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Abstract

We consider a model problem of isogeometric shape optimization of vibrating membranes
whose shapes are allowed to vary freely. The main obstacle we face is the need for robust
and inexpensive extension of a B-spline parametrization from the boundary of a domain
onto its interior, a task which has to be performed in every optimization iteration. We
experiment with two numerical methods (one is based on the idea of constructing a
quasi-conformal mapping, whereas the other is based on a spring-based mesh model) for
carrying out this task, which turn out to work sufficiently well in the present situation. We
perform a number of numerical experiments with our isogeometric shape optimization
algorithm and present smooth, optimized membrane shapes. Our conclusion is that
isogeometric analysis fits well with shape optimization.

Keywords: Isogeometric analysis, shape optimization, B-spline parametrization,
vibrating membrane, eigenvalues of the Laplace operator.

1. Introduction

Shape optimization is a classical mathematical problem with a multitude of appli-
cations in engineering disciplines; see for example the monographs [1, 2] and references
therein. From the theoretical perspective, the most interesting cases occur when the
shapes under consideration are not restricted to be diffeomorphic to each other, that
is, when changes in the topology are allowed. Such problems are often treated by
parametrizing the shape indirectly, using for example the coefficients of the partial dif-
ferential equation governing an engineering model under consideration (control in the
coefficients, homogenization, or topology optimization approaches, see [3, 4]) or auxil-
iary surfaces such as in level-set methods, see [5]. All the mentioned methods gain their
computational efficiency from the fact that they are based on fixed grids, which provides
a tremendous advantage particularly in 3D.
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Having industrial applications in mind, it would be convenient to integrate geometry
optimization into CAD environments. For this to be possible one needs to utilize a direct
CAD-like representations of the boundary. Such a representation should be maintained
at every optimization iteration by shape optimization methods at the expense of needing
to re-generate or to update frequently the volumetric mesh, which is needed for solving
equations governing a given system. This expense imposes a computational penalty on
the total performance of shape optimization methods.

One promising method of combining the efficiency of the computations on a fixed grid
with the demand of a direct CAD-like parametrization of the boundary within the shape
optimization framework is utilizing isogeometric analysis (IGA) for numerically solving
the equations governing a given engineering system [6–13]. In this way one keeps all the
computations on a fixed mesh on a parameter domain while gaining the advantage that
optimized geometries can be easily processed in CAD systems for manufacturing [6, 14].

In the present paper we utilize isogeometric analysis-based shape optimization (IGSO)
for designing vibrating membranes with prescribed eigenvalues. We treat vibrating mem-
branes as as a model problem for more general spectral shape optimization problems of
systems governed by elliptic operators [15, 16]. It is also closely related to eigenfrequency
optimization problems of vibrating plates with holes [17–19]. The problem of designing
vibrating membranes is by no means a novel one: for example Hutchinson and Niord-
son [20] computed shapes of drums where the first few eigenvalues were prescribed. In
particular, they considered the design problem of a harmonic drum, namely, a membrane
whose first four eigenfrequencies form a ratio of 2:3:3:4. (The reason for the double eigen-
values is that it seems impossible to design a drum with frequencies 2:3:4 [15, 21, 22]).
The idea in [20] was to use a conformal map from the circular domain to the domain
occupied by the drum and to perform the eigenfrequency analysis on the former domain.
Note that this idea is similar to IGA in the sense that a parametrization of the domain
is utilized. Kane and Schoenauer [23] later attacked the problem by genetic algorithms,
while in the present work we utilize gradient-based algorithms within the IGSO frame-
work. We emphasize that we consider the problem as a model on which we can illustrate
various re-parametrization strategies within IGSO context.

In the present work, the only generic requirement we place on a family of candidate
feasible shapes in the shape optimization problems we consider is that they are diffeo-
morphic to each other. Whereas this requirement may be viewed as a restrictive one from
the theoretical perspective, it is much more general than what is often considered within
the shape optimization framework and leads to certain computational challenges. This
is in a stark contrast with the situations when domain families parametrized by only a
few variables are consedered (such as, for example, a circle of a varying radius [11, 24], or
a family of super-elliptical shapes [17, 18]), or when only certain parts of the boundary
are allowed to vary locally [10, 13, 24, 25]. Restrictions on the variations of the shape
simplify significantly the task of remeshing in a FEM-based shape optimization, or the
task of extending the parametrization from the boundary into the interior of the domain
in IGSO-based shape optimization.

Owing to the richness of the family of shapes which we allow, constructing the ex-
pension of parametrization from the boundary into the interior of the domain becomes
a non-trivial task in the present situation. We experiment with two linear methods for
computing such an extension numerically: one is based on a spring model of the mesh
and the other one is based on the idea of a quasi-conformal deformation. The former
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method is inspired by ideas coming from linear elasticity and works well for problems
with convex domains. The strategy for the latter method is to find a well-behaving
B-spline parametrization of an initial reference shape by solving auxiliary optimization
problems, and then generate the inner control points by “quasi-conformally deforming”
the reference shape into the resulting configuration. The procedure is repeated if an
invalid parametrization appears at some shape optimization iteration.

