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Fluorescence Photoactivation Localization
Microscopy (FPALM) [4]

In general, due to diffraction and intereference, the best resolution achiev-
able by methods of light microscopy is bounded by the so called Abbe-limit
at roughly 200 nm. This is a major issue in fields of research where other
methods of microscopy are not applicable, like the research of living cells.
In fluorescence photoactivation localization microscopy (FPALM) this limit
is surpassed by the successive activation of single fluorophores (fluorescent
molecules that are bonded to macromolecules), so the emissions of each
fluorophore can be recorded without interference from others. Using this
technique, the location of each fluorophore can be determined by computing
the center of its corresponding recorded emission (point spread function).

Figure 1: The recordings of single point spread functions in (1) are used to lo-
calize the corresponding molecules. The computed locations are represented
by red dots in (2).

Figure 2: FPALM recording of the actin cytoskeleton of a HeLa cell. This
picture visualizes the locations of single molecules which were determined by
the analysis of 15000 single recordings.

Despite a localization precision of up to 30 nm, FPALM recordings of living
cells suffer from two drawbacks:

• In order to create a complete FPALM recording, a living cell has to be ob-
served for a certain period of time. Due to the ongoing dynamics within a
living cell, this causes the gain of spatial information to be traded against
an uncertainty regarding time.

• If the time of observation is limited, the maximum density of localized
molecules is severly bounded.

This begs the question:

Can filamentary structures be reconstructed from a sparse
set of localized positions by means of a mathematical

analysis?

The detection of Hölder-functions in 2D
point clouds with uniformly distributed

random noise [1, 2]

Model

LetX1, . . . , Xn ∈ [0, 1]2 be a point cloud and f ∈ H(α, β) a function within
the Hölder-class H(α, β), that is f fulfills both of the following conditions:∣∣∣f (⌊α⌋)(x)∣∣∣ ≤ β ∀x ∈ [0, 1] (1)∣∣∣f (⌊α⌋)(x)− f (⌊α⌋)(y)

∣∣∣ ≤ β |x− y|α−⌊α⌋ ∀x, y ∈ [0, 1] (2)

Under the assumption of uniformly distributed random noise, the question
whether a subset of the point cloud X1, . . . , Xn ∈ [0, 1]2 is caused by a
function f ∈ H(α, β) can be answered by the the analysis of the following
hypotheses:

H0 : X1, . . . , Xn ∼u.i.v. U([0, 1]2) (3)

H1 : X1, . . . , Xn ∼u.i.v. (1− ϵ) · U([0, 1]2) + ϵ · U(graphη(f )) (4)

Figure 3: Examples of point clouds in agreement with H0 (left) resp. H1
(right)

Piecewise polynomial approximation of
Hölder-functions

A function f ∈ H(α, β) can be approximated in the neighborhood of an
expansion point x0 ∈ [0, 1] using the Taylor series:

Tx0
f (x) =

⌊α⌋∑
i=0

f (i)(x0)
(x− x0)

i

i!
(5)

Motivated by the locality of the approximation provided by (5), the interval
[0, 1] is divided into several subintervals on which a family of polynomials is
defined, such that for each function f within a class H(α, β) and for each
subinterval one best fitting approximation polynomial can be identified.

Definition (Approximation Polynomial). Let ∆ ∈ (0, 1] be the length
of one subinterval of the unit interval, m ∈ {1, . . . ,∆−1}, δ ∈ R+,

δi+1 = ∆−iδ and h ∈ Z⌊α⌋+1 where |hi+1δi+1| ≤ β and i ∈ {0, . . . , ⌊α⌋}.
The approximation polynomial pm,h is then definied by:

pm,h(x) =

⌊α⌋∑
i=0

hi+1δi+1

(
x−∆

(
m− 1

2

))i
i!

(6)

Figure 4: Two approximation polynomials with parameters ∆left = 1
8,

δleft = 0.01, mleft = 3, hleft = (35,−10) and ∆right = 1
4, δright = 0.01,

mright = 1, hright = (15, 16,−13)

A principle of ’good continuation’ can be used to
construct efficient approximation networks

Concatenations of the polynomials defined in (6) can be used to build Taylor-
based approximations of arbitrary Hölder-functions on the unit interval. The
question reamains, however, which polynomials are suited for concatenation,
i.e. which polynomials would - if combined - form a sensible approximation
of a function f within a Hölder-class H(α, β). This question can be an-
swered by considering the following estimation of the Taylor coefficients of
a function f ∈ H(α, β) at an arbitrary expansion point x+∆ given by the
coefficients of the same function at expansion point x:∣∣∣∣∣∣f (i)(x +∆)−

⌊α⌋−i∑
j=0

f (i+j)(x)
∆j

j!

