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Abstract. The classical invariant theory from the 19th century is used to deter-
mine a complete system of 3rd order invariants on a surface in three-space. The
invariant ring has 18 generators and the ideal of syzygies has 65 generators. The
invariants are expressed as polynomials in the components of the first fundamen-
tal form, the second fundamental form and the covariant derivative of the latter,
or in the case of an implicitly defined surface – M = f−1(0) – as polynomials
in the partial derivatives of f up to order three.
As an application some commonly used fairings measures are written in invariant
form. It is shown that the ridges and the subparabolic curve of a surface are the
zero set of invariant functions and it is finally shown that the Darboux classifica-
tion of umbilical points can be given in terms of two invariants.

1 Introduction

An nth order invariant on a surface M in
� 3 is a function M →

�
whose value at

a point P ∈ M depends only on the nth order Taylor expansion of a parameterization
of M around P , see Definition 2. E.g. the mean curvature H and the Gauss curvature
K are second order invariants, in fact any second order invariant can be written as a
function of H and K, so they form a complete system. In this paper a similar complete
minimal system are found for the third order invariants, together with the complete
system of relations.

The problem of finding such a system of generators and relations turns out to be a
purely algebraic question that was much studied in the 19th century. The literature is
immense, so we just refer to the books [1–6], and the survey [7]. Some of the classical
algorithms from that time will be used but they will be phrased in the modern language
of tensor analysis.

In Sect. 2 we give the precise definition of an invariant and we reduce the problem
to a purely algebraic one. The main results are the list of invariants in Table 1 which
forms a complete minimal system of generators and Theorem 8 which describe the
surprisingly simple structure of the invariant ring.

The proof of Theorem 8 is in three stages. In Sect. 3 we use an algorithm from the
19th century, cf. [1], to determine a minimal set of generators. In Sect. 4 we find a set
of relations – called syzygies – among these generators. Finally in Sect. 5 we show
that we have found enough syzygies, i.e., they generate the whole ideal of relations.
This is done by using Weyls character formula and the residue theorem to calculate the
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Hilbert-Molien series which tells the dimension of the space of invariants of a fixed
degree.

Section 6 is devoted to implicit surfaces, given by an equation f(x) = 0. It is
explained how the invariants can be expressed in terms of the function f .

Once the structure of the invariant ring is established it can be used without knowl-
edge of the proof. So the reader interested in applications only can skip most of the
paper and go directly to the examples. The way the theory is used is to perform a calcu-
lation using principal coordinates in which the first fundamental form, the second fun-
damental form and its covariant derivative is particular simple. The result is translated
into an expression of invariants and then Table 1 can be used to tell what the expression
is in an arbitrary parameterization. To demonstrate how this works we present some ap-
plications in Sect. 7. First we express some functions used as fairing measures in terms
of our invariants. Then we characterize ridges, the subparabolic curve, and the Darboux
classification of umbilical points using invariants.

2 Invariants on Surfaces

Let x0 be a point on a surface M ⊂
� 3 and denote the unit normal vector and the

tangent plane at x0 by Nx0
and Tx0

M respectively. Let r1, r2 be a basis for the tangent
space Tx0

M and let (x1, x2) denote the coordinates on Tx0
M with respect to this basis.

Around the point x0 we can write the surface as a graph of a function on the tangent
space. More precisely the map

(x1, x2) 7→ x(x1, x2) = x0 + x1
r1 + x2

r2 + h(x1, x2)Nx0
, (1)

is a local parameterization of M . The inverse map is simply the orthogonal projection
M → Tx0

M , and h is the height of the surface over the tangent plane.
Normally the letter g is used for the first fundamental form, but we shall consider

three different forms and it seems natural to use the letters a, b, c. So we let aij = ri ·rj

be the components of the first fundamental form. We can Taylor expand the function h
to third order:

h(x1, x2) =
1

2
bijx

ixj +
1

6
cijkxixjxk + higher order terms , (2)

where we use Einsteins summation convention, so if an index appears once as a sub-
script and once as a superscript, then it is tacitly understood that we sum over it. We
may furthermore assume that bij and cijk are symmetric in the indices. We do not need
an explicit expression of h in order to determine the coefficients bij and cijk. Indeed,
we have

Proposition 1. The coefficients bij and cijk are the components of the second funda-
mental form and the covariant derivative of the second fundamental form respectively,
both with respect to the basis r1, r2.

Proof. In the parameterization (1) we have h(x1, x2) =
(
x(x1, x2) − x0

)
· Nx0

, so

bij =
∂2h

∂xi∂xj

∣∣∣∣
(0,0)

=
∂2

x

∂xi∂xj

∣∣∣∣
(0,0)

· Nx0
,
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and this is exactly the components of the second fundamental form at x0. To first order
we have that ∂x

∂x1 = ri + bijx
j
Nx0

and as Nx0
⊥ ri the components of the first

fundamental are constant to first order: ∂x

∂xi · ∂x

∂xj ≈ aij . Likewise
∣∣ ∂x

∂x1 × ∂x

∂x2

∣∣2 ≈

|r1 × r2|
2. Finally

∂2
x

∂xi∂xj
·

(
∂x

∂x1
×

∂x

∂x2

)

≈ (bij + cijkxk)Nx0
·
(
(r1 + (b11x

1 + b12x
2)Nx0

) × (r2 + (b12x
1 + b22x

2)Nx0
)
)

= (bij + cijkxk)Nx0
· (r1 × r2) = |r1 × r2| (bij + cijkxk) .

So the components of the second fundamental form are to first order bij + cijkxk.
Moreover, the ordinary derivative has components cijk and as the Christoffel symbols
vanishes at x0 the covariant derivative at x0 agrees with the ordinary derivative and has
components cijk too. ut

We have two interpretations of the quantities aij , bij , and cijk, as the coefficients of
a homogeneous polynomial in two variables (called a binary form) and as the compo-
nents of a k-form on M . We will also use a third interpretation, namely as the compo-
nents of an element of the space Sk � 2 of symmetric k-tensors on

� 2.
We have said that a third order invariant is a function that depends only on the third

order behaviour of the surface. We can now make this precise:

Definition 2. Let r : U → M ⊂
� 3 be a parameterization of a surface. Let the

components of the first fundamental form be a = a11, a12, a22, let the components of the
second fundamental form be b = b11, b12, b22, and let the components of the covariant
derivative of the second fundamental form be c = c111, c112, c122, c222. A third order
invariant is a function f : M →

�
that can be written on the form f(r(u, v)) =

F (a(u, v),b(u, v), c(u, v)), where F : S2 � 2 × S2 � 2 × S3 � 2 →
�

.