The remainder of this paper is organized as follows. In Section 2, we briefly recall
the equations governing vibrating membranes and their Galerkin discretization. The
IGA model used in the present work and necessary techniques of handling a B-spline
parametrization are presented in Section 3. In Section 4, we state the IGSO problem for-
mulation and its sensitivity analysis. Our numerical experiments with IGSO are reported
in Section 5. We conclude the paper with a summary of the results.

2. Physical problem

In this section we briefly recall the partial differential equations governing harmonic
oscillations of a membrane and their Galerkin discretization.

2.1. Governing equation

Let Ω be a membrane whose circumference Γ is constrained to be motionless. The
out-of-plane displacement U(x, t) of a point x ∈ Ω at time t obeys the wave equation
with homogeneous Dirichlet boundary condition

∂2U(x, t)

∂t2
= c2∆U(x, t) ∀x ∈ Ω (1)

U(x, t) = 0 ∀x ∈ Γ (2)

where ∆ is the spatial Laplacian operator and c is the wave speed, depending on the
tension and the surface density of the membrane (c.f. [26]). Without losing generality,
in what follows we assume that c = 1.

The time-harmonic solutions to (1) having the form

U(x, t) = u(x)ei
√
λt, (3)

where i2 = −1 and λ = (2πf)2 with f being the vibration frequency, are the pure tones
the membrane is capable of producing (c.f. [20, 27]).

Substituting (3) into (1) and (2) we recover Helmholtz equation with Dirichlet bound-
ary condition

∆u+ λu = 0 inΩ (4)

u = 0 onΓ. (5)

The eigenfunctions u are customarily normalized so that
∫
Ω

u2 dV = 1.
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2.2. Weak form and discretization

Let H1
0 (Ω) be the subspace of the Sobolev space H1(Ω) (c.f. [28]) containing functions

which vanish on the boundary. In its weak form, the homogeneous boundary value
problem (4), (5) can be stated as follows: find u ∈ H1

0 (Ω) such that for every v ∈ H1
0 (Ω)

it holds that ∫

Ω

∇u · ∇v dV = λ

∫

Ω

uv dV . (6)

Applying the Galerkin method (c.f. [29]) to (6) by approximatingH1
0 (Ω) with conforming

finite-dimensional subspaces to be described in Section 3.1 one arrives at the following
generalized eigenvalue problem:

Ku = λMu (7)

where K and M, are the stiffness and the mass matrices, respectively. The eigenvectors
in (7) are customarily normalized as

uTMu = 1. (8)

Later on, components of u will be referred to as the state variables to distinguish them
from design variables.

3. Isogeometric Analysis

Isogeometric analysis (IGA) has recently been introduced by Hughes et al. [6] and
has already found many applications in a variety of engineering disciplines [14]. The
basic idea of IGA is to parametrize the domain, its boundary, and the solution space
using B-splines defined by a single pair of knot vectors. For the purposes of isogeometric
shape optimization this approach is modified, as described in the present section. We
also discuss several approaches towards extending B-spline parametrizations from the
boundary of the domain into its interior, validating the resulting parametrization, and
improving its quality.

3.1. Isogeometric analysis model

Let us consider a simply connected domain Ω ⊂ R
2. In the present work, we use three

different pairs of knot vectors for parametrizing the boundary Γ = ∂Ω, the domain Ω,
and the solution space for (6), see Fig. 1. Our starting point is the pair of knot vectors
Ξu and Ξv parametrizing the domain boundary with B-splines of degrees p and q. Let
ρb be the vector of the control point components of the boundary parametrization.

The second step is extending the boundary parametrization onto the interior of the
domain Ω. Here we may use a “finer” pair of knot vectors Ξ̂u and Ξ̂v, obtained by insert-
ing new knots into the knot vectors Ξu and Ξv respectively. The vector ρ̂b containing
components of the resulting boundary control points is obtained as

ρ̂b = Tρb, (9)

where T is a constant matrix depending only on the knot vectors [30]. Given the vector

of the boundary control points ρ̂b one may determine the inner control points d̂i,j ,
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Figure 1: Three pairs of knot vectors of the IGA model used in the present work. (a): Knot vectors
for the boundary parametrization; (b): knot vectors for the domain parametrization; (c): knot vectors
for the solution space parametrization. The green and red lines correspond to horizontal and vertical
parameter lines, respectively.

i = 1, . . . , n̂, j = 1, . . . , m̂ (the precise procedure will be discussed in Section 3.3). In
turn, they parametrize the domain Ω = {x ∈ R

2 | x = F(u, v), (u, v) ∈ [0, 1]2 }, where

F(u, v) =

m̂∑

i=1

n̂∑

j=1

d̂i,jM̂
p
i (u)N̂

q
j (v). (10)

In (10), M̂p
i and N̂ q

i are B-splines of degree p and q with the knot vectors Ξ̂u and Ξ̂v,
respectively.

