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Abstract. We show that there exists a frame wavelet ψ with fast decay in the time
domain and compact support in the frequency domain generating a wavelet system whose
canonical dual frame cannot be generated by an arbitrary number of generators. On the
other hand, there exists infinitely many alternate duals of ψ generated by a single function.
Our argument closes a gap in the original proof of this fact by Daubechies and Han [Appl.
Comp. Harmonic Anal. 12 (2002), no. 3, 269–285].

1. Introduction

This paper explores the relationship between canonical and alternate dual frames of a
wavelet frame. One of the first results in this direction is due to Daubechies [9] and Chui
and Shi [7] who proved that the canonical dual of a wavelet frame need not have a wavelet
structure. Since their example involved a non-biorthogonal Riesz wavelet, it has no alternate
dual wavelet frames as well.

In general, if the canonical dual of a frame wavelet has a wavelet structure, then it is
quite likely that this frame wavelet has some other wavelet duals. However, the existence of
dual wavelet frames does not necessarily imply that the canonical dual must have a wavelet
structure. This claim was asserted by Daubechies and Han [10].

Theorem 1. There exists a frame wavelet ψ ∈ L2(R) such that:

(i) ψ̂ is C∞ and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by a single function,

(iii) there are infinitely many ψ̃ such that ψ and ψ̃ form a pair of dual frame wavelets.

Unfortunately, the original argument in [10] uses an incorrect formula for the frame op-
erator of a wavelet system owing to a simple change of sign mistake. This invalidates the
original proof to the extent that an easy remedy appears to be doubtful. More details about
the nature of this problem can be found in Section 3.

Therefore, there is a need to provide an alternative proof of Theorem 1. We will use a
completely different approach motivated by [5]. Instead of trying to work directly with the
frame operator as in [10], we will use a less direct approach using the following result of
Weber and the first author [5].

Theorem 2. Suppose that the canonical dual of a wavelet frame {ψj,k(x) := 2j/2ψ(2jx−k) :
j, k ∈ Z} has a wavelet structure, i.e., it is of the form {φj,k : j, k ∈ Z} for some frame
wavelet φ. Then, the space of negative dilates

(1) V (ψ) := span{ψj,k : j < 0, k ∈ Z}

is shift-invariant (SI).
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The paper is organized as follows. In Section 2 we recall some basic facts about the period
of a wavelet frame. In particular, we explore the relationship between the period and the
number of generators of the canonical dual of a wavelet frame. In Section 3 we give an explicit
construction of a frame wavelet ψ as in Theorem 1. We prove that its corresponding space
of negative dilates V (ψ) lacks shift-invariance. Consequently, by Theorem 2 we conclude
that the canonical dual of the wavelet frame {ψj,k}j,k∈Z is not a wavelet system generated
by a single function. In fact, we prove that our example can be adjusted in such a way that
the canonical dual can not be generated by arbitrarily many generators, see Theorem 3.

Finally, we review basic definitions. A frame for a separable Hilbert space H is a collection
of vectors {fj}j∈J, indexed by a countable set, such that there are constants 0 < C1 ≤ C2 <
∞ satisfying

C1 ‖f‖
2 ≤

∑

j∈J

|〈f, fj〉|
2 ≤ C2 ‖f‖

2 for all f ∈ H.

If the upper bound holds in the above inequality, then {fj} is said to be a Bessel sequence
with Bessel constant C2. The frame operator of {fj} is given by

S : H → H, Sf =
∑

j∈J

〈f, fj〉fj .

This operator is bounded, invertible, and positive. A frame {fj} is said to be tight if we
can choose C1 = C2; this is equivalent to S = C1I, where I is the identity operator.

Two Bessel sequences {fj} and {gj} are said to be dual frames if

f =
∑

j∈J

〈f, gj〉fj for all f ∈ H.

