
SlAM Revlew 8 1983 Society for Industrial and Applied Mathematics 

Vol. 25. No. 2. April 1983 003&1445/83/2502-0004 $01.25/0 


CLASSROOM NOTES IN APPLIED MATHEMATICS 

EDITEDBY MURRAY S. KLAMKIN 

This section contains brief notes which are essentially self-contained applications of mathematics that 
can be used in the classroom. New applications are preferred, but exemplary applications not well known or 
readily available are accepted. 

Both "modern" and "classical" applications are welcome, especially modern applications to current real 
world problems. 

Notes should be submitted to M. S.  Klamkin, Department of Mathematics, University of Alberta, 
Edmonton, Alberta, Canada T6G 2G 1. 

CATASTROPHE THEORY AND CAUSTICS* 

JENS GRAVESEN'/' 

Abstract. In this paper it is shown by elementary methods that in codimension two and under the 
assumption that light rays are straight lines, a caustic is the catastrophe set for a timefunction. The general case 
is also discussed. 
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1. Introduction. Since its appearance, there has been an intense debate about 
catastrophe theory, not about the mathematical contents of the theory, but about some of 
the applications of the theory in biology, medicine, sociology, etc. In this paper catastro- 
phe theory is applied to the theory of caustics. This is considered to be one of the more 
sound applications of catastrophe theory, and it has not been questioned. It has long been 
known empirically that a caustic has only a finite number of possible shapes. Catastrophe 
theory has confirmed this result and has even shown that the known lists of stable caustics 
is complete. 

In his book Stabiliti structurelle et morphogindse, Rent Thom explains [7, p. 631 
how the elementary catastrophes occur as singularities of propagating wave fronts. Later 
Klaus Jahnich [8], among others, examined this case more closely and gave a complete 
proof of Thom's conjecture. 

In this paper we present an elementary proof of the special case, where the problem 
can be considered as two-dimensional and the light rays as straight lines. In addition the 
general theorem will be made plausible. 

The paper is an extension of notes prepared for a seminar on catastrophe theory 
arranged by the Association of Mathematics Teachers in Denmark, summer, 1979. I wish 
to thank my teacher Professor Vagn Lundsgaard Hansen who planned the course and 
encouraged the present work, and my fellow instructors Martin Philip Bendsae and 
Henrik Pedersen for valuable discussions. 

2. The classification theorem. We start by stating Thom's theorem. A more exten- 
sive introduction to catastrophe theory can be found in Callahan [2], [3], and proofs in 
Zeeman and Trotman [8]. 

Letf: [W" x [W' h R be a smooth function, i.e. of class C". We let x = ( x , ,  . . . ,x,) 
denote an element belonging to [W" and y = ( y , ,  . . . ,y,) denote an element belonging to 
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[W'. Define Mf g [W" x [W' by 

Generically Mf is an r-manifold (r-dimensional surface in UP+')because it is the 
null-space of n equations. Let 

be the map induced by the projection [W" x [W'- [W'. The map xfis called the catastrophe 
map of f .  Let F denote the space of smooth functions on [W"+', with the Whitney 
C"-topology (Two functions are close if the values of the functions as well as the values of 
the derivatives are close, see Zeeman and Trotman [8, p. 3 161 or Callahan [2, p. 2221. 

THEOREM1 (Thom). If r 5 5, there exists an open dense set F ,  g Fcalled the set of 
generic functions. Iff is generic, then: 

(1) 	Mf is an r-manifold. 
(2) 	Any singularity of xfis equivalent (see below) to one of ajinite number of types 

called elementary catastrophes. 
(3) xf is locally stable with respect to smallpertubations off. 

Two maps x:M n [W' and x1:M' N [W' are equivalent if there exists diffeomorphisms 


h:M n M' and k:[W' n [W' such that the following diagram commutes: 

A diffeomorphism can be considered as a curvilinear change of coordinates. The set of 
curvilinear singular points (x, y) E Mf of xf is denoted Af and is given by 

Af = [(X, Y) Mf 1 det [&( ~ 5Y)] = 01. 

The image xf(Af) is called the catastrophe set and is denoted Df. If xf and x,. are 
equivalent and h, k are the associated diffeomorphisms then My = h(Mf), A,. = h(Af) 
and D,. = k(Df), so locally Df and Dy have the same shape. 
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3. The envelope. We next investigate the possible shape of a caustic formed by a 
given bundle of light. In order to solve the problem by elementary methods we make two 
assumptions. Assume the existence of a direction in which the light bundle is translation 
invariant, and that the speed of light is constant. Then the light rays are straight lines. 
Thus we consider a family of lines in R2. 

