the following statements are equivalent:

(i) 9(g,A) and G (h,A) are dual frames,

(ii) (h,m(w)g) = d(A)d,e for all p € A°.
If either and hence both of the assertions hold, then (G x @)/A is compact.

Proof. Assume that ¥ (g, A) and ¢ (h, A) are dual frames for L?(G). By Theorem [5.1| this
implies that A is co-compact. It follows by Lemma [4.4] that

(h,m(p)g) = d(A)dyue forall pe A°.

Assume now that (h,7(u)g) = a(A)%,e for 4 € A°. Suppose A is not co-compact.
Then the cardinality of A° is uncountable. However, this contradicts the assumption that
h and 7(j1)g are biorthogonal for each 1 € A° since L?(G) is separable. Thus, the subgroup
A is co-compact. By Lemma we have

A(A) Sy e(m(p) 1, f2) = / S(@)B(@)e(x)dx, (6.1)

(GxG)/A

where ¢(x) = [\ (m(X)*f1,7(v)g){m(v)h, 7(x)* f2) dv and fi, f2 € L*(G) are arbitrary. By
Lemma the mapping ¢ is a bounded function on the compact domain (G x G)/A. It

therefore has a Fourier series indexed by the dual group of (G x @) /A, which is topologically
isomorphic to the discrete group A°. The right hand side of equation are the Fourier
coefficients of ¢. Indeed, by assumption, all but one are identically zero. We thus have the
Fourier series expansion

p(0) = d(A) T D d(A) G (m(p) frs fo) = (fr fo), (6.2)

HEA®°

which holds for almost all ¥ € G x G. Moreover, by Lemmathe function ¢ is continuous.
Hence, equality (6.2)) holds pointwise; in particular, for x = e, it yields

o(e) = /A (1w g) (), f2) dv = (fu, fo).

Thus {7(v)g},ea and {m(v)h},ea are dual frames for L?(G). O
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6.2 The Janssen representation

For any closed subgroup A in G x (A?, Lemma states that the Fourier transform of the
A-periodic function

p:GxGC, XH/ Y o 7 (0)g) (), (X)) do

is given by
p(u) = (hym()g)(m (1) fr, f2), ne A%
Indeed, ¢ € L((G x G)/A) since

Lo | 00" 51700 00 o a5 < DA el
(GxG)/A

Using the Fourier inversion formula, we then recover the fundamental identity in Gabor
analysis (6.4)) for Gabor systems in L?(@) by Rieffel [33].

Theorem 6.2. Let A be any closed subgroup of G x G, and _define ¢ € LY((G x G)/A)
above. If ¢ € LY (A°), then for almost all x = (z,w) € G x G:

J 00 ) w0 b = [ ol B w0 () o o) e (63)

where = («, B) € A°. If, furthermore, ¢ is continuous, then the inversion formula (6.3)
holds pointwise, and for x = (eq,eg) we find that

[ mg) wwh b = [ (hwg) (w(u) i, ) (6.4)
A [e]

Corollary 6.3. Let A be a closed subgroup of G x @, and let g,h € L*(G). Suppose that
4(g,A) and 4 (h,A) are Bessel systems. If the functions g,h and f1, fo € L*(G) satisfy

[ 1mtig)m 1, 12 < o, (65

then
Synfio o) = [ (rmw)a) rw)h fo)dv = [ (hm(g) (s o o) e (69

Proof. The Bessel assumption, Lemma and (6.5) ensure that the conclusion (6.4]) of
Theorem [6.2] holds. O

In [15] the authors determine sufficient conditions on the functions g, h, f1, fo under
which holds. In particular, we mention that holds if g,h € L?(G) and f1, fo
belong to the Feichtinger algebra So(G), cf. |[15] and Theorem and Corollary in
the appendix.

