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Preface

These note are written for the coudferential Geometry and Design of Shape
and Motionat Technical University of Denmark. The aim of the course is twofold.
Firstly we describe the basic algorithms for handling Bézier and B-spline curves
and surfaces with their rational variants, (eg. NURBS), which are widely used as
a modelling tool in many scientific and engineering applications.

Secondly we give an introduction to the differential geometry of curves and sur-
faces in the plane and in space.
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Chapter 1

Polynomial Curves

1.1 Introduction

The acronym CAGD stands f@omputer Aided Geometric Desigmd the field

is concerned with specifying and analyzing classes of curves (and surfaces) which
can be used to model free form shapes, e.g. in CAD-systems. For a short historical
introduction, see[8, Chapter 1]

Suppose we are to decide on a class of curves to be used in CAGD. Which re-
quirements would we want such a class to fulfill? An obvious list is the following:

e The curves should be able to produce any shape to any given precision.
¢ It should be easy to evaluate points, derivatives, etc. of the curves.

e The curves should be easy and intuitive to manipulate.

We have already stated that we want the curves to model any shape we like so the
first point is obvious. We want computers to handle the curves and we often want
the process to be interactive which means that all calculations have to be very fast,
hence the second requirement is necessary. Finally if we have an interactive pro-
cess, the designer should not be required to know any mathematics (this should be
handled by the computer) and the program should give the designer some intuitive
“handles” which can be used to manipulate the curves.

If we think a little about the Taylor expansions of a curve we see that we can
always approximate any (suitably differentigf)leurve locally by a polynomial,

1This is actually not required. Due to Weierstrass’ approximation theorem, any continuous
curve defined on a closed interval can be approximated by a polynomial curve, see Hroblem 1.3.6.

1



2 CHAPTER 1. POLYNOMIAL CURVES

so the class of piecewise polynomial curves satisfies the first requirement. It is
likewise easy to evaluate polynomials, so the second requirement is also fulfilled.
In a short while we will see that the last requirement is satisfied as well, and this
is the reason this class of curves is so popular. If a complicated shape is modeled
by a single polynomial curve then the degree of this curve can be very high. In
order to avoid that the curve is divided into small simple segments, and then each
segment can be modeled by a polynomial curve of low degree. The industry
standard is in fact piecewise rational cufffegich offer a bit more flexibility, but

more importantly they give the possibility to represent e.g. circles exactly.

1.2 Polynomial curves

Let us look at the following example of a polynomial curve of degree 3 in the
plane:
r(t) = (3t +6t> — 3t3, 6t — 6t%),  tel0,1], (1.1)

In order to tell a computer about this curve we have to use some numbers which
characterize the curve. The first thing which comes to mind is to give the coeffi-
cients with respect to theower basis{1,t,t2,...}. l.e., we write the curve as

r(t)y=1-(0,0)+1t-(3,6)+1t2-(6,—6) +t3(-3,0), (1.2)

and use the pair®, 0), (3, 6), (6, —6), and(—3, 0) as input to the computer. The
geometric interpretation of these coefficients is the set of the derivatives of the
curve up to order 3 at the parameter value O, see Figur€ 1.1. These derivatives
are obviouslynotgood intuitive handles for a designer. They do provide control in
one end of the curve, but only the first few derivatives give immediately predictible
control of the curve, and it is impossible to guess what happens at the other end.
This is not because there is something wrong with polynomial curves, but because
it is a bad idea to use the power basis to represent polynomial curves. We need
to come up with another basis for the polynomials (of degree 3 in this case). One
other choice could be the so callel@érmite polynomials K (t), k,| = 0, 1 which

are uniquely defined by the following equations:

1 ifk=iandl =j,

. (1.3)
0 otherwise

H' () = 8kidj = {

wherei = 0, 1 denotes the order of the derivatitg,= 0 andt; = 1 are the
endpoints of the curve, arld| = 0, 1. The Hermite polynomials are explicitly

2Called NURBS for onuwniform rational Bsplines
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r'(0) = (3,6

__________
- .
R .

0 = (0,0

~

&r"(0) = (=3,0)

r"(0) = (6, —6)

Figure 1.1: The data defining the curkewhen we use the power basis. The curve is
given byr(t) = >, t“1r®(0),t € [0, 1].

given by
Hoot) = 2t3 — 3t2 + 1, Hypt) =t — 2t% + 1,

Hoit) = —2t3+3t2,  Hut) =t3—t2
So we write the curve(t) as

(1.4)

r(t) = Hoo(t) - r(0) + Hio(t) - r'(0) + Hoa(t) - r (1) + Haa(t) - r'(D)
= (2%-3t2+1)-(0,0) + (13— 2t + 1) - (3,6)
+ (—2t3+ 3t - (6,0) + (t> - t?) - (6, =3). (1.5)

The input to the computer would now be the coordinates with respect to the Her-
mite basis. The geometric interpretation of these coordinates is that they give the
value and the first derivative respectively at the two endpoints of the curve, see
Figure[I.R2. These coordinates are much more intuitive. We know the value and
tangent at both ends so the shape of the curve is more easy to predict. This repre-
sentation is indeed in use in industry, and cubic polynomial curves in the Hermite
representation was introduced by James Ferguson at Boeing, published in 1964
[9], and goes under the narrerguson curve One drawback is that the general-
ization to curves of higher degrees gives less intuitive control over the curve.