Suppose that the map F in (10) is found to be a parametrization of Ω, that is, the
determinant of its Jacobian is positive (or negative) everywhere. Let F−1 : Ω → [0, 1]2

be the inverse of F. The solution space S approximating H1
0 (Ω) will be defined in terms

of functions R̃p̃,q̃
k : [0, 1]2 → R, k = 1, . . . , m̃ñ and F−1 as S = span{R̃p̃,q̃

k ◦ F−1| k =
1, . . . , m̃ñ}. To ensure that we can approximate any function in H1

0 (Ω) sufficiently well,

we may want to use an even finer (when compared to Ξ̂u and Ξ̂v) pair of knot vectors

Ξ̃u and Ξ̃v, see Fig. 1. Thus we define M̃ p̃
i , i = 1, . . . , m̃ and Ñ q̃

j , j = 1, . . . , ñ as the

B-splines of degree p̃ and q̃ (not neccesary equal to p and q) with the knot vector Ξ̃u

and Ξ̃v, respectively. Finally, the splines R̃p̃,q̃
k involved in the definition of S are defined

as the tensor product splines R̃p̃,q̃
k (u, v) = M̃ p̃

i (u)Ñ
q̃
j (v), k = (ñ − 1)i + j. Given the

structure of S, the entries of the stiffness and mass matrices in the discretized form (7)
are computed as

Kkℓ =

∫∫

[0,1]2

(
DR̃p̃,q̃

k (u, v)J−1
)T

DR̃p̃,q̃
ℓ (u, v)J−1 det(J) du dv, k, ℓ = 1, . . . , m̃ñ, (11)

Mkℓ =

∫∫

[0,1]2

R̃p̃,q̃
k (u, v) R̃p̃,q̃

ℓ (u, v) det(J) du dv, k, ℓ = 1, . . . , m̃ñ, (12)

where J is the Jacobian of the parametrization F and Df(u, v) =
[
∂f
∂u

(u, v) ∂f
∂v

(u, v)
]
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is the differential of a real-valued function f : [0, 1]2 → R.

3.2. Validating a B-spline parametrization

In order to ensure that a given choice of inner control points d̂i,j , i = 1, . . . , n̂,
j = 1, . . . , m̂ results in a valid B-spline parametrization of Ω we employ the following
approach.

The determinant of a Jacobian of F given by (10) is computed as

det(J) =

m̂,n̂∑

i,j=1

m̂,n̂∑

k,ℓ=1

det[d̂i,j , d̂k,ℓ]
dM̂p

i (u)

du
N̂ q

j (v) M̂
p
k (u)

dN̂ q
ℓ (v)

dv
, (13)

where det[d̂i,j , d̂k,ℓ] is the determinant of the 2 × 2 matrix with columns d̂i,j , d̂k,ℓ.
Equation (13) defines a piecewise polynomial of degree 2p− 1 in u and degree 2q − 1 in
v, which is Cp−2 in u and Cq−2 in v. Such a map can be written in terms of B-splines
M2p−1

k and N 2q−1
ℓ of degree 2p − 1 and 2q − 1 with the knot vectors obtained from

Ξ̂u and Ξ̂v by raising the multiplicities of the inner u-knots and v-knots by p and q,
respectively [31]. That is

det(J) =

M,N∑

k,ℓ=1

ck,ℓ M2p−1
k (u)N 2q−1

ℓ (v), (14)

where the coefficients ck,ℓ depend linearly on the quantities det[d̂i,j , d̂k,ℓ]. Equation (14)
tells us that if all ck,ℓ are positive, then so is the determinant.

3.3. Extending a B-spline parametrization from the boundary to the interior domain

The only part needed to complete our IGA model of the vibrating membrane is the
computation of interior control points d̂i,j defining F from the vector of boundary control
points ρ̂b. Since we have to perform this calculation during every shape optimization
iteration, we are looking for computationally inexpensive methods, which would prefer-
ably result in parametrizations (in the sense of Section 3.2) of the domain. Two methods
described in the following subsections perform relatively well in both categories, in our
computational experience. Both methods are linear, that is, they can be written as

ρ̂ = G ρ̂b, (15)

for some matrix G, where ρ̂ is the vector containing all components of all control points
d̂i,j .