It can be shown that two such Bessel sequences indeed are frames, and we shall say that
the frame {gj} is dual to {fj}, and vice versa. At least one dual always exists, it is given by
{S−1fj} and called the canonical dual. Redundant frames have several duals; a dual which
is not the canonical dual is called an alternate dual.

Let f ∈ L2(R). Define dilation operator Daf(x) = |a|1/2 f(ax), translation operator
Tbf(x) = f(x − b), and modulation operator Ecf(x) = e2πicxf(x), where |a| > 1, b, c ∈ R.
In the dyadic case we let D := D2. The wavelet system generated by Ψ = {ψ1, . . . , ψL}, is
defined as {ψj,k}j,k∈Z,ψ∈Ψ, where ψj,k = Dj

aTkψ. We say that Ψ and Φ is a pair of dual frame
wavelets if their wavelet systems are dual frames. As stated above the canonical dual of a
wavelet frame generated by Ψ might not be a wavelet system generated by |Ψ| functions.
In this case, we say that the canonical dual of Ψ does not have the wavelet structure.

Given a frame wavelet Ψ, the subspaces Wj(Ψ) are defined by

(2) Wj(Ψ) = span {ψj,k : k ∈ Z, ψ ∈ Ψ} , j ∈ Z.

By this definition we can write the space of negative dilates, introduced in Theorem 2, as

V (Ψ) = span
⋃

j<0

Wj(Ψ).

If we have only one generator, that is L = 1, we shall write V (ψ) instead of V (Ψ). Suppose
that W ⊂ L2(R) is a closed subspace. We say W is MZ-SI, MZ shift invariant, or shift
invariant under MZ, M ∈ R, if TMzW ⊂ W for all z ∈ Z. In the case M = 1, we shall say
that W is shift invariant, or SI.

For f ∈ L1(R), the Fourier transform is defined by Ff(ξ) = f̂(ξ) =
∫

R f(x)e−2πiξxdx
with the usual extension to L2(R). Given a measurable subset K ⊂ R, we define the space
Ľ2(K), which is invariant under all translations, by

Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}.
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2. The period of a frame wavelet

Daubechies and Han [10] have introduced the notion of the period of a dyadic wavelet
frame in L2(R). Weber and the first author [5] extended it to a non-dyadic situation as
below.

Definition 1. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet associated with
an integer dilation factor a, |a| ≥ 2. The period of Ψ is the smallest integer p ≥ 1 such that
for all f ∈ span {Tkψ : k ∈ Z, ψ ∈ Ψ},

TpkS
−1f = S−1Tpkf for all k ∈ Z,

where S is the frame operator of the wavelet frame generated by Ψ. If there is no such p,
we say that the period of Ψ is ∞.

We remark that our convention differs from the definitions in [5, 10], where the period
is said to be 0 (and not ∞) if no such p exists. The examples of non-biorthogonal Riesz
wavelets by Daubechies [9] and Chui and Shi [7] mentioned in the introduction have period
∞; while any tight frame wavelet has period 1.

Following [15], the local commutant of a system of operators A at the point f ∈ L2(R) is
defined as

Cf (A) :=
{
B ∈ B(L2(R)) : BAf = ABf ∀A ∈ A

}
.

The wavelet system of unitaries is denoted by U := {Dj
aTk : j ∈ Z, k ∈ Z}. The canonical

dual of a wavelet frame U(Ψ) = {Dj
aTkψ}j,k∈Z,ψ∈Ψ is given as

{
S−1Dj

aTkψi : j, k ∈ Z, i = 1, . . . , L
}

=
{
Dj
aS

−1Tkψi : j, k ∈ Z, i = 1, . . . , L
}

=
{
Dj
aη

k,i : j, k ∈ Z, i = 1, . . . , L
}
,

where S is the frame operator of U(Ψ), and {ηk,i} is a family of functions, not necessarily
with translation structure, indexed by {1, . . . , L}×Z. The canonical dual takes the form of
a wavelet system generated by |Ψ| = L functions, i.e.,