The function f is a function on the surface and is thus independent of the parameteriza-
tion. On the other hand, if we change the parameterization of the surface we change the
basis in the tangent plane and this in turn changes the components a,b, c of the three
forms on the tangent plane. So F can not be arbitrary; it has to be invariant under the
change of basis, i.e., under the action of GL2(

�
) on S2 � 2 × S2 � 2 × S3 � 2.

We want to determine a finite set F1, . . . , Fn of such invariant functions such that
an arbitrary invariant function F can be written

F (a,b, c) = F̂ (F1(a,b, c), . . . , Fn(a,b, c)).

We will in fact find a set of invariant polynomials such that any invariant polynomial
can be written in the form above. Then the same is true for arbitrary invariant functions
too, because such a set of polynomials separates orbits, see [3, Theorem 8.17]. The
advantage is that the polynomial problem is a purely algebraic problem.

3 The Generators

We first consider a slightly different problem. We will consider forms or symmetric
tensors over the complex numbers so we are given three binary forms aijx

ixj , bijx
ixj ,
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and cijkxixjxk where (x1, x2) = x ∈ � 2, and we ask for polynomials in the variables
a,b, c,x that are invariant under the action of SL2( � ). More precisely we want to
determine the structure of the invariant ring � [a,b, c,x]SL2( � ). A polynomial is the
sum of components, homogeneous in each set of variables a,b, c,x, and it is invariant
if and only if each of its homogeneous components is invariant.

In the classical literature a joint covariant of multi-degree (d1, d2, d3) and order k is
a homogeneous invariant polynomial which has degree d1 in a, degree d2 in b, degree
d3 in c, and degree k in x. In particular, the forms themselves are covariants, and a joint
invariant is a joint covariant of order 0.

An SL2-invariant will in general not be invariant under the action of GL2. Indeed,
a diagonal matrix ( t 0

0 t ) acts on xi by multiplication with t−1, on ai,j , bi,j by multipli-
cation with t2, and on ci,j,k by multiplication with t3, so an A ∈ GL2 acts on a joint
covariant by multiplication with detAρ, where 2ρ = 2d1 + 2d2 + 3d3 − k, we say that
it is a relative GL2-covariant of weight (or index) ρ.

The description of the invariant ring � [a,b, c,x]SL2 is a classical problem that was
studied intensely in the nineteenth century, and the two basic problems are the following

– Find a set of basic covariants C1, . . . , Cp, called a complete system, such that any
covariant can be written as a polynomial in the basic covariants. I.e., such that the
map φ : � [X1, . . . , Xp] → � [a,b, c,x], given by φ(P ) = P (C1, . . . , Cp) maps
onto � [a,b, c,x]SL2 .

– Find all syzygies among the basic covariants, i.e., find the kernel S of φ. That is,
all polynomials with P (C1, . . . , Cp) = 0.

In 1890 Hilbert showed that there always exists a finite system of generators and
relations, see [8]. I.e., there exists generators C1, . . . , Cp ∈ � [a,b, c,x] and syzygies
S1, . . . , Sq ∈ � [X1, . . . , Xp] such that the map Xi 7→ Ci gives an isomorphism

� [X1, . . . , Xp]
/

(S1, . . . , Sq) ∼= � [a,b, c,x]SL2 ,

where (S1, . . . , Sq) denotes the ideal generated by S1, . . . , Sq.
Before Hilbert the emphasis was on the explicit construction of covariants, of-

ten using transvectants. They can be defined symbolically, see [1, Chapter III] or [2,
(20.18)] or they can be defined using differential operators, but we will use contraction
of tensors to define them. We can assume that the components fi1,...,in

of a polynomial
f = fi1,...,in

xi1 . . . xin are symmetric in the indices so we may consider them as com-
ponents of a symmetric tensor fi1,...,in

xi1 ⊗ · · · ⊗ xin ∈ Sn( � 2). The rth transvectant
of two symmetric tensors f and g is denoted (f, g)(r) and is defined by having compo-
nents

(f, g)
(r)
ir+1,...,in,jr+1,...,jm

= S
(
εi1j1 . . . εirjrfi1,...,in

gj1,...,jm

)
, (3)

where εij is the completely anti symmetric symbol ε11 = ε22 = 0 and ε12 = −ε21 = 1.
The symbol S stands for symmetrization of the free indices. Observe that the symmetry
of f and g implies, that up to a sign, this is the only non zero contraction. As a contrac-
tion of a tensor is a new tensor we see that the transvectants of two covariants is a new
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covariant. Obviously

deg(f, g)(r) = deg f + deg g ,

order(f, g)(r) = order f + order g − 2r ,

weight(f, g)(r) = weight f + weight g + r .

It should be mentioned that all this is part of the representation theory of SL2 �
(or SU(2)), see [9]. The irreducible representations are the spaces Sn � 2 of symmetric
tensors, and a tensor product of two of these has the following decomposition

Sn � 2 ⊗ Sm � 2 =

bn+m
2 c⊕

r=0

Sn+m−2r � 2 .

The rth transvectant is exactly the projection from Sn � 2 ⊗ Sm � 2 to Sn+m−2r � 2.
The following theorem tells us how to get a complete system for a single binary

form, see [1, § 86] or [2, Theorem 24.3].

Theorem 3. Any covariant of a binary form f of degree d in its coefficients can be
written as a linear combination of transvectants of the form itself and covariants of
degree d − 1.

As the only covariant of degree 1 is the form itself this shows that we can find a complete
system of covariants of single form consisting of transvectants. E.g. a complete system
of covariants for a single quadratic binary form a consists of the form itself and its
discriminant:

a = aijx
ixj , (a, a)(2) = 2(a11a22 − a12a12) , (4)

see [1, 2, 4, 5].
A complete system of single cubic form c consists of the form itself, its Hessian,

the discriminant of the Hessian and the Jacobian of the form with its Hessian:

c , H = (c, c)(2) , D = (H, H)(2) , T = (H, c)(1) , (5)

see [1, 2, 4, 5]. The joint covariants of a collection of forms can be created from com-
plete subsystems, see [1, § 103].