3.3.1. The spring model

Imagine that the edges of the control net are replaced by equally stiff linear elastic
springs. Then the locations of the inner control boundary nodes d̂i,j at the static force
equilibrium, which are uniquely determined by the positions of the boundary control
nodes, are the locations taken by this method. More precisely, d̂i,j satisfy the equations

d̂i,j = (d̂i,j−1 + d̂i+1,j + d̂i,j+1 + d̂i−1,j)/4, (16)

where d̂i,j−1, d̂i+1,j , d̂i,j+1, and d̂i−1,j are the neighbouring nodes attached to d̂i,j with
imaginary springs. Being diagonally dominant and irreducible, this system of linear
equations admits a unique solution.
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3.3.2. The quasi-conformal deformation

Assume we have found a reference control net with desirable properties, in particular
of being a parametrization of the domain. Let v̂ and ŵ be two adjacent edges of the
control net as depicted in Fig. 2. The rotation matrix R(θ̂), with θ̂ being the angle

v̂

ŵ

θ̂

Figure 2: A local configuration in a reference control net

between v̂ and ŵ, enjoys the identity

‖ŵ‖R(θ̂)v̂ = ‖v̂‖ŵ. (17)

Consider now a new control net with v and w being the adjacent edges corresponding
to v̂ and ŵ of the reference control net. For each such pair of edges we consider linear
equations

‖ŵ‖R(θ̂)v = ‖v̂‖w. (18)

The resulting linear system is overdetermined (there are 8(m̂− 2)(n̂− 2) equations with
only 2(m̂− 2)(n̂− 2) unknown nodal positions) and is solved in the least squares sense.

3.4. Improving a B-spline parametrization

As none of the linear methods for extending the parametrization of the boundary
into the interior of the domain can in general guarantee that the resulting map F will
satisfy det(J) > 0 everywhere on [0, 1]2, sometimes we have to utilize a more expensive

non-linear method for improving the distribution of the interior control points d̂i,j . One
natural approach to ensure that det(J) is bounded away from zero is, by virtue of (14),
to solve the following optimization problem:

maximize
d̂i,j ,z

z,

subject to ck,ℓ
(
d̂i,j

)
≥ z,

(19)

where d̂i,j are inner control points as stated in (10), ck,ℓ are given by (14), and z is
an auxiliary optimization variable. If z resulting from approximately solving (19) to
local optimality is positive then we are guaranteed to have a valid parametrization.
Unfortunately, the quality of the parametrization obtained in this fashion needs not to
be very high. We can further improve the parametrization by trying to approximate a
conformal map. That is, ideally we would like g = JTJ to be an identically diagonal
matrix (e.g., see [32]).

Let λ1 and λ2 be the eigenvalues of the matrix g. Then g satisfies the ideal condition
if and only if λ1 = λ2. The identity

(
√
λ1 −

√
λ2)

2

√
λ1λ2

=
λ1 + λ2√

λ1λ2

− 2 (20)
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gives rise to Winslow functional [33]

W =
λ1 + λ2√

λ1λ2

=
trace(g)√
det(g)

=
‖Fu‖2 + ‖Fv‖2
det[Fu,Fv]

. (21)

In order to make g “as identically diagonal as possible” we would like to minimize W ;
however, to ensure the positivity of the determinant we consider the following constrained
optimization problem:

minimize
d̂i,j

∫ 1

0

∫ 1

0

W
(
d̂i,j

)
du dv,

subject to ckℓ
(
d̂i,j

)
≥ δz0.

(22)

In (22), z0 > 0 is computed by approximately solving (19) and δ ∈ [0, 1] is a fixed
relaxation parameter. For further properties of the problem (22), we refer the interested
reader to [34].

In our numerical experiments we utilize Matlab’s optimization framework for solving
optimization problems (19), (22) to approximate stationarity. Also, we set δ = 0 in (22).

4. Isogeometric shape optimization problem

We consider the problem of finding a shape of a membrane where the first N eigenfre-
quencies (eigenvalues of the Laplacian) are prescribed. For simplicity we restrict ourselves
to domains constituted by one patch. We first discuss different formulations of such a
shape optimization problem, and then its sensitivity analysis is carried out.

4.1. Problem formulation

The shape of the membrane is fully determined given the parametrization of the
boundary. Therefore we let boundary control points be our design variables. One may
also require some regularity from the resulting shape; for example, one may be interested
in membranes bounded with tangent continuous curves. The latter requirement can be
easily fulfilled by enforcing simple constraints on the boundary control points, see [30].
Furthermore, “one can not hear the shape of a drum,” that is, even if an (admissible)
full spectrum is prescribed there could be more than one shape of a membrane that
matches it [35]. Therefore, one may expect that there is more than one shape that
matches the prescribed few eigenvalues. In order to further restrict the shapes generated
by our optimization procedure, we search for a shape, which in addition to satisfying the
eigenvalue constraints also has the shortest perimeter. Fig. 3 illustrates the issue. Using
this regularization idea, we arrive at the following shape optimization problem:

minimize
ρb,z

L(ρb), (23a)