{
S−1Dj

aTkψi : j, k ∈ Z, i = 1, . . . , L
}

=
{
Dj
aTk(S

−1ψi) : j, k ∈ Z, i = 1, . . . , L
}

=
{
Dj
aTkφi : j, k ∈ Z, i = 1, . . . , L

}
,

precisely when TkS
−1ψ = S−1Tkψ for all ψ ∈ Ψ and k ∈ Z; that is, precisely when S−1 ∈

Cψ({Tk : k ∈ Z}) for all ψ ∈ Ψ. Equivalently, the canonical dual of U(Ψ) has the wavelet
structure generated by |Ψ| functions if, and only if the period of Ψ is one, c.f. Proposition 2
below.

The following results from [5] will be used in the proof of Theorem 1. We restate them
here since they were incorrectly stated in [5]. We note that these results can be thought as
refinements of Theorem 2.

Proposition 1. Let M ∈ N. If Ψ is a frame wavelet and the period of Ψ divides M , then
V (Ψ) is shift invariant by the lattice MZ. In addition, if Ψ is a Riesz wavelet, then the
period of Ψ divides M if and only if V (Ψ) is shift invariant by the lattice MZ.

Corollary 1. If Ψ is a frame wavelet and the period of Ψ divides |a|J for some J ≥ 0, then
DJ
a (V (Ψ)) is shift invariant.

If the period P (Ψ) of a frame wavelet Ψ is finite, then the canonical dual frame is a wavelet
system generated by P (Ψ) · |Ψ| functions, and this is the least number of generators. In
this case the wavelet structure of the canonical dual frame is altered since it is based on
the translation lattice P (Ψ) · Z which is sparser than the original lattice Z. Moreover,
for any nonnegative integer M , the period of Ψ divides M if, and only if the canonical
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dual is a wavelet system generated by M · |Ψ| functions, see the proposition below. The
“only if” direction is implicitly contained in the proof of [5, Proposition 2]. For the sake of
completeness we prove both directions here.

Proposition 2. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) is a frame wavelet. For any
nonnegative integer M ∈ N, the following statements are equivalent:

(i) P (Ψ) |M , i.e., the period of Ψ, denoted P (Ψ), divides M.
(ii) There exist ML functions Φ = {φ1, . . . , φML} such that {Dj

aTMkφ}j,k∈Z,φ∈Φ is the
canonical dual of {Dj

aTkψ}j,k∈Z,ψ∈Ψ = {Dj
aTMkψ}j,k∈Z,ψ∈ΨM

, where

ΨM := {Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ} .

Proof. We note that the frame operator of {Dj
aTkψ}j,k∈Z,ψ∈Ψ equals the frame operator of

{Dj
aTMkψ}j,k∈Z,ψ∈ΨM

since the two frames are setwise identical; we denote this operator by
S.

We first prove (i) ⇒ (ii). By assumption the period of Ψ is finite, hence the definition of
the period yields the following equation.

(3) TP (Ψ)kS
−1f = S−1TP (Ψ)kf for all k ∈ Z and f ∈W0(Ψ).

Since the period of Ψ divides M , we in particular have P (Ψ)Z ⊃ MZ, and the above
equation gives us

TMkS
−1f = S−1TMkf for all k ∈ Z and f ∈W0(Ψ).

Consequently, for each ψ ∈ Ψ,

S−1Tkψ = S−1TMl(Tmψ) = TMlS
−1(Tmψ),

where k ∈ Z is written as k = Ml + m for l ∈ Z and m ∈ {0, 1, . . . ,M − 1}. The last
equality in the above equation shows that S−1 ∈ Cf ({TMk : k ∈ Z}) for every f ∈ ΨM , so
we arrive at (ii) by taking Φ = S−1ΨM = {S−1Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ}.