∣∣∣∣∣∣ ≤ β

⌊α− i⌋!
∆α−i (7)

Motivated by (7), the notion of ’good continuation’ between two piecewise
polynomial approximations of type (6) can be defined:

Definition (Good Continuation).With respect to a Hölder-class H(α, β),
two polynomials pm1,h1

and pm2,h2
(see (6)) are in good continuation if

and only if there is a ξ ∈ {−1, 1} such that for all i ∈ {1, . . . , ⌊α⌋ + 1}
the following conditions hold:

m1 + ξ = m1 (8)∣∣∣∣∣∣h1,i −
⌊α⌋−i+1∑

j=0

ξj

j!
h2,i+j

∣∣∣∣∣∣ < 3 (9)∣∣∣∣∣∣h2,i −
⌊α⌋−i+1∑

j=0

(−ξ)j

j!
h1,i+j

∣∣∣∣∣∣ < 3 (10)

Figure 5: While the left picture shows two polynomials in good continuation,
the two polynomials in the right picture are not in good continuation due to
their substantial difference in slope.

Hölder functions in point clouds can be detected by
computing the longest path of significant

approximation polynomials in good continuation

Given a Hölder-class H(α, β) and parameters ∆, δ ∈ [0, 1], each of the
approximation polynomials pm,h defined in (6) can be associated with a

surrounding region R ⊂ [0, 1]2 given by:

R(pm,h) = {((x, y) ∈ [∆(m− 1),∆m]× [0, 1] :
∣∣y − pm,h(x) ≤ cδ

∣∣} (11)

with c =
⌊α⌋∑
i=0

1
2i·i!.

Given a point cloud X1, . . . , Xn, let N(pm,h) ∈ N be the number of points
within the region R(pm,h), i.e.:

N(pm,h) = #{i ∈ {1, . . . , n} : Xi ∈ R(pm,h)}

After the computation of all valuesN(pm,h), a threshold τ1 ∈ N can be used
to identify polynomials with a significant amount of points in their proxim-
ity. Using only significant polynomials, the notion of the longest significant
path can be defined:

Definition (Longest Significant Path). The longest path of significant
polynomials (i.e. polynomials with N(pm,h) ≥ τ1) that can be con-
structed using the principle of good continuation (see (8)) is called the
’Longest Significant Path’ (LSP).

By defining a second threshold τ2 ∈ N, the LSP-test can be used to decide
between H0 and H1.

Definition (LSP-Test). Let X1, . . . , Xn ∈ [0, 1]2 be a point cloud on
the unit interval, H(α, β) a Hölder class and τ1 ∈ N the threshold for
significant polynomials. Let π denote the longest significant path of cor-
responding approximation polynomials, then H1 is chosen if and only
if the number of polynomials within π is equal or greater than a second
threshold τ2. That is #π ≥ τ2.

It has been proven by Arias-Castro et al. that choices for τ1 and τ2 can be
computed, such that the probability of choosing the correct hypothesis using
the LSP-test converges to 1 when the amount of recorded data approaches
infinity.

Figure 6: A Hölder-function is successfully detected by computing the longest
significant path.

Beamlet-based Filament Tracer (BFiT)

Beamlets

Instead of the approximation polynomials defined in (6), we use beamlets
as the elementary building blocks of our approximation network. Beamlets
are linear structures that were first introduced by Donoho and Huo [3] and
can be described as line segments that connect points lying on a dyadical
partition of the 2-dimensional plane. The usage of beamlets has already been
considered by Arias-Castro et al. [2] and has mainly two advantages:

• Beamlets make it easier to model structures with high slopes.

• It allows the detection filaments that cannot be modeled as functions of
the x-axis.

While in the case of (6), the resolution of the approximation network is con-
trolled by parameters ∆, δ ∈ R, the beamlet-based network is defined by
parameters j, J ∈ N where ∆ = 2−j and J is a measure of the density, that
is δ = 2j−J .

Figure 7: The beamlet in the left picture is part of an approximation network
with parameters j = 2 and J = 5. On the right side, a beamlet is shown
that belongs to a network with j = 4 and J = 10.

Processing of point clouds with BFiT

The beamlet-based filament tracer (BFiT) not only localizes filamentary
structures within point clouds. It also renders a picture, using anisotropic
gaussian smoothing along significant paths to visualize detected structures.
Generally, the following steps lead from a given 2-dimensional point cloud
to a rendered picture:

1. Definition of parameters (j,J ,τ1,τ2,...)

2. Determination of significant beamlets

3. Determination of significant paths

4. Postprocessing and rendering

In order to complete step 2 (determination of significant beamlets) it is nec-
cessary to count for each beamlet the number of points within its region. The
worst case complexity of this task is O(n2), making it the computational
bottleneck of the overall procedure. Under the assumption that filaments
propagate either along the x-axis or along the y-axis, the determination of
significant paths can be done in linear time by dynamic programming.

Figure 8: Visualization of a FPALM-recording using BFiT. The analyzed
data is a subset of the point cloud shown in figure 2.
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