Assume that A is a closed, co-compact subgroup of G x G. The measure on A° in the
right hand side of is then given by d(A)™* >_uenc- The pair (g, A) satisfies condition
Aty cne [{g: m(1)g)| < oo. Now, if the Gabor system {m()g},ena is a Bessel family and
condition A holds, then yields the Janssen representation of the frame operator:

Sy =d(A) " Y (g, w(w)g)m ()
HEA®

with absolute convergence in the (uniform) operator norm. It follows from Proposition
and the comments preceding Corollary that any g € So(G) satisfies condition A. The
mixed frame operator S5, g,h € L?(G), has a similar Janssen representation.
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6.3 The duality principle

In this section we proof an extended version of the duality theorem for Gabor frames. The
original result on separable lattice Gabor systems on L?*(R?) goes back to Daubechies,
Landau and Landau [9], Janssen [29], and Ron and Shen [34]. Our proof is inspired by one
direction of Janssen’s proof; the important fact is that Janssen’s computations carry over
from the setting of discrete, separable Gabor systems in L?(R) to regular, non-separable
Gabor systems in L?(G). From this idea, we prove that for any closed subgroup A in
G x G the Gabor system {m(¥)g}ven is a Bessel system with bound B, if, and only if,
{m(1)g}uene is a Bessel system with bound B. We remind the reader that a Gabor system
is a Bessel system with bound B with respect to the measure on the associated time-
frequency subgroup. In case A is co-compact, the measure on A° is d(A)™* POTIECE
Remark |1} ' and the Bessel duality principle in Theorem [6.4] H states that for g € L?(G) and
B > 0 we have:

J e r @iy < BIAP it andonly it 3 |7 w(n0) < d)B 1P

HEAP®

for all f € L?(G). When A is a full-rank lattice in R?", the Bessel duality result is well-
known, and the result is stated in |16, Proposition 3.5.10]|, albeit without bounds. Note,
however, that the Bessel duality principle is true for any closed subgroup of G x G and that
neither co-compactness nor discreteness is needed. The generalized duality principle will
then follow from the Bessel duality principle and the Wexler-Raz biorthogonality relations
using general frame theory.

Theorem 6.4. Let A be a closed subgroup of G x G, and let g € L2(G). Then %(g, A) is
a Bessel system with bound B if, and only if, 4 (g, A°) is a Bessel system with bound B.

Proof. By symmetry of the Bessel duality principle, we only have to prove one of the two
implications. We assume that g € L?(G) and that {7(v)g},ea is a Bessel system with
bound B. In other words, we assume that the analysis operator Cy A : L?(G) — L*(A)
is bounded with operator bound v/B. Therefore, its adjoint, the synthesis operator Dy A
given weakly by

(Dg.aa,h)= / a(v)(m(v)g, h) dv for all h € L*(Q)
A
is also bounded by v/B:
1Dg.a0l72(c) < Bllelzaa) forall g € L2(A). (6.7)
For each y € G x G, we define o(v) = (n(x)h, 7(V)f), v € A, where f,h € So(G), nor-
malized so that ||h||z2(q) = 1. It follows from Propositiontogether with the comments
preceding Corollary that w € So(A).

By a change of variables and using the properties of the time-frequency shift operator
we find that

1Dg.a¢l22) = (Dgaps Do) = /A o) /A ()9, ()g) 9 (7) d dv

- / o) / (r (), (W )g) (m() £, w (X)) v d
A A

18 of



Jakobsen, Lemvig Density and duality theorems for regular Gabor frames

— [ o) [ (x(w)g. 700/ (m(0) .m0R) o
A A
=/ w(V)/<7T(V)9,W(V)W(V’)@(W(V)W(V’)f,W(x)h> dv' dv
A A
= [ o) [ g.10")9) (w0 (o) 7)) .
A A
Note that the order of integration can be interchanged by Fubini’s theorem since ¢ €
SO(A) c Lt (A)

Since f and h belong to Sy(G) and g € L?(G), the fundamental identity in Gabor
analysis (6.4]) holds (see the comments following Corollary . Hence,

IDsaeliag = [ o) [ (.m0, me) m0om dudv. (69

For the adjoint system {7 ()9} ecac it follows from Corollary that the frame operator
Sy.ae is well-defined on the subspace So(G) of L?(G). Thus, since f € So(G), we have by
definition that

(Spase .50 700M) = [ {71019} (x(0)g. 70 7 OOR)
Hence, we can continue (6.8):
I1Do.splBaiey = [ (S0 m(0) mOOR) () (0 £) d
= [ Sy £ Oh, ) d

where we have also used (2.1)), (2.2)), and a change of variables from v~! to v. Thus, with
our choice of ¢, the inequality (6.7]) becomes

/A Sy fo m (R (), f) dv < B /A (x(wx)h, £) 2 do.
Integrating over the quotient (G x é) /A yields that