To prove the other direction, (ii) ⇒ (i), we assume that the canonical dual of the system
{Dj

aTMkψ}j,k∈Z,ψ∈ΨM
is generated by ML functions Φ = {φ1, . . . , φML}. Since |ΨM | = ML,

it follows that S−1 ∈ Cψ({TMk : k ∈ Z}) for all ψ ∈ ΨM , i.e.,

(4) S−1TMk(Tmψ) = TMkS
−1(Tmψ) for all k ∈ Z, m ∈ {0, . . . ,M − 1} , ψ ∈ Ψ.

In this equation we replace k ∈ Z by k+l with l ∈ Z, whereby we obtain S−1TMk(TMl+mψ) =
TMkS

−1(TMl+mψ) for all k, l ∈ Z, m ∈ {0, . . . ,M − 1}, and ψ ∈ Ψ. Now since

W0(Ψ) = span{TMl+mψ : l ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ},

we see that

(5) S−1TMkf = TMkS
−1f for all k ∈ Z, f ∈ W0(Ψ),

and conclude that the period of Ψ is at most M .
To complete the proof we need to show that the period of Ψ is a divisor of M . Assume

on the contrary that the period of Ψ is not a divisor of M . Then there are q, r ∈ N ∪ {0}
such that M = qP (Ψ) + r and 0 < r < P (Ψ). We know that the period of Ψ is finite, so
equation (3) is satisfied, and by from (3) and (5) we have

S−1TP (Ψ)k1+Mk2f = TP (Ψ)k1+Mk2S
−1f for k1, k2 ∈ Z, f ∈W0(Ψ).

Taking k1 = −qk and k2 = k for each k ∈ Z gives us rk = P (Ψ)k1 +Mk2. Therefore,

S−1Trkf = TrkS
−1f for all k ∈ Z, f ∈ W0(Ψ),

which contradicts the minimality of P (Ψ) since 0 < r < P (Ψ). �
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Remark 1. In the dyadic case and when M is a power of two, Proposition 2 reduces to [10,
Proposition 2.1]. Indeed, if M = 2J for some J ∈ N, then any dyadic wavelet system of the
form {DjTMkφ}j,k∈Z,φ∈Φ with translation with respect to the lattice MZ, can be written as
a wavelet system {DjTkφ}j,k∈Z,φ∈Φ′ using the standard translation lattice Z and the same
number of generators |Φ| = |Φ′|, see [10]. Corollary 7 in [5] states that the period of a dyadic
Riesz wavelet is either a power of two or infinite. Hence, whenever a Riesz wavelet has finite
period the canonical dual takes the form {DjTkφ}j,k∈Z,φ∈Φ′ for some family of functions Φ′,
where we note that the translation is with respect to the lattice Z.

3. Canonical dual frames without wavelet structure

In this section we will prove Theorem 1 by giving an example of a wavelet frame in L2(R)
whose canonical dual does not have wavelet structure. To be precise, we will construct a
family of examples, indexed by J ∈ N, such that the canonical dual cannot be generated
by fewer than 2J functions. In each of these examples the wavelet itself is nice in the sense
that it has compact support in the Fourier domain and fast decay in the time domain, and
it has nice alternate dual frame wavelets.

Our construction is motivated by the proof of [5, Theorem 2(ii)], where Weber and the
first author give an example of a frame wavelet ψ with compact support in the Fourier
domain whose canonical dual cannot be generated by one function. The Fourier transform
of ψ is not continuous yielding poor decay in the time domain. Furthermore, the space of
negative dilates V (ψ) is not Z-SI (this is necessary in order to utilize Theorem 2), but it
is in fact 2Z-SI, hence the canonical dual must be generated by at least two functions, c.f.
Proposition 1. We modify this example so that ψ̂ becomes C∞ and so that the space of
negative dilates becomes non pZ-SI for p < 2J and p ∈ N for a chosen J ∈ N. Hence, we
have the following generalization of Theorem 1.

Theorem 3. For all J ∈ N, there exists a frame wavelet ψ ∈ L2(R) such that:

(i) ψ̂ is C∞ and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by fewer than 2J function,

(iii) there are infinitely many ψ̃ such that ψ and ψ̃ form a pair of dual wavelet frames.

