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The paper proposes a rational method to derive fairness measures for surfaces. It works
in cases where isophotes, reflection lines, planar intersection curves, or other curves are used
to judge the fairness of the surface. The surface fairness measure is derived by demanding
that all the given curves should be fair with respect to an appropriate curve fairness measure.
The method is applied to the field of ship hull design where the curves are plane intersections.
The method is extended to the case where one considers, not the fairness of one curve, but the
fairness of a one parameter family of curves. Six basic third order invariants by which the fair-
ing measures can be expressed are defined. Furthermore, the geometry of a plane intersection
curve is studied, and the variation of the total, the normal, and the geodesic curvature and the
geodesic torsion is determined.
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1. Introduction

An appealing approach to fairing is the variational, where a surface M is faired by
minimizing a functional in form of an integral

∫
M� d�, where � is a function which

measures the local fairness of the surface. A crucial point is the definition of the fairness
measure �, and over the years there have been many suggestions. For a recent survey
on modelling based on this principle, see [10]. Brunet et al. [1] who are particular inter-
ested in ship hull design have a long discussion of existing fairing algorithms. Nowacki
et al. [16] have investigated and compared several fairing measures. The variety of sug-
gestions reflects the fact that there is no universal accepted mathematical definition of
fairness. One definition we think everybody can agree on is the following:
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A surface is fair if the designer is satisfied.

It implies that that no single universal definition of fairness exists. It might be that even
though two naval architects can agree on what a fair surface is, they may both disagree
with a car designer, that is:

The criteria for fairness of a surface are application-dependent.

E.g., if a designer uses isophotes to judge the fairness of a surface, then we should derive
a fairness measure that captures the fairness of all isophotes. The last point we want to
make is:

The fairness of a surface depends only on the geometry of the surface.

This is also expressed by saying that the fairness measure is invariant. I.e., the value
of the fairness measure is the same no matter how the surface is parametrized. Even
if practical and computational considerations make it necessary to replace the invariant
measure with a more simple function, it is advantageously to know the ‘correct’ function,
and then choose the simple function as an approximation, cf. [9].

The case of curve fairing is in a better shape. Historically thin, elastic wooden
beams were used to design curves. The shape of these physical splines is determined
by minimizing the elastic bending energy. This energy is proportional to

∫
κ2 ds, where

κ is the curvature of the curve. Euler [5] solved this problem of variation, and the re-
sulting curves are known as Euler elastica. In [12] Mehlum introduced nonlinear splines
based on this idea. Later Moreton and Séquin [14] replaced the curvature κ with the cur-
vature variation dκ/ds. Brunnett and Wendt [2] introduced a tension parameter σ and
minimized

∫
(κ2 + σ ) ds. The familiar cubic spline, which minimize

∫ |x′′(t)|2 dt , can
be considered as an approximation to the Euler elastica. Splines in tension, introduced
by Schweikert [20], can be considered as an approximation of elastic splines in tension.
All prevailing fairing schemes for curves tries, in one way or the other, to obtain a nice
curvature plot. There seems to be consensus that fairness measures for curves based on
the curvature or curvature variation give good results. This is perhaps not so surprising,
after all any second order invariant function on a plane curve is a function of the curva-
ture, ψ = ψ(κ), and any third order invariant function is a function of the curvature and
curvature variation, ψ = ψ(κ, dκ/ds).

If we consider space curves we get the torsion τ as a new third order invariant, so
now any third order invariant function can be written as ψ = ψ(κ, dκ/ds, τ ). Typically
some combination of κ2, (κ ′)2, and τ 2 is used, see [6].

One of the reasons for the many different proposed fairness measures for surfaces
is that the variety of invariant functions for surfaces is much larger than for curves. A
second order invariant function on a surface is a symmetric function of the principal
curvatures � = �(κ1, κ2), or more manageable a function of the mean curvature H and
the Gaussian curvature K, � = �(H,K).

If we want a third order method, it is not even clear what the set of possible invariant
functions looks like. At non-umbilical points, a third order invariant function is a suitable
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symmetric function of the principal curvatures κi , and their derivatives in the principal
directions ∂ej κi . But the principal directions are only defined up to a sign, so the same
is true for ∂ej κi . Thus we should only consider functions of the six quadratic terms
(∂ekκi)(∂ekκj ). If we have an orientation then the last four quadratic terms (∂e1κi)(∂e2κj )

are well defined too. We will in this paper only use functions of the first six products.
More seriously, at an umbilical point, where κ1 = κ2, any direction is principal, and the
whole approach breaks down. So we need to find third order equivalents ofH and K. In
this paper we find 6 third order invariant functions �1, . . . ,�6 which are well defined
at each point of the surface, and at a non-umbilical point the products (∂ekκi)(∂ekκj ) can
be expressed in terms of κ1, κ2,�1, . . . ,�6, see theorem 7.

Furthermore, like H and K, the functions �1, . . . ,�6 are rational functions in the
components of the first and second fundamental forms and the covariant derivative of
the latter, so, in contrast to ∂ej κi , they are easy to find.

A word of warning, the eight functions H , K, �1, . . . ,�6 are not a complete
system of invariants in the sense of classical invariant theory, see [7]. It can be shown
that such a complete system consists of 18 basic invariant polynomials and the ideal
of relations (the syzygies) has 65 generators. If invariance under orientation reversing is
requested then there are 10 basic invariants and 6 basic syzygies. The proof of these facts
would take us too far a field and will appear elsewhere. In this paper the abovementioned
six invariants will suffice.