Lo JSretm0m wron, pravax <5 [

Gx@G)/A

J won P avas.
and further by Weil’s formula we find that

/ A<Sg,Aof,7r(x)h><7T(x)h7f>dxSB/ Um0, f)1 dx.
GxG

GxG

Using the orthogonality relations of the short-time Fourier transform in Lemma [4.2[(iii),
we arrive at

J 00 P = Sy 008, 1) < BISIE

for any f € So(G). Since Sp(G) is dense in L*(G), we conclude that {m(u)g}cne is a
Bessel system with bound B. O

The duality principle can now be proven using general frame theory; the proof strategy
is similar to the proof of the duality principle for separable, co-compact subgroups in |28].
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Theorem 6.5. Let A be a closed subgroup of G X G and let g € L3(G). Then the following
statements are equivalent:

(i) 9(g,A) is a Gabor frame with bounds A and B,
(ii) 9(g, A\°) is a basic Riesz family with bounds d(A) A and d(A) B.
If either and hence both of the assertions hold, then (G x CA;)/A is compact.

Proof. Suppose either (i) or (ii) holds. Then by Theorem and Proposition the
group (G x G)/A is compact, and equivalently A° is discrete. Assume now that (i) holds.
Then {7(v)g},ea has the canonical dual frame {7(v)S~'g},ea with frame bounds B!
and A~!. Therefore in particular {7 (v)g},ea and {7(v)S 1g},cn are Bessel systems with
bounds B and A~!, respectively. By Theorem then also {W(u)(d(A))_l/Qg}uer and
{m(1)(d(A))~/28 g} ,cne are Bessel systems with respect to the counting measure on
A° with bound B and A™!, respectively. By Theorem we also have that the du-
ality of the frames {m(v)g},ea and {7(¥)S™'g} e imply that {m(u)(d(A))"2g}cne
and {m(1)(d(A))"/257 g} ,eno are bi-orthogonal. By Theorem it now follows that
{m(1)(d(A))"Y2g} sene is a basic Riesz family with bounds A and B. The converse im-
plication is similar where Theorem instead of Theorem is used. O

Let us comment on a difference between the Bessel duality and the duality principle.
We have proven both results for any closed subgroup A of G x G. However, for non-co-
compact subgroups, the duality principle is vacuously true, in the sense that Theorem
and Proposition imply that both statements in Theorem are false. This is not
so for the Bessel duality. In fact, Corollary shows that for any closed subgroup A
in G xG any function g in the Feichtinger algebra Sy(G) will generate a Bessel system
9(g,A). It is thus the additional lower frame inequality and lower Riesz family condition
that restrict the interesting (non-empty) statements of Theorem to the case where
(G x G)/A is compact. It is, however, remarkable that both of the assumptions limit the
admissible subgroups A to exactly those that have a compact quotient (G x G)/A. A
similar comment holds for the Wexler-Raz biorthogonality relations in Theorem

Corollary 6.6. Let A be a closed subgroup of G X @, and let g € L*(G). Then 9(g,A) is
a tight frame with bound A if, and only if, 4 (g, A°) is an orthogonal system with HgH2 =
d(A)A.

Proof. One implication follows by Corollary For the other note that an orthogonal
system {7(u)g} ene with lgl|* = d(A)A is a basic Riesz family, where both bounds are
d(A)A. By Theorem [6.5 the Gabor system {m(r)g},ea is a tight frame with bound A. [

We are now ready to show existence of tight Gabor frames in L?(R") for very “sparse”,
but non-discrete, subgroups A; here we mean sparse (or thin) in the sense that d(A) can
be arbitrarily large. On the other hand, if A is discrete, we saw in Theorem that
d(A) <1 is necessary for the existence of Gabor frames.

Example 2. Let G = R™ and let A = A x I', where A and I' are closed, co-compact
subgroups of R™. Then I" = P(Z" x R"™") and A = Q(Z* x R"™*) for some P, Q € GLgr(n)
and 0 < r,s < n. If we consider P and () as n X n matrices and the columns of P and
Q@ as vectors in R™, we can take the last n — r and the last n — s columns of P and
Q, respectively, to be orthonormal vectors. We then equip I't = (PT)~Y(Z" x {0}"")
and A+ = (QT)~1(Z5 x {0}"~%) with the counting measure times |det P| ™! and |det Q| ",
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respectively. It follows that d(A) = |det (PQ)|. We split the construction of tight Gabor
frames {E,Thg}\cp er in three cases:

(a)
(b)
()

r <mn, any P,Q € GLgr(n),
s < n,any P,Q € GLg(n),
r=nand s = n, and d(A) = |det (PQ)| <1 for P,Q € GLg(n).