Theorem 4. If S1 and S2 are two finite and complete systems of forms, then there exists
a finite and complete system consisting of transvectants of products of elements of S1

and products of forms of S2.

The problem with this theorem is that we don’t know how many products we need to
form, before we take transvectants. But if one of the systems above is the complete
system (4) of a single binary quadratic form then more is true, see [1, § 141].

Theorem 5. If S1 is the system (4) for a quadratic form a, and S2 is an arbitrary sys-
tem, then the irreducible transvectants belong to one of the three classes, (C, ar)(2r−1),
(C, ar)(2r), and (C1C2, a

r)(2r), where C1 and C2 have odd order and the order of the
product C1C2 is 2r.
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By using this result twice we can find a complete system for two quadratic and one
cubic binary form, i.e., a complete system for the third order invariants of a surface.
The result is a rather large system and not all elements are needed. To get rid of the
superfluous elements we use the following important result, see [6, Chapter VIII, §7],
or [4, Chapter 4.3].

Theorem 6. If C, C1, . . . , Cn are covariants and C = p1C1 + · · · + pnCn for some
polynomials pi, then we can assume that pi are covariants too. In other words, if a
covariant is contained in the ideal generated by some covariants then it is contained in
the algebra generated by the same covariants:

C ∈ (C1, . . . , Cn) ⇒ C ∈ � [C1, . . . , Cn] .

So using the results above we first find a large set of generators. Then we sort them
such that the partial ordering induced by the order and the multi degree is respected, i.e.,
k ≤ k′ ∧ d1 ≤ d′1 ∧ d2 ≤ d′2 ∧ d3 ≤ d′3 =⇒ C ≤ C ′. Finally we take each covariant
in turn and if it is contained in the ideal generated by the previous ones then we throw
it away otherwise we keep it. All this was done using the algebra program “Singular”
[10]. The result is a minimal system of generators consisting of 18 invariants, 13 linear
covariants, 6 quadratic covariants, and 4 cubic covariants. The 18 invariants are

(a, a)(2), (a, b)(2), (b, b)(2),
(
(c, c)(2), a

)(2)
,
(
(c, c)(2), b

)(2)
,

((
(c, c)(2), b

)(1)
, a
)(2)

,
(
c2, a3

)(6)
,
(
c(c, b)(2), a2

)(4)
,
(
(c, b)(2)

2
, a
)(2)

,
(
c2, b3

)(6)
,
(
c(c, b)(1), a3

)(6)
,
(
c
(
c, b2

)(3)
, a2
)(4)

,
(
(c, b)(2)

(
c, b2

)(3)
, a
)(2)

,
(
(c, c)(2), (c, c)(2)

)(2)
,
(
c
(
(c, c)(2), c

)(1)
, a3
)(6)

,
(
c
((

(c, c)(2), c
)(1)

, b
)(2)

, a2
)(4)

,
(
(c, b)(2)

((
(c, c)(2), c

)(1)
, b
)(2)

, a
)(2)

,
(
c
(
(c, c)(2), c

)(1)
, b3
)(6)

.

The symmetrization in (3) means that we in general will get a sum of different con-
tractions. But each contraction in such a sum is an invariant and at least one of them
is irreducible. So we can obtain a complete system where each generator is a single
contraction. In Table 1 we have listed one possible choice of generators along with their
multi-degree and weight. There are at first sight up to 218 terms, but the symmetries
reduces this number to 54, see [11] where the sums have been expanded.

4 The Syzygies

We now turn to the problem of finding all syzygies, i.e., all relations between the basic
invariants in Table 1. In this section we present a set of syzygies and in the next section
we prove that this set generates the ideal of syzygies.

Proposition 7. There are 39 syzygies of the form

JiJj = Q0
ij +

2∑

k=1

Qk
ijJk , 1 ≤ i ≤ j ≤ 2 or 3 ≤ i ≤ j ≤ 10 , (6)
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expres-

sions.

I0 = 1
2εi1j1εi2j2ai1i2aj1j2 (2, 0, 0) 2

I1 = εi1j1εi2j2ai1i2bj1j2 (1, 1, 0) 2

I2 = 1
2εi1j1εi2j2bi1i2bj1j2 (0, 2, 0) 2

I3 = 1
2εi1j3εi2k3εj1k1εj2k2ai1i2cj1j2j3ck1k2k3

(1, 0, 2) 4

I4 = 1
2εi1j3εi2k3εj1k1εj2k2bi1i2cj1j2j3ck1k2k3

(0, 1, 2) 4

I5 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2m3ai1i2aj1j2ak1k2
cl1l2l3cm1m2m3

(3, 0, 2) 6

I6 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2m3bi1i2bj1j2bk1k2
cl1l2l3cm1m2m3

(0, 3, 2) 6

I7 = 1
2εi1j1εi2j2εk1l1εk2l2εi3k3εj3l3ci1i2i3cj1j2j3ck1k2k3

cl1l2l3 (0, 0, 4) 6

J1 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2m3ai1i2aj1j2bk1k2
cl1l2l3cm1m2m3

(2, 1, 2) 6

J2 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2m3ai1i2bj1j2bk1k2
cl1l2l3cm1m2m3