Before providing the proof of Theorem 3, we will analyze the original proof of Theorem 1
by Daubechies and Han [10]. The key role in the argument of [10] is played by an explicit
formula for the frame operator of a wavelet system.

Proposition 3. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(R) generates a wavelet system which
is a Bessel sequence. Let

D = {f ∈ L2(R) : f̂ ∈ L∞(R) and supp f̂ ⊂ [−R,−1/R] ∪ [1/R,R] for some R > 1}.

Then its frame operator S is given by

(6) Ŝf(ξ) = f̂(ξ)
L∑

l=1

∑

j∈Z

|ψ̂l(2
jξ)|2 +

∑

p∈Z

∑

q∈2Z+1

f̂(ξ + 2−pq)tq(2
pξ) for a.e. ξ ∈ R,

and for all f ∈ D, where

tq(ξ) =
L∑

l=1

∞∑

j=0

ψ̂l(2
jξ)ψ̂l(2j(ξ + q)) for q ∈ Z.

Proposition 3 is implicitly contained in the book of Hernández and Weiss [16, Proposition
7.1.19]. This result can be extended to higher dimensions and more general dilations, see
[4, 13, 14, 18].
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Initially, the problem with the argument of Daubechies and Han appears to be very minor
since the formula (2.6) of [10] lacks a negative sign which is present in f̂(ξ + 2−pq) of (6).
This mistake can be traced back to the proof of Lemma 2.3 in [14]. However, this change
of sign has profound effects for the rest of this paper. First, it affects Lemma 3.1 in [10]
by wiping out the negative signs in 2−jK1 and 2−jK2 of formula (3.1). Consequently, it
invalidates the proof of [10, Theorem 3.3]. To see this, consider the example borrowed from
the paper of Weber and the first author [5].

Example 1. Let ψb ∈ L2(R) be given by

ψ̂b = χ[−1,−b]∪[b,1].

In [5] it is shown that ψb is a biorthogonal Riesz wavelet whenever 1/3 ≤ b ≤ 1/2. In fact,
one can explicitly exhibit its dual biorthogonal wavelet φb as

φ̂b = χ[−1,−1/2]∪[1/2,1] − χ[−2+2b,−1]∪[1,2−2b].

We note that this fact is far from being obvious, since one can also show that ψb is not a
frame wavelet when 1/6 < b < 1/3, see [5, Example 2]. While ψb is of a slightly different
form than the function considered in [10, Theorem 3.3], one could arrive at the conclusion
that ψb is not a biorthogonal wavelet when b = 1/3 by following the same argument as
in [10]. This stands in a direct contradiction with the above mentioned fact from [5]. In
fact, this is how the change of sign mistake in [10] was uncovered by the first author.

In order to prove Theorem 3 we need to show two lemmas.

Lemma 1. For every N ≥ 4 and 0 < δ < 2−N , there exists a frame wavelet ψ such that
ψ̂ ∈ C∞

0 (R) and

ψ̂(ξ) 6= 0 ⇐⇒ ξ ∈ (−1/2,−1/4) ∪ (1/2, 3/4)(7)

∪
(
−2−N+1 − δ,−2−N + δ

)
∪

(
2−N − δ, 2−N+1 + δ

)

ψ̂(ξ) = ψ̂(ξ − 1) 6= 0 for ξ ∈ (1/2, 3/4) .(8)

Proof. Let ψ0 ∈ L2(R) be a frame wavelet such that ψ̂0 ∈ C∞

0 (R) and

ψ̂0(ξ) 6= 0 ⇐⇒ ξ ∈
(
−2−N+1 − δ,−2−N + δ

)
∪

(
2−N − δ, 2−N+1 + δ

)
,

where N ≥ 4 and 0 < δ < 2−N as in the assumption. Let ψ1 ∈ L2(R) be such that

ψ̂1 ∈ C∞

0 (R) has support in [−1/2,−1, 4] ∪ [1/2, 3/4] and

(9) ψ̂1(ξ) = ψ̂1(ξ − 1) 6= 0 whenever ξ ∈ (1/2, 3/4) .