As soon as we have a complete system of invariants, we can rewrite invariant ex-
pressions like (∂e1κ1)

2 + (∂e2κ2)
2 in terms of the complete system. This gives an analyti-

cal expressions for the invariant that can be used in any parametrization of the surface. It
also enables us to perform calculations on the surface using a particular parametrization,
cf. definition 3, and later express the results in an arbitrary parametrization, see the proof
of (18) for an example of this technique.

A designer often judges the fairness of a surface by inspection of isophotes, reflec-
tion lines, etc. In these cases we will say that a surface is fair if all of the curves are
fair. So now assume we have a collection C of curves on the surface M and a good curve
fairness measure ψ . We then use the functional∫

c∈C

∫
c

ψ ds dI =
∫
p∈M

∫
{c∈C|p∈c}

ψ(c, p) dIp d� =
∫
M
� d�, (1)

as a measure for the fairness of the surface. The first equality is obtained by changing
the order of integration; but it should not be taken too literately – that require a precise
definition of both dI and dIp, and this can only be done case by case, see below. The
importance of the equation is that we can read off our surface fairness measure:

�(p) =
∫

{c∈C|p∈c}
ψ(c, p) dIp. (2)

Here we do need a precise definition of dIp. An isophote, say, through a point is de-
termined by the direction to the light source so in order to get all possible isophotes we
need to consider all possible directions, i.e., we have sphere worth of isophotes and in
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this case a natural choice of dIp would be the usual area measure on S2. The case of
planar intersections is similar. Now that we know dIp we could take (1) as a defining
equation for dI .

If the value of the function (2) is small at all points, then all the curves we are
considering are fair with respect to the chosen curve fairness measure, or at least very
few of them are unfair, and this is exactly the goal.

As an example of this general principle we will in this paper derive surface fair-
ness measures suitable for the design of ship hulls. If one considers the hull of modern
commercial vessel, then 90% of the hull is quite simple. The midship section is more or
less a simple cylinder; but the bulbous bow and the stern with the propeller bossing has a
very complex geometry and the transition from the simple cylindrical shape to the com-
plex double curved shapes at the bow and stern gives the naval architect many problems.
Traditionally the fairness of a ship hull is judged by looking at plane intersections. So
we let the class of curves be all plane intersections and as the curve fairness measures we
use either the square of the curvature or the square of the curvature variation. Using the
square of the curvature leads to a second order measure and the square of the curvature
variation leads to a third order measure, see definition 13. They turn out to be very sim-
ilar to the ones defined by Mehlum and Tarrou in [13]. In fact, the results of [13] can be
considered as an other application of our main principle. The class of curves just has to
be changed to the set of geodesics. In the same spirit, the fairness functional considered
by Moreton and Séquin in [14] is obtained by letting the class of curves consist of all
lines of curvature.

A somewhat different approach is the one by Rando and Roulier. In [18] they se-
cure invariance by considering the area of some derived surfaces. In the end they too
obtain third order functions on the surface. During the analysis they claim that it is pos-
sible to “refine” a parametrization by lines of curvature such that the parameter becomes
arc-length on the lines of curvature. This is obviously wrong, it would imply that the
surface is isometric to the plane and thus is developable. The result of the analysis is
still correct though. The “impossible parametrization” is only needed to second order at
a given point, and this can be achieved.

Often a naval architect not only looks at a single plane intersection, but intersects
the ship hull with a family of parallel planes, see figure 2. More precisely, the inter-
section curves are projected onto one of the parallel planes, and the designer judges the
fairness of the hull by looking at this family of plane curves. Such a family of curves
can be generated by the flow of a vector field v orthogonal to the intersection curves. If
|v| is constant, then the curves are parallel and this we will consider fair. Consequently,
we use (d|v|/ds)2 and (d2|v|/ds2)2 as fairness measures on the intersection curves, see
definition 14.

At this point one might object that a naval architect normally looks at axis-parallel
intersections so it is a mistake to integrate over all possible intersections. But from time
to time other intersections are considered and if asked a naval architect wants all plane
intersections to be fair.
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The scheme proposed by Brunet et al. [1] is somewhat in the same spirit as ours.
Their main idea is to consider a finite number of planar intersections and apply curve
fairing to those curves taking the relative position of neighbouring curves into account.
In the next step they change the surface, using a least square fit, such that planar inter-
sections in the surface approximate the previous faired curves. One might say that they
directly use the left hand side of (1) as the definition of surface fairness, except that they
don’t work directly on the surface; but via the intersection curves.

In section 2 we define the 6 third order invariants, and in section 3 we study
the geometry of a plane intersection. These two sections are rather technical and may
be skipped at a first reading. We assume knowledge of tensor notation and the clas-
sical differential geometry of curves and surfaces, and we will just write enough to
fix the notation. Otherwise we refer the reader to the vast literature on the subject,
e.g., [3,8,11,21]. In the book [17] by Porteous there is thorough discussion of various
third order structures like ridges and the classification of umbilical points. The machin-
ery from differential geometry makes it relatively simple to determine the abovemen-
tioned fairness measures, which is done in section 4. A preliminary test of the fairness
measures is presented in section 5.