(1, 2, 2) 6

J3 = εi1j1εi2k3εj2l3εk1l1εk2l2ai1i2bj1j2ck1k2k3
cl1l2l3 (1, 1, 2) 5

J4 = εi1l1εi2m1εj1m2εj2n1εk1m3εk2n2εl2n3ai1i2aj1j2ak1k2
bl1l2cm1m2m3

cn1n2n3
(3, 1, 2) 7

J5 = εi1k1εi2m1εj1m2εj2n1εk2m3εl1n2εl2n3ai1i2aj1j2bk1k2
bl1l2cm1m2m3

cn1n2n3
(2, 2, 2) 7

J6 = εi1k1εi2m1εj1m2εj2n1εk2m3εl1n2εl2n3ai1i2bj1j2bk1k2
bl1l2cm1m2m3

cn1n2n3
(1, 3, 2) 7

J7 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2n1εm3p1εn2p2εn3p3ai1i2aj1j2ak1k2
cl1l2l3cm1m2m3

cn1n2n3
cp1p2p3

(3, 0, 4) 9

J8 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2n1εm3p1εn2p2εn3p3ai1i2aj1j2bk1k2
cl1l2l3cm1m2m3

cn1n2n3
cp1p2p3

(2, 1, 4) 9

J9 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2n1εm3p1εn2p2εn3p3ai1i2bj1j2bk1k2
cl1l2l3cm1m2m3

cn1n2n3
cp1p2p3

(1, 2, 4) 9

J10 = εi1l1εi2m1εj1l2εj2m2εk1l3εk2n1εm3p1εn2p2εn3p3bi1i2bj1j2bk1k2
cl1l2l3cm1m2m3

cn1n2n3
cp1p2p3

(0, 3, 4) 9
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and 16 of the form

JiJj =

10∑

k=3

Qk
ijJk , 1 ≤ i ≤ 2 and 3 ≤ j ≤ 10 , (7)

where Qk
ij is a polynomial in I0, . . . , I7 of the form

Qk
ij =

∑
P

deg Iip=deg Ji+deg Jj−deg Jk

di1...ik
Ii1 . . . Iik

,

(deg J0 = 0). We furthermore have two syzygies of the form

Q1
i J1 + Q2

i J2 = Q0
i , i = 1, 2 , (8)

and eight of the form

Q3
i J3 + · · · + Q10

i J10 = 0 , i = 3, . . . , 10 , (9)

where Qk
i are polynomials of the form

Qk
i =

∑
P

deg Iip=(γi
1
,γi

2
,γi

3
)−deg Jk

di1...ik
Ii1 . . . Iik

,

(deg J0 = 0), and the degrees (γi
1, γ

i
2, γ

i
3) are

(3, 2, 6) , (2, 3, 6) , (4, 1, 4) , (3, 2, 4) , (2, 3, 4) ,

(1, 4, 4) , (3, 1, 6) , (2, 2, 6) , (1, 3, 6) , (3, 3, 6) .
(10)

Proof. We only sketch the proof. Equations (6) and (7) are finite dimensional inhomo-
geneous linear equations in the coefficients of the polynomials Qk

ij . Using Maple or a
similar system it is not hard to solve these equations, see [11].

When the degrees (10) are known then the existence of the polynomials Qk
i in (8)

and (9) reduces to a finite dimensional linear algebra problem, but we have to be careful.
If we take syzygies of degree (1, 3, 6), (3, 1, 6), (2, 3, 4), and (3, 2, 4) and multiply with
I0, I2, I3, and I4 respectively we obtain four syzygies of degree (3, 3, 6). So when we
solve (9) to find the polynomials Qk

10, the space of solutions has dimension greater
than one. We need to pick a solution that is not a � [I0, . . . , I7] linear combinations of
syzygies of lower degree, but this is not hard to do using a computer algebra system,
see [11]. In fact, this is how the 65 syzygies were found in the first place. Starting
with low degree, Maple was used to determine syzygies of a fixed degree that can’t be
expressed as a � [I0, . . . , I7] linear combinations of the syzygies previously found. This
process was iterated until no new syzygies emerged for some degrees. We might at this
point believe we have all syzygies, but it is not proved – that will be done in the next
section.

To simplify the calculations we can pick a good basis for the tangent plane, so we
may assume that aij = δij and bij is diagonal and obtain the expressions in Table 2,
c.f. Sect. 7. ut
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Note that if we eliminate a, b, c from the ideal (X0−I0, . . . , X7−I7, Y1−J1, . . . , Y10−
J10) in the ring � [X,Y, a,b, c] then we obtain a system of generators for the ideal of
syzygies. It is in principle possible to use Gröbner basis methods to do this, but the
present problem is apparently too large to be solved this way. At least my implementa-
tion in Singular ran for months and never terminated.

Now consider the ring � [X,Y] = � [X0, . . . , X7, Y1, . . . , Y10]. We introduce a
triple grading by letting

deg(Xi) = deg(Ii) = (αi
1, α

i
2, α

i
3), deg(Yi) = deg(Ji) = (βi

1, β
i
2, β

i
3). (11)

The values of (αi
1, α

i
2, α

i
3) and(βi

1, β
i
2, β

i
3) can be found in Table 1. We can in an ob-

vious manner consider Qk
ij and Qk

i as polynomials in X, i.e., as elements in � [X] and
we now put

Sij = YiYj −
(
Q0

ij(X) +
10∑

k=1

Qk
ij(X)Yk

)
, 1 ≤ i ≤ j ≤ 10 ,

Si = Q1
i (X)Y1 + Q2

i (X)Y2 − Q0
i (X) , i = 1, 2 ,

Si = Q3
i (X)Y3 + · · · + Q10

i (X)Y10 , i = 3, . . . , 10 ,

then deg Si = (γi
1, γ

i
2, γ

i
3) is given by (10). Now let � [a,b, c] denote the polynomial

ring in the variable aij , bij , cijk, and consider the map φ : � [X,Y] → � [a,b, c] given
by φ(Xi) = Ii and φ(Yi) = Ji. It preserves the grading, and maps onto the invariant
ring. The polynomials Sij and Si are in the kernel of φ, so if S is the ideal generated
by Sij and Si then we have a surjective map

� [X,Y]/S → � [a,b, c]SL2( � ) , (12)

and we want to show it is an isomorphism. If the degree is fixed then we have a linear
map between finite dimensional vector spaces, so we need only to show that the two
spaces have the same dimension. This is done in the next section.