subject to λk(ρb) = λ0
k, if λ0

k has multiplicity one, (23b)
{
λk(ρb) + λk+1(ρb) = λ0

k + λ0
k+1

λk(ρb)λk+1(ρb) = λ0
kλ

0
k+1

if λ0
k = λ0

k+1, (23c)

det[dj
2 − d

j
1,d

j
2 − d

j
3] = 0, j = 1, . . . , 4, (23d)

where K(ρb)uk = λk(ρb)M(ρb)uk, for some uk 6= 0, k = 1, . . . , N, (23e)
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Figure 3: Membranes on the left and on the right have the same five lowest eigenfrequencies, prescribed
to be 5.0122, 11.6349, 13.4102, 20.6025 and 23.6877. The shape on the right (a “pear-shaped” region [20])
was obtained by minimizing the perimeter of the domain.

where, L = L(ρb) is the perimeter of the shape, λ0
k, k = 1, . . . , N , are prescribed values

for the first N eigenvalues, and ρb are the boundary control points given by (9). The
constraints (23c) are introduced to handle problems with double eigenvalues, c.f. [36];
and the constraints (23d) result from enforcing the continuous tangent condition of the
boundary at four corners of [0, 1]2, in which d

j
1, d

j
2, d

j
3 is the triple of boundary control

points corresponding to the corners.

4.2. Sensitivity analysis

In order to utilize gradient-based optimization algorithms for solving (23) numerically,
we need to compute derivatives of the constraints entering (23) with respect to changes
in boundary control points. If the eigenvalues involved in a constraint have multiplicity
one, then one may derive, using (7) and (8), that

∂λk

∂ρ̂
= uT

k

(
∂K

∂ρ̂
− λk

∂M

∂ρ̂

)
u, (24)

where ρ̂ is an arbitrary component of the vector ρ̂, and λk and uk are an eigenvalue
and an eigenvector of (7), (8). However, if the multiplicity of an eigenvalue λk may
change during the optimization process, then the individual eigenvalues may not be
differentiable functions of the design variables any longer. Nevertheless, it may still be
possible to differentiate certain functions of the eigenvalues. It can be shown [36] that
the sensitivities of the functions λk + λk+1 and λkλk+1 are given as

∂(λk + λk+1)

∂ρ̂
= uT

k (
∂K

∂ρ̂
− λk

∂M

∂ρ̂
)uk + uT

k+1(
∂K

∂ρ̂
− λk+1

∂M

∂ρ̂
)uk+1, (25)

∂(λkλk+1)

∂ρ̂
= λk+1u

T
k (

∂K

∂ρ̂
− λk

∂M

∂ρ̂
)uk + λku

T
k+1(

∂K

∂ρ̂
− λk+1

∂M

∂ρ̂
)uk+1. (26)

From (9) and (15), it follows that if the partial derivative of a function f with respect to
ρ̂ has been calculated as above, its sensitivities with respect to the design variables ρb

are given by
∂f

∂ρb

=
∂f

∂ρ̂b

T =
∂f

∂ρ̂
GT. (27)
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Other methods of dealing with multiple eigenvalues are discussed in [37–40].

5. Numerical examples

In this section, we discuss our strategy for solving (23), and then illustrate its practical
performance by solving a few shape optimization problems for vibrating membranes.

5.1. Solution strategy

We use the following approach for solving (23):

(1) Preparing a good initial shape: We want to find a good initial shape in a “cheap” way
and use it for more expensive computational work. To this end, we use a small num-
ber of control points to approximately solve (23). The constraint tolerance Tcon is set
to be around 10−4–10−6. After a suitable shape is found, we disregard the perimeter,
look only at the eigenvalues, and use a very small constraint tolerance Tcon around
10−14–10−16. After a feasible initial shape is found, we refine the computational grid
by inserting more knots into the knot vectors.

(2) Improving the initial parametrization: If the quasi-conformal deformation method is
chosen, the control net of the initial shape will be used as the reference configuration
during the optimization iterations. Since the mesh regularity affects the accuracy
of the numerical solution [8, 41], it is necessary to improve the parametrization of
the reference configuration as discussed in Section 3.4. Fig. 10 demonstrates the
necessity.

(3) Performing optimization: We determine the knot vectors Ξ̃u and Ξ̃v by halving the

knot intervals of the knot vectors Ξ̂u and Ξ̂v several times such that further halving
does not change the calculated eigenvalues by more than a given tolerance Tcv. The
optimization problem is then solved numerically with the obtained knot vectors and
initial shape.

Throughout the present work, numerical integration is done by using standard Gaus-
sian quadratures. The homogeneus Dirichlet boundary conditions are enforced by setting
the corresponding boundary state variables to zero [6].

All the solutions presented in this section have been obtained with gradient based
non-linear programming solver fmincon, which is a part of the optimization toolbox of
Matlab, version 7.5.0 (R2007b) [42].