2. 3rd order invariants

Consider a surface M with a regular parametrization x(u, v). It will be useful also
to use the notation u1 = u and u2 = v. The metric on the surface is a symmetric covari-
ant 2-tensor with coefficients equal to the components of the first fundamental form:

g11 = E = xu · xu, g12 = g21 = F = xu · xv, g22 = G = xv · xv, (3)

i.e., gij = xui · xuj . We will use the Einstein summation convention, i.e., if an index
appears once as a subscript and once as superscript, then it is tacitly understood that we
sum over it. So if v and w are tangent vectors with coefficients vi , respectively wj , then
we can write v = vixui = ∑2

i=1 v
ixui and v · w = gij v

iwj = ∑2
i,j=1 gij v

iwj . The
reciprocal of the metric tensor is a contravariant 2-tensor with coefficients gij , which is
defined by giαgαj = δij , where δij is the Kronecker delta symbol, which is 1 if i = j and
zero otherwise. It is clear that as matrices we have [gij ] = [gij ]−1, and hence

g11 = G

EG− F 2
, g12 = g21 = −F

EG− F 2
, g22 = E

EG− F 2
.

Let B denote the symmetric covariant 2-tensor with coefficients equal to the com-
ponents of the second fundamental form:

b11 =L = xuu · N = −xu · Nu,

b12 = b21 = M = xuv · N = −xu · Nv = −xv · Nu,

b22 =N = xvv · N = −xv · Nv,

i.e., bij = xuiuj · N = −xui · Nuj . The first and second fundamental form can now
be written as I(v) = v · v = gij v

ivj and II(v) = B(v, v) = bij v
ivj . The normal
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N = (xu × xv)/
√
EG− F 2 can be considered as a map M → S2, the so-called Gauss

map. The tangent planes TpM and TN(p)S
2 are parallel planes in R

3, so the differential of
the Gauss map is a linear map of TpM to itself. The bilinear form B can now be written
as B(v,w) = −dN(v) · w. The mean and the Gaussian curvature are in this notation
given by H = 1

2 tr (−dN) and K = det(−dN). The linear map −dN is a 2-tensor of type
(1,1) and as such it has coefficients given by bij = giαbαj . We say that bij is obtained
from bij by raising an index. We can go one step further and raise the other index too:

bij = gjβbiβ = giαgjβbαβ .

The first and second fundamental forms completely determine the surface, so any
invariant must be a function of these two quantities alone. E.g., the two basic second
order invariants H and K are rational expressions in the components of the first and
second fundamental form. In order to get higher order invariants we need to differentiate,
and as we want invariant expressions we have to use covariant differentiation. For this
we need the Christoffel symbols of the first and second kind, which are defined by

)ijk = xuiuj · xuk , )kij = gkα)ijα.

The covariant derivative of the first fundamental form vanishes, so any third order in-
variant has to be constructed algebraically from the covariant differential of the second
fundamental form, together with the first and second fundamental form.

Lemma 1. The covariant differential ∇B is a symmetric covariant 3-tensor with coeffi-
cients bij,k given by:

b11,1 =P = Lu + 2xuu · Nu = xuuu · N + 3xuu · Nu, (4a)

b11,2 =Q = Lv + 2xuv · Nu = xuuv · N + xuu · Nv + 2xuv · Nu (4b)

= b12,1 = b21,1 = Mu + xuu · Nv + xuv · Nu, (4c)

b22,1 = S = Nu + 2xuv · Nv = xuvv · N + xvv · Nu + 2xuv · Nv (4d)

= b12,2 = b21,2 = Mv + xvv · Nu + xuv · Nv, (4e)

b22,2 = T = Nv + 2xvv · Nv = xvvv · N + 3xvv · Nv. (4f)

Proof. This is essentially the Codazzi equations and holds in large generality, see [4,
chapter 6, remark 3.5]. In our simple case it is a straightforward calculation:

bij,k = ∂ukbij − )αikbαj − )αjkbiα = ∂ukbij − gαβ)ikβbαj − gαβ)jkβbiα

= ∂uk (xuiuj · N)− xuiuk · xuβ b
β

j − xuj uk · xuβ b
β

i

= xuiuj uk · N + xuiuj · Nuk + xuiuk · Nuj + xuj uk · Nui .

The last expression is clearly symmetric in i, j, k and (4) follows. �

Remark 2. The symbols P , Q, S, T were introduced in [13].
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We get invariant functions by contracting the tensor product (∇B)⊗ (∇B). As ∇B
is symmetric there are only two different contractions:

�1 = giαgjβgkγ bij,kbαβ,γ , (5)

�2 = gij gαβgkγ bij,kbαβ,γ . (6)

These two invariants are actually the only third order invariants which we later will use,
but in order to have a complete set of invariants we need more functions. We will get
those by contracting the tensor products B ⊗ (∇B) ⊗ (∇B), B ⊗ B ⊗ (∇B) ⊗ (∇B),
and B ⊗ B ⊗ B ⊗ (∇B) ⊗ (∇B). That corresponds to replacing a number of the gij ’s
by bij ’s in (5) and (6):

�3 = giαgjβbkγ bij,kbαβ,γ = giαgjβgklgδγ blδbij,kbαβ,γ , (7)

�4 = gij gαβbkγ bij,kbαβ,γ = gij gαβgklgδγ blδbij,kbαβ,γ , (8)

�5 = biαbjβgkγ bij,kbαβ,γ = gilgαδgjmgβζgkγ blδbmζ bij,kbαβ,γ , (9)

�6 = biαbjβbkγ bij,kbαβ,γ = gilgαδgjmgβζ gkngγηblδbmζ bnηbij,kbαβ,γ . (10)

The above �i’s can be calculated directly in any parametrization and the result is inde-
pendent of the parametrization.

2.1. Principal coordinates

The expressions for curvature and curvature variation of a curve is very simple in
the arc-length parametrization. If we try to find a similar parametrization of a surface,
then we discover that it is impossible, unless the surface is developable. It can be done
pointwise to second order and we now define special coordinates on a surface which
makes the expressions for the invariants as simple as possible. The exponential map
expP :TpM → M is defined by demanding that γ (t) = expp(tv) is a geodesic with
γ (0) = p and γ ′(0) = v, cf. [3, p. 284].

