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Abstract

The influence of size and shape is investigated for quantum-dot electronic states and intra-band

oscillator strengths adapting a method originally due to Stevenson. The present work solves the

one-band envelope-function problem for conduction-band eigenstates in the framework of k · p

theory using general curved coordinates. The eigenstates found are subsequently employed to

express intra-band oscillator strengths and emphasis is given to the dependence of oscillator

strengths on quantum-dot size and shape. We finally provide four simple examples.
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1. Introduction

With recent advances in nanotechnology, it is now possible to grow almost any quantum-
dot shape to nanometer accuracy. This calls for a better understanding on how to optimize
quantum-dot properties by tailoring shape and size [2,3].

In this work, we focus on intra-band optical applications of quantum-dot structures
and determine oscillator strengths in the framework of the k · p envelope-function ap-
proximation. This is done using a computationally effective method originally based on
Stevenson’s work for obtaining electromagnetic wave and acoustic solutions in waveguides
of varying cross section [5,6].
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Fig. 1. The length of the center curve is 20nm and the volume is 80πnm3 in all examples. Example a
is the straight cylinder with radius 2nm. Example b is a truncated cone where the smallest and largest
radius are in the proportion 1 : 2. Example c is a toroidal section where the center curve is part of a circle
with radius 10nm. Example d has the same center curve as (c) and the same increasing cross sectional
radius as (b).

The present work extends the method of Stevenson to account for curved structures of
varying cross section. When cross-sectional dimensions are much smaller than the center-
line dimension, the problem can be simplified to essentially a single ordinary differential
equation. A full account of the procedure is in preparation [4].

The remaining part of this paper discusses the influence of size and shape of quantum-
dot structures for intra-band optical oscillator strengths. Case examples are provided for
the structures in Figure 1.

2. Stevenson’s method

The nano-structures in Figure 1 can all be parametrized as a solid tube Ω around the
center curve r:

x(s, ρ, θ) = r(s) + h(s)ρ(cos θ p(s) + sin θ q(s)), (1)

where (s, ρ, θ) ∈ [0, L] × [0, 1] × [0, 2π], s is arc-length on the curve, t is the tangent
vector of the curve, and t,p,q is a minimal rotating frame along the curve [1]. It is
characterised by the equations dp/ds = −κ cosT t and dq/ds = −κ sinT t where κ is
the curvature and dT/ds = τ is the torsion. The determinant of the metric tensor is
G = ρ2F 2, where F = h2(1−hκρ cos(θ+T )). We observe that the L2-norm on Ω is given

by ‖ψ‖2 =
∫ L

0

∫ 2π

0

∫ 1

0
|ψ|2

√
G dρ dθ ds =

∫ L

0

∫ 2π

0

∫ 1

0
|
√
Fψ|2ρ dρ dθ ds and that the map

ψ 7→ χ =
√
Fψ is an isometry between L2(Ω) and L2([0, L]×D), where D is the unit disk

in R
2. Helmholtz equation △ψ = Eψ in the tube Ω is equivalent to the eigenvalue problem√

F△(χ/
√
F ) = Eχ in L2([0, L] × D). Furthermore, 〈ψ1,∇ψ2〉 = 〈χ1,

√
F∇(χ2/

√
F 〉,

where the inner products are in L2(Ω) and L2([0, L] ×D), respectively.
Following Stevenson [5,6] we write χ ∈ L2([0, L]×D) as χ(s, ρ, θ) =

∑

k,ℓ ck,ℓ(s)ψk,ℓ(ρ, θ),

where ψk,ℓ(ρ, θ) = Jk(λk,ℓρ)e
ikθ are the eigenfunctions for the Laplace operator on the

unit disk with Dirichlet boundary conditions. Here Jk is the k’th order Bessel function of
the first kind and λk,ℓ is the ℓ′th zero of Jk. Substituting this into the eigenvalue prob-

lem
√
F△(χ/

√
F ) = Eχ, written in s, ρ, θ coordinates, it is transformed into a system of

coupled ordinary differential equations:

∑

k,ℓ

(

αk,ℓ;p,q(s)
d2

ds2
+ βk,ℓ;p,q(s)

d

ds
+ γk,ℓ;p,q(s)

)

ck,ℓ =

(

λ2
p,q

h2
+ E

)

cp,q, all p, q, (2)
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Table 1
The four lowest energies Ei for example a,b,c, and d in eV. To the left and in the middle calculated with

one and four transversal modes respectively. To the right the L2-norms of the higher transversal modes.

E1 E2 E3 E4

a 0.866 0.998 1.218 1.526

b 0.814 1.037 1.277 1.583

c 0.865 0.998 1.220 1.529

d 0.814 1.037 1.279 1.587

E1 E2 E3 E4

a 0.866 0.998 1.218 1.526

b 0.814 1.037 1.277 1.583

c 0.865 0.998 1.219 1.526

d 0.813 1.037 1.277 1.581

1 2 3 4

a 0.000 0.000 0.000 0.000

b 0.001 0.001 0.002 0.003

c 0.003 0.012 0.029 0.057

d 0.010 0.024 0.046 0.092

where αk,ℓ;p,q, βk,ℓ;p,q, and γk,ℓ;p,q are certain functions determined by the geometry of
the structure Ω. By truncating the sum we obtain a finite system of ODE’s, and for low
energies only very few terms are needed.