Case (a) and (b) correspond to non-discrete subgroups, while case (c) is the well-known
setup of discrete Gabor systems.

(a)

Applying the dilation operator Dg-1, defined on L?(R™) by D4 f(x) = det A2 f(Ax),
to the functions in {E’YT)\Q}AeQ(ZSan*S) yeP(zr xRn—r) WE obtain:

{E»YT)\g})\GZs XRn=8 ~EQP(Z" xRn=T) 1 with g = DQ—lg.

The adjoint Gabor system is

{E8TaG} ae @z x{oyn—r),Beze x {0y » (6.9)

where A = ((QP)T)~!. We will choose § so that this adjoint system is an orthonormal
system. By Corollary the Gabor system {E,Th\g},cp Jer generated by g = Dgg
will then be a Parseval frame for L?(R").

Obviously, the system {Ef;]l 0,1 is orthonormal. We consider the columns

" },BEZS x{0}n—s
of A as vectors in R™ and redefine the last n — r columns of A to be an orthonormal
basis of the orthogonal complement of the first r column vectors of A. For each z € Z"
define

K. =[0,1]"NA([z,z+1]" x R"™").

Let Z ={z € Z" : K, # (}; as usual, our set relations should be understood only up to
sets of measure zero. Since Z is finite and the subspace A(R" x {0}"") of co-dimension
n —r >0, we can find points {y. € Z" : z € Z} that satisfy

(K> +92) N (Ko +ys +0) =0 Vare A(Z" x{0}"7") \ {0}" (6.10)

for all z,2" € Z. The choice of y, is illustrated in Figure[ll Define § € L?(R) by

g= Z Tr.ty.-

z2€Z

By Z™-periodicity of €™ for f € Z" and the fact that y, € Z", we see that
{Egg}BeZSX{O}n,S is an orthonormal set. By (6.10), the translates T,g and T, g
have disjoint support for o,/ € A(Z" x {0}"") whenever a@ # «'. Combining
these two facts, we see that the adjoint Gabor system is orthonormal. As a
conclusion we have that tight Gabor frames {E,T\g} . Anel exist for any value of
d(A) = |det (PQ)| > 0 with generators g having compact support.

An application of the Fourier transform switches the role of A and I'. Hence, we
can construct a tight Gabor frame generator g in the frequency domain by directly
referring to case (a). This approach, however, leads to bandlimited generators. If
compactly supported generators are desired, slight modifications of the procedure in
(a) are necessary.
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Figure 1: An example for n = 2,7 = 1 showing the choice of the integer vectors g, in
(6.10). The dots show A(Z x {0}), where A = [a; a2 is a 2 x 2 matrix, and the column
vector aq is illustrated as a geometric vector on the plot, and as is orthogonal to a;. Then
Z =1{0,1,2}, and we can take yo = (—1,1),y1 = (0,0),y2 = (1, —1). With this choice the
set U,ez(K, + y.), and its translates along the “dots” A(Z x {0}) \ {(0,0)} are disjoint.

(¢) When r =n and s = n, both A = PZ" and I' = QZ" are full-rank lattice in R", and
we equip these discrete subgroups with the counting measure. Under this setup, Han
and Wang prove that d(A) = |det (PQ)| <1 is equivalent with the existence of a
tight Gabor frames {£,T\g} . Aqer- Their proof is constructive and the constructed
Gabor windows g is, as above, a characteristic function of a given set. However, in this
case the set might be unbounded, in which case the generator will not have compact
support.

For uniform lattices A in G x G it follows from the duality principle in Theorem
applied to the density result in Theorem that 4(g,A) being a (basic) Riesz family
implies that d(A) > 1. For non-discrete Gabor systems this conclusion is false, in fact, by
the duality principle, Example [2| shows that d(A) can take any value in R..

A The Feichtinger algebra 95

For functions f,g € L'(G) involution and convolution are defined by

fl@) =T ) and (f*g)(@) = /G f(s)g(es™) ds,
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respectively. The function space Sy is a Fourier-invariant Banach space that is dense in
L? and whose members are continuous and integrable functions. It is can be defined as
follows.