Definition 3. Let x(u, v) = expp(ue1 +ve2), where e1, e2 is an orthonormal basis in the
principal directions. Then (u, v) are called principal coordinates on M at p.

At an umbilical point any direction is principal, so here the only condition on e1 and
e2 is the orthonormality. The convenience of these coordinates is due to the following
results.

Lemma 4. If (u, v) are principal coordinates on a surface M, then the first and second
fundamental form can be expanded as[

E F

F G

]
=

[
1 0
0 1

]
− 1

3
K(p)

[
v2 −uv

−uv u2

]
+ higher order terms, (11)[

L M

M N

]
=

[
κ1 0
0 κ2

]
+ u

[
P Q

Q S

]
+ v

[
Q S

S T

]
+ higher order terms, (12)
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where K(p) is the Gaussian curvature at p, and κ1, κ2, P , Q, S, and T are evaluated
at p.

Proof. If we put (u, v) = (r cos θ, r sin θ), then we obtain geodesic polar coordinates
on the surface, see [8, pp. 184–187]. Equation (11) now follows from the corresponding
expansion of the first fundamental form in geodesic polar coordinates. We now know
that the derivatives of the components of the first fundamental form vanishes at p. Then
the Christoffel symbols vanish too, and the second order derivatives xuiuj are orthogonal
to the tangent plane. From the equations (4) we now have P = Lu, Q = Lv = Mu,
S = Nu = Mv, and T = Nv, and as e1 and e2 are in the principal directions (12)
follows. �

Lemma 5. In principal coordinates the third order invariants are, at the point of origo,
given by

�1 =P 2 + 3Q2 + 3S2 + T 2, (13a)

�2 = (P + S)2 + (Q+ T )2, (13b)

�3 = κ1
(
P 2 + 2Q2 + S2) + κ2

(
Q2 + 2S2 + T 2), (13c)

�4 = κ1(P + S)2 + κ2(Q+ T )2, (13d)

�5 = κ2
1

(
P 2 +Q2

) + 2κ1κ2
(
Q2 + S2

) + κ2
2

(
S2 + T 2

)
, (13e)

�6 = κ3
1P

2 + 3κ2
1κ2Q

2 + 3κ1κ
2
2S

2 + κ3
2T

2. (13f)

Proof. We only have to notice that, at the point p, we have that gii = 1, bii = κi , and
gij = bij = 0 if i �= j , hence using (4) we obtain

�1 = giαgjβgkγ bij,kbαβ,γ =
2∑

i,j,k=1

(bij,k)
2 = P 2 + 3Q2 + 3S2 + T 2,

and similar for the other five invariants. �

Lemma 6. If we use principal coordinates at a non-umbilical point p and e1 and e2 are
unit vectors in the principal directions, then

P = ∂e1κ1, Q = ∂e2κ1, S = ∂e1κ2, T = ∂e2κ2.

Proof. If we differentiate the equations

LN −M2 = K
(
EG− F 2) and GL− 2FM + EN = 2H

(
EG− F 2),

with respect to ui , and use (11) and (12), then we obtain the equations

κ2Lui + κ1Nui = Kui and Lui +Nui = 2Hui . (14)
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If the point p is a non-umbilical point, i.e., κ1 �= κ2, then κ1 and κ2 are smooth functions
in a neighbourhood of p. Furthermore, Kui = κ2κ1ui + κ1κ2ui , 2Hui = κ1ui + κ2ui , and
we see that the solution to (14) is Lui = κ1ui and Nui = κ2ui . �

At an umbilical point were κ1 = κ2 only �1 and�2 are distinct, so we cannot have
a complete system of invariants. But at a non-umbilical point the invariants H , K, and
�1, . . . ,�6 forms a complete system in the following sense:

Theorem 7. Let p be a non-umbilical point on a surface, then the invariants H , K, and
�1, . . . ,�6 uniquely determine the principal curvatures and the products (∂ekκi)(∂ekκj )

of their derivatives.

Proof. First we note that the mean curvature H and the Gaussian curvature K deter-
mine the principal curvatures κ1 and κ2. By lemma 6 equations (13a), (13c), (13e),
and (13f) are a set of linear equations in (∂ej κi)

2. It is easily to be seen that the determi-
nant of the system is (κ1 − κ2)

6 and that the solution is:

(∂e1κ1)
2 = P 2 = −κ3

2�1 + 3κ2
2�3 − 3κ2�5 +�6

(κ1 − κ2)3
, (15a)

(∂e2κ1)
2 = Q2 = κ1κ

2
2�1 − (2κ1κ2 + κ2

2 )�3 + (κ1 + 2κ2)�5 −�6

(κ1 − κ2)3
, (15b)

(∂e1κ2)
2 = S2 = −κ2

1κ2�1 + (κ2
1 + 2κ1κ2)�3 − (2κ1 + κ2)�5 +�6

(κ1 − κ2)3
, (15c)

(∂e2κ2)
2 = T 2 = κ3

1�1 − 3κ2
1�3 + 3κ1�5 −�6

(κ1 − κ2)3
. (15d)

From (13b) and (13d) we have

(∂e1κ1)
2 + 2(∂e1κ1)(∂e1κ2)+ (∂e1κ2)

2 = (P + S)2 = �4 − κ2�2

κ1 − κ2
, (16a)

(∂e2κ1)
2 + 2(∂e2κ1)(∂e2κ2)+ (∂e2κ2)

2 = (Q+ T )2 = �4 − κ1�2

κ2 − κ1
. (16b)

As (∂ej κi)
2 is given by (15a)–(15d) we immediately see that (∂e1κ1)(∂e1κ2) and

(∂e2κ1)(∂e2κ2) are determined by �1, . . . ,�6. �

Remark 8. The expressions above become singular at umbilical points where κ1 = κ2.
It is not because the invariants �1, . . . ,�6 become singular, but because they become
linearly dependent.