Let a ,  b  and c be real smooth functions defined on an open interval I G R,  such that 

det + 0 for all x E I. 

For every x r I let L(x) denote the straight line in R2given by the equation 

a(x )u  + b ( x ) v = c ( x )  (where (u ,  v )  are the coordinates in R2) .  

Assume that x E I and x + Ax E I ,  with Ax f 0. We will find a condition that ensures 
that L(x) and L(x + Ax) intersect. By the mean value theorem there exist real numbers [, 
{, v between x and x + Ax such that 

a(x  + Ax) = a ( x )  + af ( [ )Ax ,  

b(x  + Ax) = b ( x )  + b'({)Ax, 

C ( X  + Ax) = C ( X )  + cf(v)Ax.  

If (u ,  v )  is a point on both L(x) and L(x + Ax) we then have 

Since Ax f 0 these equations are equivalent to the equations 

It is well known that the latter pair of equations has a solution if 

det [z:; i0, 

This is fulfilled when Ax is sufficiently small, because det f 0 and a, b, a' and b' are 
continuous. The point of intersection is given by 

If we let Ax -0, then [, { and .II converge to x,  and by continuity, the point of 
intersection between L(x) and L(x + Ax) converges to 
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det 

( u ( x ) ,  = 

al(x)  b'(x) a' ( x )  b' ( x )  

We see that (u (x ) ,  u(x))  is the unique solution to the equations 

a' ( x )  u  + b'(x) v  = cl(x) .  

The curve I n R2:x- (u (x ) ,  v (x ) )  is called the envelope of the family (L(x)),,, of lines. 
We have shown that for sufficiently small Ax, L(x + Ax) will intersect L(x)  near the 
envelope. If the lines, as in our case, represent light rays, this implies that the light is 
concentrated on the envelope, i.e. the envelope is the caustic for the light rays. 

4. Caustics as catastrophe sets, the special case. Besides describing light as rays, we 
can describe light as waves. If the waves are known we get the rays as the normals to the 
wavefronts. Thus the caustic of a wavefront is the envelope for the normals. 

Let V be a wavefront in R2, that is, locally it is nothing but a C"-curve (ii, I ) :  
I N R2:x- ( i i (x) ,  I ( x ) ) .  AS we are only interested in local properties, we assume that all 
of V is given by (6 ,  I ) .  We can now define the timefunction T associated to V. 
T measures the time it takes a light ray to travel from a point belonging to V to a point 
belonging to R2. We have assumed that the speed of light is constant so we can use 
distance as a measure for time. We define 

T:I x R2N R, 

T : ( x ,  u, u )-J(i i(x)- u ) ~+ ( I ( x )- v ) ~ .  

Clearly T is smooth on I x (R2\V). If we let C denote the caustic of the wavefront V we 
have 

THEOREM2. 

dT d2 T  
(x ,U ,  v)  = 0 and -( x ,  u, u )  = 0 

ax2 

Proof. The last equality is simply the definition of DT;see $2. The first equality is 
seen in the following way: 

dT 1 
- = - [(ii- u)k' + ( I  - v ) I f ]  
ax T 

and 

For (u ,  v) E R2\Vwe have that 

dT d 2T 
-( x ,  u, v) = 0 and -( x ,  u, u) = 0
dx ax2 
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is equivalent to 

By rearranging we get 

or equivalently 

The last equations give the envelope for the normals to V, because the normals to the curve 
(5, E):x - (O(x), C(x)) are given by the equation 

or equivalently 

As the caustic of Vis the envelope for the normals to V, the theorem follows. 

5. The general case. Let V be a wavefront in R3. Locally it is a C"-map 9:12N R3: 
x -9(x). (x = (x,, x,) denotes a point belonging to I2= I x I c R2and y = (y,,y,, y,) 
denotes a point belonging to R3.)ASin the preceding paragraphs we are only interested in 
local properties, so we assume that all of Vis parametrized by 9. 

The only assumption made is the existence of a (smooth) timefunction T associated 
to V, i.e. for a point 9 E V and a point y E R we can determine the time it takes light to 
travel from 9 to y. T can be regarded as a smooth function: 12x R3N R. 

Let y E R3.We wish to determine the points 9 E Vemitting light passing through y. 