For any such ψ1 ∈ L2(R) the sequence {DjTkψ
1} generates a Bessel sequence by [17, The-

orem 13.0.1] or by the proof of [8, Lemma 3.4].
Define ψ ∈ L2(R) by ψ = ψ0+εψ1, where εψ1 acts as a perturbation on the wavelet frame

generated by ψ0 and ensures that ψ satisfies (8), see also Figure 1. Denote the frame bounds
of {DjTkψ

0} by C1 and C2, and the Bessel bound of {DjTkψ
1} by C0. The function εψ1

generates a Bessel sequence with bound ε2C0. Hence, for sufficiently small ε > 0, we have
ε2C0 < C1, and by a perturbation result [6, Corollary 2.7] or [12, Theorem 3], we conclude

that ψ generates a wavelet frame. By our construction ψ̂ is in C∞

0 (R) and satisfies (7) and
(8).

Finally, let us illustrate how one can construct two such functions ψ0 and ψ1. For N ≥ 4
and 0 < δ < 2−N , define the function η by

(10) η̂ = hδ ∗ χ[−2−N+1,−2−N ]∪[2−N ,2−N+1],
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where hδ(x) = δ−1h(x/δ) with h ∈ C∞

0 (R), h ≥ 0,
∫

R h(x)dx = 1, and supp h ⊂ [−1, 1].
This yields η̂ ∈ C∞ with

η̂(ξ) 6= 0 ⇐⇒ ξ ∈
(
−2−N+1 − δ,−2−N + δ

)
∪

(
2−N − δ, 2−N+1 + δ

)
.

By ‖η̂‖L∞ ≤ 1 and the above, there exist constants C1, C2 > 0, such that

0 < C1 ≤
∑

j∈Z

∣∣∣η̂(2jξ)
∣∣∣
2
≤ C2 < 2 for all ξ ∈ R \ {0}.

Moreover, for q ∈ 2Z + 1,

tq(ξ) :=
∞∑

j=0

η̂(2jξ)η̂(2j(ξ + q)) = 0 for all ξ ∈ R,

since η̂(2j·) and η̂(2j(· + q)) have disjoint support for all j ≥ 0. We define ψ0 as a normal-
ization of η by

(11) ψ̂0(ξ) =
η̂(ξ)√∑

j∈Z |η̂(2jξ)|
2

for ξ ∈ R \ {0},

and ψ̂0(0) = 0. Consequently, we have
∑
j∈Z|ψ̂

0(2jξ)|2 = 1 and tq(ξ) = 0 for ξ ∈ R and
q ∈ 2Z + 1. By [16, Theorem 7.1.6], ψ0 generates a tight wavelet frame with frame bound
1, and it has the desired properties. For the proof of the lemma the last normalization step
could be omitted since η itself generates a (non-tight) frame. However, it is included since
we later want to use the fact that the ψ0 can be chosen to be a tight frame wavelet with
frame bound 1.

3

4

1

2

1

ε

ξ
−1

2N

1

4

1

2N

2

2N

εψ̂1

−2

2N

εψ̂1

− 1

2
− 1

4

ψ̂0 ψ̂0

Figure 1. Sketch of the graph of ψ̂ = ψ̂0 + εψ̂1.

The construction of the perturbation term ψ1 is straightforward. Let θλ := hλ∗χ[1/2+λ,3/4−λ]

for some 0 < λ < 1/8, where hλ is defined as above. Define ψ1 by ψ̂1 = θλ + T−1θλ. This

makes ψ̂1 a C∞ function with compact support in [−1/2,−1, 4]∪ [1/2, 3/4], satisfying equa-
tion (9). This completes the proof of Lemma 1. �

Lemma 2. Suppose that a function ψ ∈ L2(R) satisfies (7) and (8) for some N ≥ 4 and
0 < δ < 2−N . Then, the space of negative dilates V (ψ) is not pZ-SI for any p < 2N−3,
p ∈ N.