Remark 9. At a non-umbilical point any third order invariant function on a surface can
be written

� = �(H,K,�1, . . . ,�6),
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but the six third order invariants �1, . . . ,�6 are not independent, by (16a) and (16b)
they satisfy two quadratic equations.

To illustrate how any invariant can be expressed in terms of the �i’s we have taken
the third order invariant fairness measures investigated in [16], and have rewritten them
as follows:

(gradH)2 = 1

4
�2, (17)

(gradK)2 = (
4H 2 −K)

�1 +K�2 − 4H�3 +�5, (18)(
grad

(|κ1| + |κ2|
))2 =�2 + |K| −K

|K|
(
�1 −�2 + 1

2

K�1 − 2H�3 +�5

H 2 −K
)
, (19)

(
grad

(
κ2

1 + κ2
2

))2 = 4
(
�5 −K(�1 −�2)

)
, (20)

(∂e1κ1)
2 + (∂e2κ2)

2 =�1 + 3

4

K�1 − 2H�3 +�5

H 2 −K , (21)

1

π

∫ π

0

(
dκn

ds

)2

dφ = 2�1 + 3�2

16
. (22)

Proof of (18). If we use principal coordinates then (11) and (12) imply that we have
the following expansion of the Gaussian curvature

K = LN −M2

EG− F 2
= (κ1 + uP + vQ)(κ2 + uS + vT )− (uQ+ vS)2 + · · · .

For (u, v) = (0, 0) we get

(gradK)2 = (κ2P + κ1S)
2 + (κ2Q+ κ1T )

2.

If we expand this expression and substitute (15a)–(16b) we obtain

(gradK)2 = (κ1 − κ2)
2�1 + κ1κ2�2 − 2(κ1 + κ2)�3 +�5,

and this is exactly (18). �

The other cases are similar.

3. The geometry of a plane intersection

We are given a surface M which we intersect with a plane α. We parametrize the
intersection curve by arc length s �→ r(s) = x(u(s), v(s)). We denote the tangent vector
of the curve by t, and the binormal of the curve by b, it is of course also a normal to the
plane α. We put n = b × t which gives us the Frenet frame {t,n,b}. We put T = t
and U = N × T, where N is the normal to the surface, this gives us the Darboux frame
{T,U,N}. Finally we denote the angle between N and b by θ , and the angle between xu
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Figure 1. Intersecting the surface with a plane.

and t by φ, see figure 1. The transition from the Darboux frame to the Frenet frame is
given by [ t

n
b

]
=


1 0 0

0 cos θ − sin θ
0 sin θ cos θ


[ T

U
N

]
. (23)

The derivative of the Frenet and the Darboux frame is given by the Frenet–Serret
formula, and its generalization

d

ds

[ t
n
b

]
=


 0 κ 0

−κ 0 0
0 0 0




[ t
n
b

]
,

d

ds

[ T
U
N

]
=


 0 κg κn

−κg 0 −τg

−κn τg 0




[ T
U
N

]
, (24)

where κ is the curvature, κn is the normal curvature, κg is the geodesic curvature and τg is
the geodesic torsion, see [8, section 57]. The quantities κ , κn, κg, τg, and θ are invariants
of the curve and the surface and we have the following relations:

κn = κ sin θ, κg = κ cos θ,
dθ

ds
= τg. (25)

The last equality holds because we consider a plane curve which has vanishing torsion,
see [8, section 56]. The normal curvature κn and the geodesic torsion τg depend only on
the direction in the tangent plane, and it is well known that the normal curvature is given
as the quotient between the second and first fundamental form:

κn = L du2 + 2M du dv + N dv2

E du2 + 2F du dv +G dv2
, (26)
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the geodesic torsion is a less known quantity, but there is a similar formula:

τg = −(EM − FL) du2 + (EN −GL) du dv + (FN −GM) dv2

√
EG− F 2(E du2 + 2F du dv +G dv2)

, (27)

see [8, pp. 106, 160]. The angle φ obviously depends on the parametrization, and its
derivative can in general be expressed in terms of the geodesic curvature of the curve
and the two parameter curves. To simplify the calculation we will assume that we have
principal coordinates at a point p on the surface.

Lemma 10. Let r(s) = x(u(s), v(s)) be a curve on the surface parametrized by arc
length. Using principal coordinates, then at the point of origo:(

u′, v′) = (cosφ, sin φ), (28)(
u′′, v′′) = (−κg sinφ, κg cosφ), (29)

dφ

ds
= κg. (30)

Proof. As t = r′ = u′xu+ v′xv is a unit vector, and xu, xv is an orthonormal basis at p,
we immediately have (28). We have

κn = r′′ = (
ui

)′′
xui + (

ui
)′(
uj

)′
xuiuj ,

and as xui ⊥ xuj uk , and xui · xuj = δij at p we find(
ui

)′′ = κn · xui = (κgU + κnN) · xui = κgU · xui .