According to Fermat's principle a light ray travels in such a way that the time taken 
is the least possible. The points f (x)  emitting light hitting y are thus given by the 
equations 

By definition, this means that (x, y) belongs to M,. We conclude, y E R3is hit by a light 
ray from 9(x) if and only if (x, y) E x;'(y). It is clear that the light is concentrated on the 
critical values of x,, so the caustic is the catastrophe set DT. 



-- 
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6. Fermat's principle and the timefunction. W e  will give a brief discussion of the 
timefunction. In order to do this we state Fermat'sprinciple or theprinciple of least time, 
(see [4, Chap. 261). The most common variant is: "Out of all possible paths that it might 
take to get from one point to another, light takes the path which requires the shortest 
time." To give the precise statement we must look a t  the space of all paths between the 
two given points. Then "light takes a path which is a critical point for the timefunction." 
Similarly we have that light emitted by a wavefront takes a path to a given point which is a 
critical point for the timefunction, this time defined on the space of all paths between the 
wavefront and the given point. 

From Fermat's principle we get the well-known facts that in a medium with constant 
speed of light the light rays are straight lines and that light rays are orthogonal to the 
wavefronts. From Fermat's principle we can also deduce the laws of reflection and 
refraction. 

Consider a wavefront V. In the preceding paragraphs we said that V has a 
timefunction if for a point x belonging to V and a point y belonging to R3it is possible to 
determine the time it takes light to travel from x to y. So in order to define a timefunction 
for V there must only exist one path from x to y which is a critical point for the 
timefunction. Notice that this unique path or light ray is not necessarily a light ray 
emitted by the wavefront V. 

We will consider two examples that indicate that catastrophe theory also applies to 
some systems without a timefunction. 

Consider an arrangement with a mirror; see Fig. 4. Clearly it is impossible to define a 
timefunction for this system, because there are two possible light rays from f ( x )  to y so 

Mirror 

FIG.4 


T ( x ,  y )  would be doublevalued. But if we only consider light rays or paths which do not hit 
the mirror, it is possible to define a timefunction. The light rays emitted by the wavefront 
V plus the nearby ones do not hit the mirror, so we can use Fermat's principle and the 
discussion in the preceding paragraph also applies to this case. 
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Consider an arrangement with a lens; see Fig. 5. Again it is impossible to define a 
timefunction, because T(x, y) would be multivalued. In the first example we disregarded 
all but one light ray between every pair of points (x, y) belonging to V x R3.If we do this 
in this example, we would ignore light rays arbitrarily close to the remaining light ray, and 

thus make the use of Fermat's principle impossible. Instead, we observe that we can define 
a timefunction if we only look a t  points y outside the image of V. We conclude that the 
part of the caustic outside the image of V is the catastrophe set for a timefunction. By 
choosing another wavefront V' with image disjoint from the image of V,we see that all of 
the caustic locally is the catastrophe set for a timefunction. 

The two examples above do not contradict Fermat's principle. They simply indicate 
that it is impossible to define a timefunction depending only on the initial points, which is 
required in our application of catastrophe theory. It is of course possible to define the 
timefunction on the set of paths and thus make use of Fermat's principle. 

7. Conclusion. We have shown that if a given bundle of light has a timefunction, 
then the caustic is the catastrophe set of this timefunction. Theorem 1 now gives that a 
stable caustic, locally, only can have a finite number of shapes (stable with respect to 
small pertubations of the timefunction, i.e., small pertubations of both the wavefront and 
the media). We have to be careful, because to a given point on the caustic we shall look 
locally not only on the caustic around the point, but also on the wavefront around the 
points, from which the light rays come. It is possible that caustics from different locations 
on the wavefront appear on the same spot, so we can get a caustic, consisting of several 
elementary catastrophe sets. If we use that stable intersections between surfaces in R3 
only occur as intersections between two or three 2-dimensional surfaces or between a 
1-dimensional and a 2-dimensional surface, we get that around a given point the shape of 
a stable caustic must have one of the basic forms shown in Figs. 6- 13; see Callahan [3] or 
Poston and Stewart [6, Chap. 91. 

We have shown that a stable caustic locally at most can have one of the eight shapes 
mentioned above. In [5] K. Janich shows that all eight shapes can be realized as caustics. 
Some of them appear in photos in M.V. Berry [ I ] ,  which also contains a discussion of the 
unstable caustics. 

FIG.6. Thefold. FIG.7. Thecusp. 
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FIG.8. The swallow tail FIG.9. The hyperbolic umbilic. 

FIG.10. The elliptic umbilic FIG.1 1.  Intersection between two folds. 

FIG. 12. Intersection between three folds. FIG.13. Intersection between a fold and a cusp. 
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