5.2. Pear-shaped region

We start with an example of a membrane with the lowest five eigenvalues prescribed
to be 5.0122, 11.6349, 13.4102, 20.6025, and 23.6877. This numerical example has been
considered in Hutchinson et al. [20]. The initial shape shown in Fig. 4 has been obtained
by “rounding” the rectangle [−3/π, 3/π]× [−1, 1]. This choice of the initial shape ensures
that its first five eigenvalues, which are 5.2202, 12.7756, 13.4938, 21.3752, 26.0602, are
close to the target ones and have multiplicity one. The latter allows us to avoid the
issues with double eigenvalue discussed in Section 4. To compute a good initial shape
as described in Step (1), Section 5.1, we use the same knot vectors for the geometry,
parametrization and the solution space

Ξs = Ξt = Ξ̂s = Ξ̂t = Ξ̃s = Ξ̃t = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. (28)
10
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Figure 4: Initial shape

The spring model is used for extending the parametrization from boundary to the interior
of the domain. The B-splines for representing the parametrization and solution space are
quadratic. This setting yields a 6× 6 control net, 16 elements and 16 degrees of freedom
(dof). The optimization process with Tcon = 10−7 finishes after 290 iterations. The final
shape is shown in Fig. 5; its overall features are fairly similar to that of [20].

 

 

corresponding to horizontal parameter lines
corresponding to vertical parameter lines

 

 

boundary control point
corner control point
inner control point

(a) (b)

Figure 5: (a): Optimized shape and (b): the corresponding control net of a pear-shape region.

The solution shown in Fig. 5 is further refined and is used a new initial design. The
refinement is done by halving all knot intervals of all knot vectors. The new setting has
10 × 10 control points, 64 elements and 64 degrees of freedom. The optimal shape is
depicted in Fig. 6 (a)–(b); this shape is closer to that of [20].

The optimized shape in Fig. 6 (a) is nearly symmetric about the straight line connect-
ing its two opposite corner control points, see Fig. 6 (b). To investigate the robustness of
the isogeometric shape optimization in preserving a line symmetry, we resolve the shape
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optimization problem this time explicitly imposing the shape to be symmetric about the
line x+ y = 0. This is done by imposing the boundary control points of the shape to be
symmetric about the line. Repeating the same procedure as with the last design (with
the same initial shape in Fig. 5), but with symmetry constraints, we obtain an optimized
shape Fig. 6 (c)–(d). Both designs, with and without explicit symmetry constraints,
agree very well both qualitatively (Fig. 6) and quantitatively (Tab. 1).

(a) (b) (c) (d)

Figure 6: (a), (c): optimized shapes and (b), (d): corresponding control nets for a pear-shaped region
example. (a), (b): design computed without explicit symmetry constraints; (c), (d): design computed
with explicit symmetry constraint.

Design p̃ # var. dof # iter. relative error perimeter area

Initial (Fig. 6) 2 – 64 – 0.019 7.1592 3.8208
Without sym. 2 72 64 340 6.1× 10−8 7.0380 3.7686
With sym. 2 72 64 340 2.3× 10−9 7.0378 3.7686

Table 1: Quantitative comparison of the optimized pear-shaped membranes without and with explicit
enforcing of symmetry. # var.: Number of design variables; # iter.: number of optimization iterations
needed to achieve convergence.

5.3. Harmonic drums

Another interesting and more challenging example of shape optimization is the prob-
lem of finding a shape of a harmonic drum [20]. That is, we are looking for a membrane
such that when “played” its lowest eigenfrequencies correspond to the notes C1, G1,
and C2 on the Pythagorean Scale, c.f. [27, Chapter 4]. Since repeating the second note
should not change the sound, we look for a membrane with the first four eigenfrequencies
constituting a ratio 2:3:3:4 (c.f. [20]).

5.3.1. One patch design

In this example, we start with an initial shape similar to that of the pear-shaped region
case, see Fig. 5. The only difference is that the rectangle [−3/π, 3/π]× [−1, 1] is replaced
by the square [−1, 1]2. The first four eigenvalues of the shape are 4.9844, 12.5403, 12.6183
and 20.537. Choosing the second initial eigenvalue as a reference frequency, we calculate
the prescribed eigenvalues as 5.5735, 12.5403, 12.5403, and 22.2939. Bi-quadratic B-
spline parametrizations with respect to the knot vectors (28) are used for the initial
design. The extension of a parametrization from the domain boundary to the interior
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is done by the quasi-conformal deformation method. The first reference configuration is
depicted in Fig. 7 (a), where we have introduced a slight asymmetry. In our experience,
this helps to accelerate the convergence of the optimization algorithm.