As U = − sinφ xu1 + cos φ xu2 , and xui · xuj = δij at p we get (29). Finally, we have

r′ · xu = |xu| cosφ = √
E cosφ, and r′ · xv = |xv| sin φ = √

G sinφ.

As Eu = Ev = Gu = Gv = 0 and E = G = 1 at p, we see that

r′′ · xu + r′ · (
u′xuu + v′xuv

) = −φ′ sin φ,

r′′ · xv + r′ · (
u′xuv + v′xvv

) = φ′ cos φ.

As r′ ⊥ xuiuj at p, we have on the one hand that

r′′ · xu = −φ′ sinφ and r′′ · xv = φ′ cos φ,

and on the other hand we have from above that

r′′ · xu = u′′ = −κg sinφ and r′′ · xv = v′′ = κg cosφ,

all in all we obtain (30). �

We are now in a position to find the curvature of the intersection curve and the
derivative with respect to arc length of the curvature:
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Lemma 11. Suppose that we have, at a point p on a surface, principal coordinates
x(u, v) = expp(ue1 + ve2), and intersect the surface with a plane α through p. Let
θ denote the angle between the tangent plane and α, and let φ denote the angle between
e1 and the line of intersection, see figure 1. At the point p we have the following expres-
sions:

κn = κ1 cos2 φ + κ2 sin2 φ, (31)

κ = 1

sin θ

(
κ1 cos2 φ + κ2 sin2 φ

)
, (32)

κg = cot θ
(
κ1 cos2 φ + κ2 sin2 φ

)
, (33)

τg = (κ1 − κ2) cos φ sinφ, (34)
dκn

ds
=P cos3 φ + 3Q cos2 φ sinφ + 3S cosφ sin2 φ + T sin3 φ

+ 2 cot θ
(
κ1 cos2 φ + κ2 sin2 φ

)
(κ2 − κ1) cos φ sinφ, (35)

dκ

ds
= 1

sin θ

(
P cos3 φ + 3Q cos2 φ sinφ + 3S cosφ sin2 φ + T sin3 φ

+ 3 cot θ
(
κ1 cos2 φ + κ2 sin2 φ

)
(κ2 − κ1) cos φ sinφ

)
, (36)

dκg

ds
= cot θ

(
P cos3 φ + 3Q cos2 φ sinφ + 3S cosφ sin2 φ + T sin3 φ

)
+ 1 + 2 cos2 θ

sin2 θ

(
κ1 cos2 φ + κ2 sin2 φ

)
(κ2 − κ1) cosφ sin φ, (37)

dτg

ds
= −Q cos3 φ + (P − 2S) cos2 φ sinφ − (T − 2Q) cos φ sin2 φ + S sin3 φ.

(38)

Proof. Equation (31) follows from (26), and it is simply the well-known Euler’s theo-
rem which can be found in any standard text on differential geometry. As κn = κ sin θ
and κg = κ cos θ , (32) and (33) readily follow. Equation (34) follows from (27), it is
less well known, but it is still a classical result, see [8, p. 161]. As (11) holds at p
differentiation of (26) gives

dκn

ds
=Lu

(
u′)3 + Lv

(
u′)2

v′ + 2Mu

(
u′)2

v′ + 2Mvu
′(v′)2 +Nuu′(v′)2 + Nv

(
v′)3

+ 2Lu′u′′ + 2M
(
u′′v′ + u′v′′) + 2Nv′v′′.

Using (12) yields

dκn

ds
= P

(
u′)3 + 3Q

(
u′)2

v′ + 3Su′(v′)2 + T (
v′)3 + 2κ1u

′u′′ + 2κ2v
′v′′,

and inserting (28), (29), and (33) gives us (35). We have κ = κn sin−1 θ and hence

dκ

ds
= 1

sin θ

dκn

ds
− κn

cos θ

sin2 θ

dθ

ds
= 1

sin θ

(
dκn

ds
− κg τg

)
.
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Using (33)–(35) we obtain (36). Likewise κg = κn cot θ , so

dκg

ds
= cot θ

dκn

ds
− κn

1

sin2 θ

dθ

ds
= cot θ

dκn

ds
− 1

sin2 θ
κnτg,

and using (31), (34), and (35) we obtain (37). Finally, once more using (11) a differen-
tiation of (27) gives

dτg

ds
= −((

Muu
′ +Mvv

′)(u′)2 + (
Nuu

′ +Nvv′ − Luu′ − Lvv′)u′v′

− (
Muu

′ +Mvv
′)(v′)2)

,

= −Q(
u′)3 + (P − 2S)

(
u′)2

v′ − (T − 2Q)u′(v′)2 + S(v′)3
,

and we obtain (38). �

4. Fairness measures for surfaces

In this section we will derive several surface fairness measures based on the previ-
ous analysis of a plane intersection.

4.1. Intersection with one plane

Here we will use the curve fairness measures ψ = κ2 and ψ = (dκ/ds)2, to derive
the surface fairness measure �. In order to determine �(p) we need to integrate ψ(p)
over all intersections with a plane through p. These planes are parametrized by the
angles θ and φ, see figure 1. I.e., we would like to put

�(p) =
∫ π/2

0

∫ 2π

0
ψ(θ, φ) sin θ dφ dθ. (39)

Using (32) and (36) it is easy to perform the φ-integration:

Lemma 12. Let s and κ denote the arc length and the curvature, respectively of the in-
tersection curve between a surface and a plane which forms the angle θ with the tangent
plane at a point p. Then

1

2π

∫ 2π

0
κ2 dφ = 3H 2 −K

2 sin2 θ
, (40)