5 The Structure of the Invariant Ring

Consider the subspace of invariants of multi-degree d = (d1, d2, d3) and denote the di-
mension by Dd. The Hilbert-Molien series is H(z) =

∑
Ddz

d, where z
d = zd1

1 zd2

2 zd3

3 .
From the point of view of Lie group theory we have a representation of SL2( � ) on
Sd
(
S2
(
� 2
)
× S2

(
� 2
)
× S3

(
� 2
))

and the space of invariants of multi-degree d is
exactly the subspace where SL2( � ) acts trivially. We can split Sd in a direct sum
of irreducible representations and the number of times the trivial representation oc-
cur is Dd. This number can be computed by Weyls character formula, see [9]. Let
gn : SL2( � ) → GL

(
Sn( � 2)

)
be the n’th symmetric representation of SL2( � ),

let T be a maximal torus in SL2( � ) and let dt be a Haar measure on T , then with
(n1, n2, n3) = (2, 2, 3), we have

H(z1, z2, z3) =

∫

t∈T

∏
1≤i<j≤2

(
1 − ti

tj

)
∏3

k=1 det(1 − zkgnk
(t))

dt
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=
1

2π

∫ 2π

0

1 − e−2iθ

∏3
k=1

(∏nk

l=0(1 − zke(2l−nk)iθ)
) dθ

=
1

2πi

∫

S1

1 − ζ−2

∏3
k=1

(∏nk

l=0(1 − zkζ2l−nk)
)ζ−1 dζ

=
1

2πi

∫

S1

ζ5(ζ2 − 1)

Q(ζ)
dζ,

where

Q(ζ) = (ζ2 − z1)(1 − z1)(1 − z1ζ
2)(ζ2 − z2)(1 − z2)(1 − z2ζ

2)

(ζ3 − z3)(ζ − z3)(1 − z3ζ)(1 − z3ζ
3).

We will use the residue theorem to evaluate the last integral, and if we assume that
|z1|, |z2|, |z3| < 1 and that ξ2

1 = z1, ξ2
2 = z2, and η3 = z3 then the poles inside the

unit circle are ±ξ1,±ξ2, η, e±2πi/3η, z3. We use Maple to calculate the residues for the
eight poles and sum the results. The details can be found in [11] and the final result is

H(z1, z2, z3) =
1 +

∑10
j=1 z

βi
1

1 z
βi
2

2 z
βi
3

3 −
∑10

k=1 z
γk
1

1 z
γk
2

2 z
γk
3

3 − z4
1z4

2z8
3

∏7
i=0

(
1 − z

αi
1

1 z
αi

2

2 z
αi

3

3

) , (13)

where the exponents αj
i , βj

i , and γj
i are given in (11) and (10).

We now consider the corresponding series – called the Hilbert series – for the ring
at the left hand side of (12), but first we find a simple description of the ring. We
define the ideals S0 = (. . . , Sij , . . . ) and S1 = (S1, . . . , S10) and the rings R0 =
� [X] = � [X0, . . . , X7] and R1 = � [X,Y]/S0 = R0[Y]/S0. Then S = (S0 ∪ S1)
and � [X,Y]/S =

(
� [X][Y]/S0

)
/S1 = R1/S1. The syzygies Sij tells us that in the

ring R1 any element can be uniquely written as p = p0+
∑10

i=1 piYi where pi ∈ R0. Put
an other way, as an R0 module we have R1 = R0⊕R0Y1⊕· · ·⊕R0Y10. We now proceed
to look at S1 as an R0 module. As an R1 module it is generated by S1, . . . , S10 so as an
R0 module it is generated by S1, . . . , S10 and all products SiYj . We put S0 = Y1S2, and
using a computer algebra system we find that YiSj is contained in spanR0

{S0, . . . , S10}
for all i, j, see [11]. Observe that (γ0

1 , γ0
2 , γ0

3) = deg S0 = deg Y1 + deg S2 = (4, 4, 8)
which is the last exponent in the Hilbert-Molien series (13). So S1 is generated by
S0, . . . , S10 as an R0 module. Furthermore, we can write




S0

S1

S2


 = A1




1
Y1

Y2


 and




S3

...
S10


 = A2




Y3

...
Y10


 ,

where A1 and A2 are matrices with elements in R0. We find that detA2 = 2 detA1 6=
0 in R0, see [11]. So S1 is a free R0 module: S1 = R0S0 ⊕ · · · ⊕ R0S10. The Hilbert
series for the polynomial ring R0 is

H0(z1, z2, z3) =

(
7∏

i=0

(
1 − z

αi
1

1 z
αi

2

2 z
αi

3

3

)
)−1

.



Third Order Invariants of Surfaces 203

The ring R1 is a free R0 module and has the Hilbert series

H1(z1, z2, z3) = H0(z1, z2, z3)

(
1 +

10∑

i=1

z
βi
1

1 z
βi
2

2 z
βi
3

3

)
.

The ideal S1 is a free R0 module too and has the Hilbert series

H2(z1, z2, z3) = H0(z1, z2, z3)

(
10∑

i=0

z
γi
1

1 z
γi
2

2 z
γi
3

3

)
.

So all in all we have that the Hilbert series for R1/S1 is

H(z1, z2, z3) = H1(z1, z2, z3) − H2(z1, z2, z3)

=

(
7∏

i=0

(
1 − z

αi
1

1 z
αi

2

2 z
αi

3

3

)
)−1(

1 +

10∑

i=1

z
βi
1

1 z
βi
2

2 z
βi
3

3 −

10∑

i=0

z
γi
1

1 z
γi
2

2 z
γi
3

3

)
.

This is exactly the same as the Hilbert-Molien series (13) for the ring of SL2 invariants.
As a consequence we have that the kernel of φ is S. This is our main result and we
formulate it as the following theorem.

Theorem 8. The map φ given by Xi 7→ Ii and Yi 7→ Ji induces an isomorphism

� [X,Y]
/
S ∼= � [a,b, c]SL2 .

I.e., any SL2-invariant can be written as a polynomial in I0, . . . , I7, J1, . . . , J10 and
any syzygy can be written as a � [X,Y]-linear combination of Si and Sij , i, j =
1, . . . 10. The map also induces an isomorphism

(
� [X] ⊕ � [X]Y1 ⊕ . . . � [X]Y10

) /
S1

∼= � [a,b, c]SL2 .

I.e., any SL2-invariant I can be written as

I = p0(I0, . . . , I7) + p1(I0, . . . , I7)J1 + · · · + p10(I0, . . . , I7)J10 ,

and any syzygy among these is a � [X]-linear combination of S0, . . . , S10.