The optimized shape is shown in Fig. 7. For the resulting control net, we examine

 

 

boundary control point
corner control point
inner control point

(a) (b) (c)

Figure 7: Optimized design of a harmonic drum. (a): Initial reference control net. (b): Optimized shape
and (c): the corresponding control net.

the validity of the corresponding parametrization. We compute the coefficients ck,ℓ in
the expansion of the determinant of its Jacobian, given by (14). Only three out of 28561
control points are negative, see Fig. 8 (a). Furthermore, after refining the grid, the new
coefficients ck,ℓ are all positive, see Fig. 8 (b).
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Figure 8: Illustration of the validation of the B-spline parametrization shown in Fig. 7. (a): The
expansion coefficients and contour lines of the Jacobian determinant corresponding to the original control
net; (b): the same for the refined control net.

After neglecting the perimeter and only optimizing eigenvalues, a very similar shape
is obtained. Refining the grid and starting the optimization algorithm from the last

13



obtained shape we get a drum shown in Fig. 9. When we use the control net in Fig. 9 as

(a) (b)

Figure 9: (a): Optimized shape and (b): control net for a further refinement of a harmonic drum shape
optimization problem.

a reference net, we find that an invalid parametrization appeared after a few optimization
iterations. Therefore, it is crucial to improve the resulting parametrization utilizing either
the optimization problem (19) or (22). This leads to the different configurations shown in
Fig. 10. The solution space is chosen by halving the knot intervals three times. Finally,
resolving the optimization problem results in a shape shown in Fig. 11. The first four
eigenmodes of the shape are depicted in Fig. 12. See Tab. 2 and 3 for more quantitative
data on the design. Corners in the shapes in Fig. 11 (dof = 4096) are sharper than
those in the one shown in Fig. 7 (dof = 16), meaning that the last refinement step was
necessary.

5.3.2. Three patch design

The resulting shapes in Fig. 11 enjoy a nearly 120◦ symmetry. To further explore the
problem, we impose the exact 120◦ symmetry by modeling the shape with three identical
patches as shown in Fig. 13. The exact symmetry implies that λ2 = λ3 at all times,
and therefore this double eigenvalue remains differentiable with respect to the design
parameters. For the first design problem, we use bicubic B-splines with knot vectors

Ξs = Ξt = Ξ̂s = Ξ̂t = Ξ̃s = Ξ̃t = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}. (29)

The spring model is used to generate the inner control points. The initial shape of the
design is shown in Fig. 13. We follow the scheme outlined in Section 5.1. After performing
the first step, we obtain a shape shown in Fig. 14. We continue by using the resulting
shape as a new initial shape and halving the knot intervals three times. After performing
the optimization on a refined geometry, we obtain a drum shown in Fig. 15. The resulting
shape is symmetric about the line connecting the two opposite corner control points, see
Fig. 15 (b), even though we did not explicitly impose the symmetry requirement. One
also observes that the resulting parametrization is valid, see Fig. 15 (c).

We again investigate the effects on the results of the two optimization strategies,
that is, just matching the eigenvalues (disregarding the perimeter) vs. minimizing the
perimeter in addition to matching the eigenvalues (problem (23)). In this numerical
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Figure 10: Various ways of improving the B-spline parametrization. Upper row: Control nets; lower
row: corresponding expansion coefficients and contour lines of the Jacobian determinant.

experiment we use the knot vectors which are given by (29), the B-splines of degree three,
resulting in dof = 91. The constraint tolerances are set to Tcon = 10−7. We start the
optimization algorithm from two initial points, and obtain final shapes shown in Fig. 16.
One may observe that the numerical solutions to the optimization problem where only
eigenvalue matching is optimized are extremely sensitive with respect to the choice of
the initial shapes, whereas this is not the case with the optimization problem (23).

We now measure the errors in eigenvalues achieved by the different designs. Let λi,
i = 1, 2, 3, 4, be resulting eigenvalues of an optimized shape. We use λ2 = λ0

2 as the
normalization factor to obtain the values λ0

i , i = 1, 2, 3, 4. Then we compute the relative
error corresponding to a given design as

relative error = max
i=1,2,3,4

|λi − λ0
i |

λ0
i

.

The relative errors and the normalized first four frequencies of the designs presented above
are summarized in Tab. 2 and 3, respectively. Tab. 2 shows that the designs computed
using a three-patch approach achieve better accuracy with respect to the eigenvalues.
This matches well the theoretical prediction that we have exact double eigenvalues due
to the symmetry. It is also observed that the drum in Fig. 15 has gross features similar
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(a) (b)

(c) (d)

Figure 11: (a), (c): The final optimized shapes and (b), (d): the corresponding control nets of a harmonic
drum. (a) & (b): results corresponding to the reference control net in Fig. 10 (b); (c) & (d): results
corresponding to the reference control net in Fig. 10 (c).

f1 = 2.00007 f2 = 3.00000 f3 = 3.00023 f4 = 4.00015

Figure 12: The first four eigenmodes and normalized frequencies of the optimized shape in Fig. 11 (d).

to those of [20] but with far more satisfactory frequencies (120◦-symmetry is imposed in
the both cases).