1

2π

∫ 2π

0

(
dκ

ds

)2

dφ = 2�1 + 3�2

16 sin2 θ
+ 9 cos2 θ(H 2 −K)(5H 2 −K)

8 sin4 θ
. (41)

Observe that for θ = π/2 we have the result of Mehlum and Tarrou [13].
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Proof. Using principal coordinates at the point p and (31), we get

1

2π

∫ 2π

0
κ2

n dφ = 1

2π

∫ 2π

0

(
κ2

1 cos4 φ + 2κ1κ2 cos2 φ sin2 φ + κ2
2 sin4 φ

)
dφ

= 3

8
κ2

1 + 1

4
κ1κ2 + 3

8
κ2

2 = 3

8
(κ1 + κ2)

2 − 1

2
κ1κ2 = 1

2

(
3H 2 −K)

,

and by (32) we have (40). Likewise, using (35) and lemma 5, we get

1

2π

∫ 2π

0

(
dκn

ds

)2

dφ = 1

16

(
5P 2 + 6PS + 9S2 + 5T 2 + 6QT + 9Q2)

+ 9 cot2 θ

128
(κ2 − κ1)

2(5κ2
1 + 6κ1κ2 + 5κ2

2

)
= 1

16
(2�1 + 3�2)+ 9 cot2 θ

8

(
H 2 −K)(

5H 2 −K)
,

which by (36) establishes (41). �

We still need to integrate over θ , and then the denominators sin2 θ and sin4 θ pose
a problem. Geometrically the intersection plane becomes tangential when θ is zero, and
in general the intersection curve becomes singular. Thus it does not make sense to ask
about the fairness of the intersection curve if the intersecting plane is close to tangential.
Hence we introduce a cutoff angle δ and consider only θ ∈ [δ, π/2]. This leads to the
fairing measures

�1(p)=
[∫ π/2

δ

sin θ

2 sin2 θ
dθ

] (
3H 2 −K

)
,

�2(p)=
[∫ π/2

δ

sin θ

16 sin2 θ
dθ

]
(2�1 + 3�2)

+
[ ∫ π/2

δ

9 cos2 θ sin θ

8 sin4 θ
dθ

] (
H 2 −K)(

5H 2 −K)
.

The main point is that the integrals in the brackets above are independent of both the
surface and the point on the surface. Furthermore, a fairness measure is only interesting
when we compare its value at different points or on different surfaces. So multiplying a
fairness measure by some constant does not change anything essential. Hence we arrive
at the following definitions:

Definition 13. The second order invariant fairness measure based on κ2 is given by

�1 = 3H 2 −K. (42)

The third order invariant fairness measure based on (dκ/ds)2 is given by

�2 = α�a
2 + β�b

2 , (43)
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where α, β ∈ R, and

�a
2 = 2�1 + 3�2, (44)

�b
2 = (

H 2 −K)(
5H 2 −K)

. (45)

In (43) a large value of α corresponds to putting emphasis on intersections with
planes almost normal to the surface, while a large value of β puts emphasis on intersec-
tions with planes almost tangential to the surface. One could also introduce a weight
function in θ to cancel the singularity, but it leads to the same result as the cutoff angle.

4.2. Intersection with a family of parallel planes

Besides considering intersection curves by themselves a naval architect often con-
siders plots like the one in figure 2. It is made by intersecting the ship hull with parallel
planes at regular intervals and then plotting the resulting curves. The curves can also be
considered as isolines for the function which measures distance along the normal to the
parallel planes.

We want to quantify how the intersection curves vary from plane to plane. The first
order term of the distance function is the gradient, so if we consider the gradient along
an intersection curve or isoline, then we have the infinitesimal variation of the curve. In
fact, the gradient is a vector field on the surface and the flow of this vector field maps
the intersection curves to each other. The gradient V is orthogonal to the isolines, so we
can write it as V = VU. Recall that if T is the unit tangent vector of the isoline, and N is
the unit normal to the surface, then U = N × T, see figure 1. Let b be the common unit
normal vector to the parallel intersection planes, and consequently the binormal vector
of the intersection curves or isolines. If we measure the distance in the direction of b,
we clearly have that the projection of the gradient on the normal line of the intersection
planes is b, i.e., V · b = 1. As U · b = sin θ , see figure 1, we have V = sin−1 θ and
V = sin−1 θ U.

Figure 2. Station lines for a large modern container vessel. To the left the aft part and to the right the fore
part.
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Figure 3. Intersecting a surface with a family of parallel planes. To the right the projection on one of the
planes, this would be the view of the ship designer.

We now project everything onto one of the intersecting planes, see figure 3. We
obtain hereby a family of plane curves and a vector field v orthogonal to these curves.
Due to the linearity of the projection, the flow of v generates the projections of the
intersection curves. As v is orthogonal to t, it is a multiple of n, and as U · n = cos θ ,
we finally obtain

|v| = cot θ. (46)

If |v| is constant, then the curves are parallel, which we consider fair. So we will use
d|v|/ds and d2|v|/ds2 as measures of fairness. We immediately obtain

d|v|
ds

= − 1

sin2 θ

dθ

ds
= −τg

sin2 θ
= 1

sin2 θ
(κ2 − κ1) cos φ sinφ, (47)

and

d2|v|
ds2

= 1

sin2 θ

(
2 cot θτg

dθ

ds
− dτg

ds

)
= 1

sin2 θ

(
2 cot θτ 2

g − dτg

ds

)
. (48)

Just as in the case of the curve fairing measures, the expressions

ψ =
(

d|v|
ds

)2

and ψ =
(

d2|v|
ds2

)2

are functions along the intersection curves. Hence we can proceed with the integration
exactly as before. As in that case the φ-integration is straightforward, and we obtain