Similar we have that the inner product 〈χ1, F
1/2∇(F−1/2χ2)〉 can be written

∫ L

0

∑

k,ℓ,p,q

(

(

αt,p,q,k,ℓ(s)c1,p,q(s)c
′

2,k,ℓ(s) + βt,p,q,k,ℓ(s)c1,p,q(s)c2,k,ℓ(s)
)

t(s)

+ βp,p,q,k,ℓ(s)c1,p,q(s)c2,k,ℓ(s)p(s) + βq,p,q,k,ℓ(s)c1,p,q(s)c2,k,ℓ(s)q(s)
)

ds, (3)

where αt,p,q,k,ℓ, βt,p,q,k,ℓ, βp,p,q,k,ℓ, and βq,p,q,k,ℓ once more are functions determined by
the geometry of the structure Ω.

3. Intra-band oscillator strengths

Intra-band oscillator strengths are in the one-band model approximation computed as:
〈ψn|p|ψm〉 = 〈fn|p|fm〉, where |ψn〉 = fn|S↑〉 for |1/2, 1/2〉 conduction-band electrons,
etc., and fn is the associated envelope function found by solving the problem in (2).
It is well known that for parity-eigenstate envelope functions intra-band optical dipole
elements are only nonzero between states of opposite parity (even-to-odd or odd-to-even
envelope-function index transitions are allowed only). This will be the case if the geometry
of the problem is inversion symmetric with respect to the quantum-dot center plane. In
cases without inversion symmetry, intra-band oscillator strengths are generally nonzero
for all transitions.

Envelope functions and associated energies are found by solving (2) subject to Dirichlet
boundary conditions. The first four eigenstates are given in Table 1 for the four geometry
examples: (a)-(d) in Figure 1 while the optical oscillator strengths for intra-band tran-
sitions between any two of the four states are listed in Table 2. Since the radius of the
cylinder is much smaller than the length, envelope-function dependencies on the in-plane
coordinates are the same for the first four eigenstates. Hence, oscillator strengths become
zero for y or z-polarized light for the straight cylinder and straight truncated cone cases.

Evidently, due to lack of inversion symmetry for the quantum-dot structures in Fig-
ure 1b and d, optical oscillator strengths are now nonzero for intra-band transitions
between any set of conduction-band states. Inversion symmetry is, however, preserved in
Figure 1a and c and optical oscillator strengths become zero between states of similar
parity.
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Table 2
Optical oscillator strength in

√
eVm0. The entries in row k in the top tables are 〈ψk |px|ψℓ〉 for k < ℓ ≤ 4

for Example a–d. The entries in row k in the bottom tables to the left and in the middle are 〈ψk|py|ψℓ〉
for k < ℓ ≤ 4 for Example c and d. The entries in the bottom-right table are the maximal differences
between optical oscillator strength when calculated with one and four transversal modes respectively.

a b c d

0.031i 0 0.012i

0.056i 0

0.080i

0.038i -0.019i 0.015i

0.055i -0.019i

0.078i

0.030i 0 0.007i

0.052i 0

0.073i

0.036i -0.016i 0.009i

0.052i -0.018i

0.072i

c

0 -0.017i 0

0 -0.030i

0

d

0.008i -0.017i 0.012i

0 -0.026i

-0.004i

a b c d

x 2.19e-09 5.86e-06 1.87e-03 2.56e-03

y 2.07e-16 1.22e-16 4.52e-04 2.72e-03

z 2.07e-16 1.22e-16 1.59e-16 3.63e-03

The curved structures have nonzero oscillator strengths for y-polarized light as ex-
pected given the fact that the centerline in Figure 1c and d is in the x− y plane and not
aligned with the x axis.

We emphasize that for the first four states, energies and optical oscillator strengths are
well captured by a single mode as is revealed by Table 1 (right) and Table 2 (bottom-
right). Hence, our calculations confirm that even for structures with complex geometry,
a single ordinary differential equation suffices for the determination of 3D lower-lying
quantum-dot states.

4. Conclusions

Quantum-dot conduction band eigenstates are found employing a model originally due
to Stevenson for electromagnetic and acoustic waves but extended so as to account for
general curved coordinates. The model output (envelope functions and energy eigenval-
ues) are finally used to compute intra-band optical transition strengths and emphasis
is given to the influence of size and shape on allowed/forbidden transitions and their
strengths. It is also shown that for low energies and cross-sectional dimensions much
smaller than the quantum-dot centerline length, the extended Stevenson method on a
(three dimensional) quantum-dot problem can be reduced, with good accuracy, to a single
ordinary differential equation in the centerline coordinate.
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