Definition A.1. For an LCA group G we define
50(@) = {£ €24 + [ IBuf £l de < oo},

We endow Sy(G) with the norm || f||s,,9 := HVQfHLl(Gxé) for a fixed g € So(G).

The space Sy(G) is a Banach algebra under convolution and pointwise multiplication,
also known as the Feichtinger algebra [12]. It is a special instance of both a modulation
space and a Wiener amalgam space, namely, M and W (FL!, L'). Note that, for f,g €
S0(G),

LBt gy = [ 17 Tl do = Vaf losaay

where we have used that

Vof(,w) = F(f - Tog)(w), (w,w) € Gx G, (A1)

for all f,g € L*(G).
For the proof of Theorem we need the following two properties of Sp:

e The product of two short-time Fourier transforms of L2-functions with windows in
So(G) is a function in Sp(G x G) (Theorem |A.4)).

e For any window g € L?(G) and any closed subgroup A of G x @, the frame operator
Sga t L*(G) = L*(G), Sgaf = / [(f, m(v)g)|* dv

with domain D(S; a) = So(G) C L*(G) is well-defined (Corollary [A.5)).

The aim of this appendix is to give a proof of these statements. The material presented
here is known for the lattice case in L?(R") [8}/15,16,21], and the generalization to L?(G) is
routine using standard harmonic analysis. We have included the proofs for completeness.
Along the way, we obtain a direct proof of the Holder inequalities for certain Wiener
amalgam spaces.

We need the following further properties of short-time Fourier transform.

Lemma A.2. Let g,g:, f,fi € L*(G), i = 1,2 and x,a € G and w,B € G. Then the

short-time Fourier transform
Vy: LA(G) = LG x G), Vyf(x,w) = (f, E,Tyg)
satisfies the following relations:
(a) VyERTf = () E(e@aq)T(aﬁ of, where ez denotes the identity element in G
(b) Veyr.gEsTof = B(x)w(a) Vyf,

(¢) F(Vg 1 Vg [2) (B, ) = (f1, EgTo-1 f2)(EgT,-192,g1), where F is the Fourier trans-
form on G x G.
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Proof. Assertion follows from:
(Ve BsTof)(x,w) = (ETaf, EuTeg) = ([, Tafle,BflTwW = w(a)B(a)(f, Byp-1Tva19)
— w( )B()Vy f(xoz wﬁ_l) = f(a) (E(eéyaq)T(a,g)ng)(:c,w).

Assertion (]ED follows by similar manipulations, using the unitarity of EgT,:

Ve, tagEsTaf(z,w) = (EgTuf, EuTo EgTag) = B(x)w(a)(EsTwf, EgTaEsTrg)
= B(@)w(Q)(f, BuTug) = Bx)w(a)Vy f(z,w).
For we do the following:

FVnhr Vo) (Bra) = /G V(@) VR ) A d.o)

@ o avglfl(x7w) ’ VEBTa—1g2EﬁTa—1f2($7w) d($’w) = <Vg1f17VEBTa_ngEBTa—1f2>
x

(4.2
Ef BTy s o) (EsTo 190, 01).
]

The norm || - ||s,,4 on So(G) depends on g € So(G). However, any function g induces
an equivalent norm. Indeed, for f, g1, g2 € So(G) one can show that

lg1l1Z2 llg2llsg, 110,02 < I £llsoar < 920172 g2l 50,91 1F 10,00+

As a consequence, a function f € L?(G) belongs to So(G) if, and only if, V, f € L}(G x Q)
for any and thus all g € So(G).

Proposition A.3. If f,g € So(G), then V,f € So(G x @) and

Vo fllsover = 1 50,7 19l50.9-

Proof. Let f,g € So(G). By the argument preceding the proposition, we have that V, f €
LY(G x G). Using Lemma we find:

/Gx@ /aXG Vo, Ega)Ta Ve )l d(B, a) d(z,w)

@ /GX@ /GXG (Vo f E(ﬁ,oxm)VgEWTﬂUf>| d(8, o) d(z, w)

-

D[ R0 VBT 600 5,0 )
GxG JGXG

/ A/A ‘<f, EﬁwTa—1f><E,3Tx—1a—1g’g>’ d(f, ) d(z, w)
GxG JGxG

(Oé = Oé_l, B 5(“)_1) - /G @/é Ie ‘<f, EﬁTaf><E5w—1Tam_1g’g>} d(ﬁ’ Oé) d($’ OJ)

/ Vi, B)] / Vaglaz™, B d(z, w) (e, 6)
— 1 llsos

|9HSo7g'
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Theorem A.4. Let f; € L*(G) and g; € So(G), i = 1,2. Then the mapping
v:Gx G — C, (z,w)+— (Vglfl . VQQfQ)(J:,W)
belongs to So(G x G).