We really want to study invariants of binary forms over the reals, but this makes
no difference. A polynomial is invariant under the action of SL2(

�
) if and only if

it vanishes under the induced action of the Lie algebra sl2(
�

). The one-to-one cor-
respondence between homogeneous polynomials and symmetric tensors means that if
Id denotes the space of homogeneous SL2(

�
)-invariant polynomials of degree d (and

order 0) then we have

Id ⊆ Sd
(
S2,2,3

( � 2
))

= Sd
(
S2
( � 2

)
× S2

( � 2
)
× S3

( � 2
))

⊆
�

[a,b, c] ,

where Sd denotes the symmetric product. The invariant ring is
�

[a,b, c]SL2 =
⊕

d
Id.

If we complexify we get

Id ⊗ ��� ⊆ Sd
(
S2,2,3

( � 2
))

⊗ ��� = Sd
(
S2,2,3

(
� 2
))

⊆ � [a] ,
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and as sl2( � ) = sl2(
�

)⊗ ��� we see that the complex polynomials of multi-degree d

that vanishes under the action of sl2( � ) is Id ⊗ ��� . In other words there is a one to
one correspondence between SL2(

�
)-invariants and SL2( � )-invariants.

Furthermore, we are in fact interested in GL2-invariants, i.e., invariants with weight
0. None of the polynomial invariants has weight 0, but as I0 > 0 we can obtain absolute
GL2-invariants by dividing with a suitable power of I0. If we let ρi and δi be the weight
of Ii and Ji respectively, and put

Îi =
Ii

I
ρi/2
0

and Ĵi =
Ii

I
δi/2
0

, (14)

then Î1, . . . , Î7, and Ĵ1, Ĵ2 are rational GL2(
�

)-invariants, but Ĵ3, . . . , Ĵ10 are only
invariant under the action of GL+

2 (
�

). They changes sign if the linear transformation
has a negative determinant, i.e., if the orientation is reversed. This gives the following
corollary.

Corollary 9. In Theorem 8 the field � can be replaced by
�

. Furthermore, any rational
GL+

2 (
�

)-invariant can be written as

p0 + p1Ĵ1 + · · · + p10Ĵ10

q0 + q1Ĵ1 + · · · + q10Ĵ10

,

and any rational GL2(
�

)-invariant can be written as

p0 + p1Ĵ1 + p2Ĵ2

q0 + q1Ĵ1 + q2Ĵ2

+
p3Ĵ3 + · · · + p10Ĵ10

q3Ĵ3 + · · · + q10Ĵ10

,

where pi and qi are polynomials in Î1, . . . , Î7.

6 Implicit Surfaces

We now consider an implicitly defined surface M = h−1(0), where h :
� 3 →

�
. We

first assume that |∇h| = 1 in some neighbourhood of M , so h(x) is the signed distance
from M to x for x in that neighbourhood. If II and ∇II denotes the second fundamental
form and its covariant derivative respectively, then d2h = −II ◦ π and d3h = −∇II ◦ π
where π :

� 3 → TpM is the orthogonal projection onto the tangent space. If we assume
that ∇h is the third basis vector for

� 3, then aij = δij , bij = hij , and cijk = hijk for
i, j, k = 1, 2. Furthermore

εij = εijkhk where εijk =





1 if i, j, k is an even permutation of 1, 2, 3

−1 if i, j, k is an odd permutation of 1, 2, 3

0 otherwise.
(15)

So to express the invariants in Table 1 in terms of the signed distance function we
simply make the above substitutions. At first we have to sum from 1 to 2 only, but as
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ε3jkhk = εi3khk = 0 we may sum from 1 to 3. The expression is now invariant so it
holds for an arbitrary direction of ∇h.

We now consider an arbitrary C3 function f :
� 3 →

�
such that M = f−1(0) and

λ = |∇f | 6= 0 in a neighbourhood of M . By differentiating the equation dh(∇h) =
|∇h|2 = 1 we see that ∇h is a null vector for the higher order derivatives of h, and
using this fact we obtain

hi =
1

λ
fi , (16)

hij =
1

λ
fij −

1

λ3

(
fikfkfj + fjkfkfi

)
+

1

λ5

(
fklf

kf l
)
fifj , (17)

hijk =
1

λ
fijk −

1

λ3

(
filf

lfjk + fklf
lfij + fjlf

lfki

)
+ terms with fi, fj , fk , (18)

where f l = δklfk = fl. As εijkfifk = εijkfjfk = 0 we can discard any term in
(17) and (18) that contains fi, fj , or fk as a factor. Summing up we have the following
result:
Theorem 10. Let f :

� 3 →
�

be C3 functions such that λ = |∇f | 6= 0 in a neigh-
bourhood of the implicitly defined surface M = f−1(0). The invariants in Table 1 can
be found by making the substitutions

εij 7→
1

λ
εijkfk , aij 7→ δij ,

bij 7→
1

λ
fij , cijk 7→

1

λ
fijk −

1

λ3

(
filf

lfjk + fklf
lfij + fjlf

lfki

)
.

7 Applications

Coordinates on a surface where – at some point – the first fundamental form to first order
is δij and the second fundamental form to first order is diagonal are called principal
coordinates at that point. E.g. if we in (1) have that the basis r1, r2 for the tangent plane
is orthonormal and in the principal directions, then we have principal coordinates at x0.
Now a11 = a22 = 1, a12 = b12 = 0 so I0 = 1, Îi = Ii, Ĵi = Ji. If we put b11 = L,
b22 = N , c111 = P , c112 = Q, c122 = S, and c222 = T then we get the expressions in
Table 2.