5.4. CEG drums

Finally, we design a different kind of a harmonic drum. Namely, we seek a shape capa-
ble of “playing” the musical triad C-E-G (c.f. [27]), corresponding to the ratio 4:5:5:6 of
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Figure 13: Initial shape for the three-patch design of the harmonic drum. (a): Generating patch and
(b): the corresponding control net. (c): Entire domain consisting of the generating patch repeated three
times.

(a) (b)

Figure 14: (a): Optimized shape and (b): the corresponding control net of a three-patch design of a
harmonic drum.

Design # refinements p̃ # var. dof # iter. relative error

Fig. 4 (initial) 3 2 – 4096 – 0.1148
Fig. 11 (b) (1 patch) 3 2 72 4096 17 1.6× 10−4

Fig. 11 (d) (1 patch) 3 2 72 4096 16 1.6× 10−4

Fig. 13 (initial) 3 3 – 3367 – 0.0380
Fig. 15 (3 patches) 3 3 22 3367 31 1.5× 10−13

Harmonic drum of [20] – – 14 60 – 0.7× 10−4

Table 2: Quantitative data for various designs of the harmonic drum. # refinements: Number of halving
the knot intervals; p̃: degrees of the B-splines used for forming the solution space; # var.: number of
design variables; # iter.: number of optimization iterations needed to achieve convergence.

the first four natural frequencies. We start by using the same initial shape and knot vec-
tors as in the last example. The B-splines for geometry and solution space are quadratic.
Following the optimization scheme outlined in Section 5.1 we obtain the shapes shown
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(a) (b) (c)

Figure 15: Refined and optimized shape of a three-patch design of a harmonic drum. (a): Optimal
generating patch and (b): the corresponding control net. (c): Coefficients in the expansion of the
determinant of the Jacobian. The non-positive (zero) coefficient is the corner control point where the
smoothness constraints (23d) force a singularity.

Initial shape Optimizing eigenvalues Minimizing the perimeter

perimeter: 8.526 perimeter: 9.9435 perimeter: 9.7767
area: 4.5835 area: 6.0869 area: 6.0725

perimeter: 10.419 perimeter: 11.7512 perimeter: 9.7845
area: 5.6535 area: 6.3733 area: 6.088

Figure 16: Comparison between different optimization strategies with different initial shapes.

in Fig. 17. In this example refined the geometry by halving the knot intervals two times,
which leads to a problem with 817 degrees of freedom. The first four normalized fre-
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Design f1 f2 f3 f4 perimeter area

Fig. 4 (initial) 1.89426 3.00000 3.00024 3.82078 7.2465 3.8333
Fig. 11b (1 patch) 2.00008 3.00000 3.00024 4.00016 7.6232 4.0255
Fig. 11d (1 patch) 2.00007 3.00000 3.00023 4.00015 7.6232 4.0276
Fig. 13 (initial) 1.96351 3.00000 3.00000 3.93126 9.3460 5.0617
Fig. 15 (3 patches) 2.00000 3.00000 3.00000 4.00000 9.8592 6.0686
Harmonic drum of [20] 2.00011 3.00000 3.00000 3.99972 – –

Table 3: The first four normalized eigenfrequencies, the length of the perimeter, and the area of the
different computed optimal shapes for the harmonic drum example.

quencies of the found optimized shape are 3.99999, 5.00000, 5.00000, and 5.99999, as
required.

(a) (b)

Figure 17: (a): Optimized shape of a CEG drum; (b): control net corresponding to the generating patch.

6. Conclusions

We have applied isogeometric analysis towards shape optimization problems of vi-
brating membranes, where we allow the shape of the domain to experience very large
deformations. We have used three different B-spline parametrizations for the boundary
and the interior of the domains, as well as for the approximate solution space for the
governing boundary value problem. This allows us to independently vary the number
of control points for the shape parametrization and the approximation properties of the
discretization of the governing equations.

We have carried out numerical studies of several techniques for extending the domain
parametrization from the boundary to the interior and improving the quality of the
domain parametrization. As a result, we have presented solutions to several eigenvalue
optimization problems for the Laplace equation. Due to the properties of B-splines,
some nice shapes have been obtained with a relatively small number of design variables.
The problems have been solved numerically in a number of different ways (for example,
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without and with explicit constraints ensuring certain symmetries) yet they yielded the
same optimal solutions, thus supporting the robustness of our approach.

Acknowledgements

The authors thank the members of the TopOpt group (www.topopt.dtu.dk) for fruit-
ful discussions related to this paper. The financial support from the Danish Center for
Scientific Computing (DCSC) is gratefully acknowledged.
[1] M.C. Delfour and J.P. Zolésio. Shapes and geometries. Analysis, differential calculus, and optimiza-

tion, volume 4 of Advances in Design and Control. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2001.

[2] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford University Press,
2001.
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