1

2π

∫ 2π

0

(
d|v|
ds

)2

dφ = 1

8 sin4 θ
(κ2 − κ1)

2 = 1

2 sin4 θ

(
H 2 −K)

, (49)
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1

2π

∫ 2π

0

(
d2|v|
ds2

)2

dφ = 1

sin4 θ

(
3 cot2 θ

8
(κ2 − κ1)

4

+ 1

16

(
P 2 − 2PS + 5S2 + 5Q2 − 2QT + T 2))

= 1

sin4 θ

(
3

2
cot2 θ

(
H 2 −K)2 + 1

16
(2�1 −�2)

)
. (50)

The remarks before definition 13 regarding the θ-integration apply here too, so we arrive
at the following definitions:

Definition 14. The second order invariant fairness measure based on (d|v|/ds)2 is given
by

�3 = H 2 −K. (51)

The third order invariant fairness measure based on (d2|v|/ds2)2 is given by

�4 = α�a
4 + β�b

4 , (52)

where α, β ∈ R, and

�a
4 = 2�1 −�2, (53)

�b
4 = (

H 2 −K)2
. (54)

In (52) a large value of α corresponds to putting emphasis on intersections with
planes almost normal to the surface, while a large value of β puts emphasis on intersec-
tions with planes almost tangential to the surface.

5. Testing the fairness measures

At many shipyards the hull is defined by a network of curves, station lines, water
lines, buttocks, and some auxiliary feature lines on the hull. This network of curves is
faired by hand, which is a very time consuming process and requires an experienced
naval architect. A set of B-spline patches are then fitted to (some of) the curves. The
fit is not particular smooth, only continuity is secured; but in practice the joins are close
to G1. The resulting surface forms the basis for the subsequent production.

We have taken such a collection of B-spline patches forming the hull of a large
container vessel, and have colour-coded them according to the fairness measures. It was
our experience that the second order measures were of little help, areas with high values
of the second order measures were not necessarily unfair, but both of the third order
measures did well. Even though the hull was supposedly fair the third order measures
discovered ‘bad spots’ on the surface, and subsequent intersections with planes revealed
that the hull indeed was unfair in these areas.

One such example is depicted in figure 4, it is a piece of the hull (6 m × 8 m),
near the bulbous bow, consisting of four B-spline patches, each with 20 × 20 control
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Figure 4. Before optimization. Below isolines for the fairness measure (at the values 4, 1, 1/4, 1/16, and
1/64) and above six plane intersection curves with their curvature vectors. The point of view is different
in the two images. There are large discontinuities along the boundary between the patches, visible in both

pictures, this is caused by the patches not being joined G2.

points. In this example we have used the third order measure (43) based on d2κ/ds2

with α = 1 and β = 57, corresponding to a cutoff angle of 10◦. There is nothing special
about this value, and we will leave to the designer to determine how close he want to
go to a tangential intersection. Instead of the colour coding we have drawn isolines for
the values 4, 1, 1/4, 1/16, and 1/64. The maximum value (above 4) is attained in the
middle of lower right patch, and as can be seen in figure 4, a plane intersection through
this area has a bad curvature plot.

Encouraged by the third order measures ability to pinpoint the unfair parts of the
hull we have tried to use the same measure for fairing the hull. We have minimized the
integral of the fairness measure over the surface. The optimization is simply a steepest
descent method and the integral is determined by 4 point Gaussian quadrature on each
knot interval. Allowing the control points of the B-spline patches to move up to 10 mm,
(compare with the dimension of the patch) we succeeded in reducing the value of the
fairness measure with a factor of 64, and the curvature of the plane intersections had
accordingly a much nicer behaviour, see figure 5.

We are at this stage only interested in the potential of the method, and it is pre-
mature to have any precise timing of the calculations. E.g., the optimization methods is
chosen for its ease of implementation and not its speed of convergence. We can say that
the time for the colour coding of the four patches is measured in seconds on a SGI-onyx,
and the optimization took approximately 1 hour on the same machine.
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Figure 5. After optimization, only the isolines for the values 1/16 and 1/64 shows up. We have not
addressed the lack ofG2-continuity between the patches so the discontinuities in the curvature plot persists.

These first tests are very promising and the goal is to be able to fair larger parts
of the hull. However, in the present surface representation the hull consist of more than
200 B-spline patches, that gives more than 80,000 control points. So before we start the
fairing we want to simplify the surface description. We will also replace the hand fairing
of the network of curves with an automated fairing. Depending on the size of the surface
representation it might be, that we need some approximation to the fairing measure, e.g.,
the data dependent approximation of Greiner [9].

6. Conclusion

We have described a general principle by which we in a rational way, from a class
of curves and a curve fairness measure, can construct invariant fairness measures for
surfaces.

For the design of ship hulls the principle has been applied to planar intersection
curves, and the curve fairness measures given by the square of the curvature and the
square of the curvature variation as curve fairness measures. This leads to a second and
third order invariant fairness measures for surfaces.

Still with ship design in mind, we have defined a second and a third order fairness
measure for a family of plane curves and used these measures to derive new second and
third order invariants fairness measures for surfaces.
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We have defined six third order invariants by which ours and previous fairing mea-
sures can be expressed.

We have determined the variation in curvature, normal curvature, geodesic curva-
ture, and geodesic torsion of an arbitrary plane intersection.

Tests of the fairness measures shows that they indeed can detect the unfair parts of
a ship hull and that an optimization procedure can fair the hull.
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