The equations (∗) is a system of linear equations in P 2, PS, S2, Q2, QT, T 2




0 −1 −1 0 1 1
0 −N −L 0 N L
1 3 3 1 0 0

N3 3LN2 3L2N L3 0 0
N L + 2N 2L + N L 0 0
N2 2LN + N2 L2 + 2LN L2 0 0







P 2

Q2

S2

T 2

PS
QT




=




I3

I4

I5

I6

J1

J2




, (19)

and the equations (∗∗) is a system of linear equations in PQ, PT, QS, ST

(L − N)




0 −1 0 1
1 2 1 0
N L + N L 0
N2 2LN L2 0







PQ
QS
ST
PT


 =




J3

J4

J5

J6


 . (20)
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Table
2.T

he
basic

invariants
in

principalcoordinates

I1 = L + N ,

I2 = LN ,

(∗) I3 = PS − S2 − Q2 + QT ,

(∗) I4 = NPS − LS2 − NQ2 + LQT ,

(∗) I5 = P 2 + 3Q2 + 3S2 + T 2 ,

(∗) I6 = N3P 2 + 3LN2Q2 + 3L2NS2 + L3T 2 ,

I7 = 3Q2S2 − P 2T 2 − 4PS3 − 4Q3T + 6PQST ,

(∗) J1 = NP 2 + (L + 2N)Q2 + (2L + N)S2 + LT 2 ,

(∗) J2 = N2P 2 +
(
2LN + N2

)
Q2 +

(
L2 + 2LN

)
S2 + L2T 2 ,

(∗∗) J3 = (L − N)(PT − QS) ,

(∗∗) J4 = (L − N)(PQ + 2QS + ST ) ,

(∗∗) J5 = (L − N)(NPQ + (L + N)QS + LST ),

(∗∗) J6 = (L − N)
(
N2PQ + 2LNQS + L2ST

)
,

J7 = 2
(
PQ3 − S3T

)
+
(
P 2 + 3Q2 − 3S2 − T 2

)
PT + 3

(
(Q + T )2 − (P + S)2

)
QS ,

J8 = 2
(
NPQ3 − LS3T

)
+
(
NP 2 + (L + 2N)Q2 − (2L + N)S2 − LT 2

)
PT

+
(
(L + 2N)Q2 + 2(2L + N)QT + 3LT 2 − NP 2 − 2(L + 2N)PS − (2L + N)S2

)
QS ,

J9 = 2
(
N2Q2 − N(2L + N)S2

)
PQ +

(
N
(
NP 2 + (2L + N)Q2

)
− L

(
(2N + L)S2 + LT 2

))
PT

−
(
3N2P 2 − N(2L + N)Q2 + L(L + 2N)S2 − 3L2T 2

)
QS +

(
L(2N + L)Q2 − L2S2

)
ST ,

J10 = 2N2
(
NQ2 − 3LS2

)
PQ +

(
N3P 2 + 3LN2Q2 − 3L2NS2 − L3T 2

)
PT

− 3
(
N3P 2 − LN2Q2 + L2NS2 − L3T 2

)
QS + 2L2

(
3NQ2 − LS2

)
ST .
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The determinant of the matrix is in both cases (L − N)7 , so if L 6= N , i.e, at a non-
umbilical point, we can solve the equations, and the solutions are




PQ
QS
ST
PT


 =

1

(L − N)3




0 L2 −2L 1
0 −LN L + N −1
0 N2 −2N 1

(L − N)2 −LN L + N −1







J3

J4

J5

J6


 . (21)

and

P 2 =
L3I5 − I6 − 3L2J1 + 3LJ2

(L − N)3
,

Q2 =
−L2NI5 + I6 + (L + 2N)LJ1 − (2L + N)J2

(L − N)3
,

S2 =
LN2I5 − I6 − (2L + N)NJ1 + (L + 2N)J2

(L − N)3
,

T 2 =
−N3I5 + I6 + 3N2J1 − 3NJ2

(L − N)3
,

PS = Q2 +
LI3 − I4

L − N
,

QT = S2 −
NI3 − I4

L − N
.

(22)

Expressions similar to (22) were also found in [12], but there a different set of invariants
was used namely:

Λ1 =
I5

I3
0

, Λ2 =
2I0I3 + I5

I3
0

,

Λ3 =
I1I5 − I0J1

I4
0

, Λ4 =
2I0I1I3 + I1I5 − 2I2

0 I4 − I0J1

I4
0

,

Λ5 =
I2
1 I5 − 2I0I1J1 + I2

0J2

I5
0

, Λ6 =
I3
1 I5 − I3

0 I6 − 3I2
1J1 + 3I2

0 I1J2

I6
0

.

In principal coordinates the principal curvatures are simply κ1 = L and κ2 = N ,
and the principal directions e1 and e2 are the coordinates directions. Furthermore, at
a non umbilical point – where κ1 6= κ2 – the directional derivatives of the principal
curvatures are given by ∂e1

κ1 = P , ∂e2
κ1 = Q, ∂e1

κ2 = S, and ∂e2
κ2 = T , see [12].

We will now give a couple of examples to demonstrate how this can be used.

7.1 Fairing

Over the years there have been many suggestions of functions which should estimate
the ‘fairness’ of a surface, see [13] for an extensive treatment. As a simple example we
can take |∇H|2, where H = 1

2I1/I0 is the mean curvature, just as K = I2/I0 is the
Gauss curvature. In principal coordinates we have

H(x1, x2) =
1

2

(
(L + x1P + x2Q) + (N + x1S + x2T ) + higher order terms

)
,
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so at (0, 0) we have ∇H = 1
2 (P + S, Q + T ) and hence

|∇H|2 =
P 2 + 2PS + S2 + Q2 + 2QT + T 2

4

If we now substitute (22) into the expression then we get

|∇H|2 =
P 2 + 3Q2 + 3S2 + T 2

4
+

LI3 − I4

2(L − N)
−

NI3 − I4

2(L − N)

=
L3I5 − I6 − 3L2J1 + 3LJ2

4(L − N)3

+ 3
−L2NI5 + I6 + (L + 2N)LJ1 − (2L + N)J2

4(L − N)3

+ 3
LN2I5 − I6 − (2L + N)NJ1 + (L + 2N)J2

4(L − N)3

+
−N3I5 + I6 + 3N2J1 − 3NJ2

4(L − N)3
+

I3

2

=
(L3 − 3L2N + 3LN2 − N3)I5

4(L − N)3
+

(−1 + 3 − 3 + 1)I6

4(L − N)3

+
(−3L2 + 3(L2 + 2LN) − 3(2LN + N2) + 3N2)J1

4(L − N)3

+
3L − (2L + N) + (L + 2N) − 3N)J2

4(L − N)3
+

I3

2

=
I5

4
+

I3

2
=

Î5

4
+

Î3

2
=

2I0I3 + I5

4I3
0

.