Proof. Tt is clear that ¢ € L'(G x CA}’) Now, let gg € SO(G) and define o = = V4090 By
Proposition [A.3] the function ¢o € So(G x G), and thus @t € So(G x G). To finish the
proof, it suﬂices to show that H4p||507<p0 I %goHLl (GxGxGxa) < 00 We show this in two

steps.
Step 1: Using the definition of the short-time Fourier transform and (A.1]) we find that

Wagls = [ [ 10 B Tam el d.a) daw)
GxG JGxG

= [ [ Onh Ve T ) (.01, d)
GxG JGXG

= [ 1P 00 A Tn) « F Vi Tl )3y )
xG

§/; GHJT(mel z,w) SOO)HLl(GXg) H}-(me? (z,w) SOO)HLl (GxG) d(r,w)
x

1/2

_— 1/2 -
(IO Tl die.)) ([ 1P OnR Tl i)
(A.2)

Step 2: We now show that both factors in (A.2)) are finite. Consider the first of the
factors. By use of Lemma[A2] we find the following:

| IFOn A T Vel die.)
GxG
- 2
@ ([ FOnh VBT (6,00 d(5.a) dla,w)
GxG GxG

(<) 2
([ BT B Lago) By Ty 1) d(5,)) o) (A3
GxG GxG

By use of the short-time Fourier transform, expansion of the square term and a change of
variables o — 127! we rewrite (A.3)) to yield the following:

/G IF 0 A T Vi) di)
- / / Vyo f1.(@0,wB)| Vo fo (23 0B)| Vi (0, B)| Vao s (@ )] (v, B) d(&, B) d(zr, )
/ Vit (. B)] / Vot (6, B)] / Vi f1 (200, 0B)| [V f1 (2, 0B)| d(r,0) (@, B) d s, B)

< Vaognll7s Vo FillZ2 = 19115, go L0l 72 111172,

where all integrals are over G x G. The bound for the other term in (A.2)) is obtained
similarly. Combining step 1 and 2 yields that

lellsy ez = Vg2l < llgoliZz lgllse.go I92lls0.0 I f1llz2 Il f2 ]l 2,

where po = Vgo90, go € So(G). u
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Step 1 in the proof of Theorem [A-4] shows that

1f - gllwFer,cry < I fllwrer,eey l9llwFo,c2)-

Using the Holder inequality rather than the Cauchy-Schwarz inequality in (A.2) yields a
Hoélder inequality for Wiener amalgam spaces:

If - gllwEer,ony < I fllweEeroo l9llwFrroe), 1=1/p+1/q, 1 <p,g<oco  (A4)

for f € W(FL', LP) and g € W(FL', L%). In the special case of G = R" the inequality
plays an important role in [8,15]. On the other hand, holds for more general
Wiener amalgam spaces |13].

From |12, Theorem 7| we have the following important property of Sy. For any closed
subgroup H of G the restriction mapping

Ry : So(G) = So(H), Rpf(x)=f(x), v H
is onto and bounded.

Corollary A.5. Let A be a closed subgroup of G X G. If g € So(G), then there exists a
constant K > 0 (which only depends on A) such that

/ (. m()g))? dv < K ||gll3, g loll7 I1flI72 for all f e L*(G).

Proof. From Theorem [A.4] we have that the mapping
0:GxG—C, (z,w)—~ |(f, EuTeg)|?

belongs to So(G % @) for any f € L*(Q). By the comment preceding Corollary we
have that for a closed subgroup A of G x G, the mapping v — |{f,7(v)g)|? also belongs
to Sp(A). Hence, it belongs, in particular, to L'(A). Therefore

INECIR TR OV

The result now follows by the proof of Theorem [A-4] O

) < C||Ravllsy < Cl[Rallop lllls0-

Corollary shows that the frame operator S, with g € So(G) is well-defined and
bounded on L*(G). However, it also shows, and this is what we used in Section , that
the operator Sy, g € L?(G), is well-defined when the domain is restricted to the subspace
So(G) of L*(G). We refer to |16] for further results of this nature for G = R™.
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