Proof. To prove this claim we will look at the subspaces Wj(ψ) for j ≤ 0, defined by

Wj(ψ) = span
{
DjTkψ : k ∈ Z

}
, j ∈ Z.

First, consider a principal shift-invariant (PSI) subspace W0(ψ) = span{Tkψ}k∈Z. By a
result in [11], this subspace can be described as

W0(ψ) = {f ∈ L2(R) : f̂ = ψ̂m for some measurable, 1-periodic m}.
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Hence, by (7) and (8) we have

W0(ψ) =
{
f ∈ L2(R) : supp f̂ ⊂ [−1/2,−1/4] ∪ [1/2, 3/4] ∪K

f̂(ξ − 1) = f̂(ξ) a.e. ξ ∈ [1/2, 3/4]
}
,(12)

where K =
[
−2−N+1 − δ,−2−N + δ

]
∪

[
2−N − δ, 2−N+1 + δ

]
.

Applying the scaling relation Wj(ψ) = DjW0(ψ) to (12) yields

Wj(ψ) =
{
f ∈ L2(R) : supp f̂ ⊂

[
−2j−1,−2j−2

]
∪

[
2j−1, 3/2 · 2j−1

]
∪ 2jK,

f̂(ξ − 2j) = f̂(ξ) a.e. ξ ∈
[
2j−1, 3/2 · 2j−1

] }
.(13)

Therefore, each space Wj(ψ), j ∈ Z, can be decomposed as the orthogonal sum

(14) Wj(ψ) = W 0
j ⊕W 1

j , where

W 0
j = Ľ2(2jK),(15)

W 1
j =

{
f ∈ L2(R) : supp f̂ ⊂

[
−2j−1,−2j−2

]
∪

[
2j−1, 3/2 · 2j−1

]
,(16)

f̂(ξ − 2j) = f̂(ξ) a.e. ξ ∈
[
2j−1, 3/2 · 2j−1

] }
.

Using (14), it is possible to describe the space of negative dilates

V (ψ) = span
( ⋃

j<0

Wj(ψ)
)

in the Fourier domain. However, such a description would be quite complicated owing to
interactions of the spaces W 0

j and W 1
j at various scales j < 0.

Instead, we consider another space

Ṽ (ψ) = V (ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)).

By (15) and K ⊂ (−2−N+2, 2−N+2), we have

W 0
j ⊂ Ľ2([−2−N+1, 2−N+2]) for j < 0.

Likewise, by (16) we have

W 1
j ⊂




Ľ2([−2−N+1, 2−N+2]) for j ≤ −N + 2,

Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)) for j ≥ −N + 3.

Combining the last four equations with (14) yields

Ṽ (ψ) = span
( ⋃

j<0

Wj(ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞))
)

= span
( −1⋃

j=−N+3

W 1
j

)
,

and further, by the orthogonality of the subspaces W 1
−N+3, . . . ,W

1
−1,

Ṽ (ψ) =
−1⊕

j=−N+3

W 1
j .
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Consequently, by (16),

Ṽ (ψ) =
{
f ∈ L2(R) : supp f̂ ⊂

−1⋃

j=−N+3

2j([−1/2,−1/4] ∪ [1/2, 3/4]),

f̂(ξ − 2−1) = f̂(ξ) a.e. ξ ∈
[
2−2, 3/2 · 2−2

]
,

f̂(ξ − 2−2) = f̂(ξ) a.e. ξ ∈
[
2−3, 3/2 · 2−3

]
,

...
...

f̂(ξ − 2−N+3) = f̂(ξ) a.e. ξ ∈
[
2−N+2, 3/2 · 2−N+2

] }
.(17)

Assume, towards a contradiction, that V (ψ) is pZ-SI for some p < 2N−3 with p ∈ N.