As I5 = P 2 + 3Q2 + 3S2 + T 2 in principal coordinates we could have done the calcu-
lation faster. In any case, we have performed the calculation using special coordinates,
but as both sides of the equality are invariant the equality holds in any parameterization.
In a similar manner – see [12] – it can be shown that

|∇K|2 =
2I0I2I3 + I0J2

I4
0

,

(
∇(|κ1| + |κ2|)

)2
=

{
2I0I3+I5

I3
0

if I2 > 0 ,
2I0(4I0I2−I2

1 )I3+I2
1I5−4I0I1J1+4I2

0J2

I3
0
(I2

1
−4I0I2)

if I2 < 0 ,

(
∇
(
κ2

1 + κ2
2

))2
= 4

2I2
0 I2I3 + I2

1I5 − 2I0I1J1 + I2
0J2

I5
0

,

(
∂e1

κ1

)2
+
(
∂e2

κ2

)2
=

(I2
1 − I0I2)I5 − 3I0I1J1 + 3I2

0J2

I3
0 (I2

1 − 4I2)
,

1

π

∫ π

0

(
dκn

ds

)2

dφ =
6I0I3 + 5I5

16I3
0

.
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7.2 Ridges and the Subparabolic Curve

A surface has two focal surfaces or evolutes given as the locus of the two principal
centre of curvature. The focal surfaces will in general have cuspidal edges called ribs
lying over curves, called ridges, in the original surface, see [14]. The parabolic curve -
where the Gaussian curvature is zero – in the focal surfaces lies over a curve, called the
subparabolic curve, in the original surface, see [14].

If we in the tangent plane use rectangular coordinates (x, y) such that the axes are
in the principal directions, then we can write (2) as

z =
1

2

(
Lx2 + Ny2

)
+

1

6

(
Px3 + 3Qx2y + 3Sxy2 + Ty3

)
+ higher order terms .

The unit normal is to first order N ≈ (−Lx,−Ny, 1) and if L 6= N then the principal
curvatures are to first order κ1 ≈ L + Px + Qy and κ2 ≈ N + Sx + Ty. The two
sheets of the focal surface are to first order given by
(

0,
L − N

L
y,

1

L
−

P

L2
x −

Q

L2
y

)
and

(
N − L

N
x, 0

1

N
−

S

N2
x −

T

N2
y

)
.

The cross products of the partial derivatives are
(

L − N

L3
P, 0, 0

)
and

(
0,

N − L

N3
T, 0

)

respectively. At a non umbilical point (21) shows that

(L − N)3PT = (L − N)2J3 − LNJ4 + (L + N)J5 − J6

=
(
(L + N)2 − 4LN

)
J3 − LNJ4 + (L + N)J5 − J6

=
(
Î1

2
− 4Î2

)
Ĵ3 − Î2Ĵ4 + Î1Ĵ5 − Ĵ6 .

We have assumed that L 6= N , but if L = N then J3 = J4 = J5 = J6 = 0 so the
equation holds in this case too. This give us the required invariant description of the
ridges:

Theorem 11. The ridges of a surface is the zero set of the invariant function
(
I2
1 − 4I0I2

)
J3 − I2J4 + I1J5 − I0J6

I
9/2
0

.

We saw above that the ridges at non umbilical points are given by ∂e1
κ1 = 0 or

∂e2
κ2 = 0. Similar the subparabolic lines are given by ∂e2

κ1 = 0 or ∂e1
κ2 = 0, see

[14]. In principal coordinates we get the equation QS = 0, and at a non umbilical point
(21) shows that

(L − N)3QS = −LNJ4 + (L + N)J5 − J6 = −Î2Ĵ4 + Î1Ĵ5 − Ĵ6 .

Just as before this give us the invariant description of the subparabolic curve:

Theorem 12. The subparabolic curve of a surface is the zero set of the invariant func-
tion

−I2J4 + I1J5 − I0J6

I
9/2
0

.
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7.3 Darboux’s Classification of Umbilical Points

At an umbilical point the first and second fundamental form are proportional and then
13 of the 18 basic invariants can be expressed as linear combination of the others.
We are left with only 5 invariants I0, I3, I5, I7, and J7, and a single syzygy J2

7 =
Q(I0, I3, I5, I7). We have essentially the joint invariants of one quadratic and one cubic
binary form.

The Darboux’s classification depends on the pattern of the lines of curvatures around
the umbilical point, which in turn depends on whether there are one or three real root
lines of the cubic form c = ∇II, and in the latter case whether the three root lines are
contained in a right angle or not, see [14]. A root line of a cubic form is a direction where
it vanishes, and there is at least one root line which we can assume it is the x-axis. I.e.,
we may assume that P = 0. Then I7 = 3Q2S2−4Q3T and c = (3Qx2+3Sxy+Ty2)y.
The quadratic factor has the discriminant 3

4

(
4QT − 3S2

)
= − 3

4I7/Q
2 so we have

I7 < 0 ⇐⇒ c has 3 distinct real root lines,
I7 > 0 ⇐⇒ c has exactly 1 real root line.

lemon (le)monstar star
I7 > 0 I7 < 0, 3I0I3 + I5 > 0 I7 < 0, 3I0I3 + I5 < 0

Fig. 1. Curvature lines around an isolated umbilical point

In the case I7 < 0 we can assume that the three real root directions are v1 =
(α1, β1), v2 = (α2, β2), and v3 = (α3, β3) = (1, 0). The cubic form is then

c =
3∏

i=1

(βix − αiy) =
(
−β1β2x

2 + (α1β2 + β1α2)xy − α1α2y
2
)
y .

So 3Q = −β1β2 and T = −α1α2. Hence

(v1 · v2)(v1 · v3)(v2 · v3) = (α1α2 + β1β2)α1α2 = T 2 + 3QT =
3I0I3 + I5

I3
0

.

We can now see that if I7 < 0, then we have

3I0I3 + I5 > 0 ⇐⇒ The root lines of c are contained in a right angle,
3I0I3 + I5 < 0 ⇐⇒ The root lines of c aren’t contained in a right angle.
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This gives the classification in Fig. 1, where we have sketched the three generic patterns
possible for the lines of curvature around an isolated umbilical point.
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