Then, Ṽ (ψ) is pZ-SI as well. Define f ∈ L2(R) by

f̂ = χIN∪(IN−2−N+3), where IN = [2−N+2, 3/2 · 2−N+2].

Then f ∈ Ṽ (ψ), and by our hypothesis we have Tpkf ∈ Ṽ (ψ) for all k ∈ Z. Equivalently,

using F Tk = E−k F , we have Epkf̂ ∈ F(Ṽ (ψ)) for all k ∈ Z. For k = 1, this implies that

Epf̂(ξ) = e2πipξχIN∪(IN−2−N+3)(ξ) ∈ F(Ṽ (ψ)). By (17),

e2πip(ξ−2−N+3) = e2πipξ for a.e. ξ ∈ IN .

This can only be satisfied if e−2πip2−N+3

= 1, which contradicts the hypothesis that 1 ≤ p <
2N−3. This completes the proof of Lemma 2. �

Remark 2. A more detailed analysis shows that V (ψ) is 2N−2Z-SI, and it is not shift invariant
by any sublattice of Z strictly larger than 2N−2Z. Since we do not need such precise assertion,
we will skip its proof.

Finally, we are ready to complete the proof of Theorem 3.

Proof of Theorem 3. Take any J ∈ N. Suppose that ψ is a frame wavelet as in Lemma 1
with N = J+3. By Lemma 2 and Proposition 1, the period of ψ is at least 2N−3. Hence, by
Proposition 2, we need at least 2J functions to generate the canonical dual of {DjTkψ}j,k∈Z.

We have only left to show that the wavelet frame generated by ψ has infinitely many
alternate duals that are generated by one function. For this purpose it is convenient to
assume that ψ = ψ0 +εψ1 is of the same form as in the proof of Lemma 1, i.e., ψ0 generates
a tight frame with frame bound 1. Hence, the functions ψ and ψ0 satisfy the characteristic
equations

∑

j∈Z

ψ̂(2jξ)ψ̂0(2jξ) = 1, a.e. ξ ∈ R,

∞∑

j=0

ψ̂(2jξ)ψ̂0(2j(ξ + q)) = 0, a.e. ξ ∈ R for odd q ∈ Z,

since ψ̂ = ψ̂0 on supp ψ̂0 and since ψ̂(2j·)ψ̂0(2j(· + q)) = 0 for all j ≥ 0 and all odd q. We
conclude that {ψ0

j,k} is a dual frame of {ψj,k}. Since {ψ0
j,k} is generated by one function, it

is apparent from the above that {ψ0
j,k} must be an alternate dual.

Any function φ ∈ L2(R) defined by φ̂ = ψ̂0 + h, where

h ∈ C
∞(R), supph ⊂ [−1/4, 1/2] , supph ∩ supp ψ̂0 = ∅, h(0) = 0,

generates a Bessel sequence by [17, Theorem 13.0.1]. Since ψ and φ satisfy the charac-
teristic equations above, such a φ is an alternate dual frame wavelet of ψ. This example
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demonstrates that we have infinitely many alternate duals, and completes the proof of The-
orem 3. �

We end by putting our example in a perspective with other known results.

Remark 3. Auscher [1] proved that every “regular” orthonormal wavelet ψ ∈ L2(R) is

associated with an MRA. “Regular” means that |ψ̂| is continuous and ψ̂(ξ) = O(|ξ|−1/2−δ)
as |ξ| → ∞ for some δ > 0, see [16, Corollary 7.3.16]. This fact does not hold for tight
frame wavelets. In fact, Baggett et al. [2] constructed a non-MRA Cr tight frame wavelet
with rapid decay for any r ∈ N. Moreover, their tight frame wavelet is associated with a
GMRA having the same dimension/multiplicity function as the Journé wavelet. Once we
allow non-tight frame wavelets we might lose even the GMRA property. Indeed, the frame
wavelet from Theorem 3 is an example of a non-GMRA C∞ frame wavelet with rapid decay.
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