Finally we have théernstein representatioof a polynomial curve. As the basis
for the polynomials of degree 3 we use tBernstein polynomialsf degree 3,
which are given by

Bst)=1-13 B3t =3t1-1% Bt)=3t*1-t), B3t =t


http://www.mat.dtu.dk/people/J.Gravesen/cagd/power.html
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rd
r0

r'cl)

Figure 1.2: The data defining the cunvewhen we use the Hermite basis. The curve is
called aFerguson curvend is given by (t) = ZKJ Ha (Or® ), t € [0, 1].

We write the curve (t) as

r(t) = B3(t) - bp + B3(t) - by + B3(t) - b + B3(t) - b3
—(1-1t)3.(0,0)+3t(1—-1)2- (1,2 +3t3%1—1t)- (4,2 +13-(6,0).
(1.6)

The geometric interpretation of tlwentrol pointsor Bézier pointdy, b1, b2, and
bz can be seen in Figuie 1.3. The control points formdbetrol polygorand the

by b,

bo = r(0) bz =r(1)

Figure 1.3: The data defining the cumievhen we use the Bernstein basis. The curve is
called a Bézier curve and is given bgt) = >"p_, Bl (t)b.

curve is in some sense a “smoothened” version of the control polygon. Hence the
control points provide good intuitive control over the curve.

Polynomial curves in the Bernstein representation was introduced by P. Bézier at
Renault in the sixties, and his work was published in 19661[2, 3], and are called
Bézier curvesBézier curves are widely used, e.g., most characters, including the


http://www.mat.dtu.dk/people/J.Gravesen/cagd/ferguson.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bernstein.html
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.

Figure 1.4: The letter ‘B’is described by 8 line segments and 14 cubic Bézier curves. In
the middle we have drawn the outline and marked the endpoints of all line segments and
Bézier curves with massive circles. At the right we have drawn the control polygons for
the Bézier curves and marked the middle control points with open circles.

ones you are reading right now, are described by Bézier curves, see Figure 1.4.
Bézier curves are also a standard tool in many programs for drawing, see Fig-
ure5.

Problems

1.2.1 Show that the formulag{1.1), (1.2]J, (1.5), afd](1.6) give the same curve.

1.2.2 Determine polynomial#ix (1), k = 0,1, 2 andl = 0, 1 of degree at most 5 such
that
1 ifk=iandl =j,

HY () = 8dij =
a () K 0 otherwise.

1.2.3 Supposeps, ..., ¢, are linearly independent functiong; : [a,b] — R. If
P, ..., P, are points then we define a curve by) = Zi”:l P.¢; (t). Show that
the construction is affine invarighif and only if Y ; ¢ (t) = 1.

Exercises

1.2.1 Write a program that draws a polynomial curve of degree at most 3 given in:

(&) The power basis.
(b) The Hermite basis.
(c) The Bernstein basis.

3i.e., applying an affine transformation to a Bézier curve is the same as applying the transfor-
mation to the control points.
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R e )

e

Figure 1.5: Control of a curve in a typical program for drawing. The segments between
the solid circles are cubic Bézier curves and the two remaining control points are the open
circles. By (I:Zb) the lines are the tangents to the curves at the endpoints. As can be
seen, the program ensures that the three control points round an endpoint is on a straight
line. Hereby it is ensured that the two consecutive curves have a common tangent at the
common endpoint.

1.2.2 Write a program that draws the Hermite polynomials of degree 3[cf. (1.4) and of
degree 5, cf. Problefn I.2.2.

1.3 Beézier curves in the Bernstein representation
Definition 1.1. The Bernstein polynomialsf degreen are given by
Bga)::(E)ﬂ%l-U”—K k=0,...,n. (1.7)

where

n n!
=" k=o,.. d 0=1
(0 n—K)'K’ SRR

are the binomial coefficients, see Figlrg 1.6.

When the Bernstein polynomials are known, we can define a Bézier curve:


http://www.mat.dtu.dk/people/J.Gravesen/cagd/draw.html
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Definition 1.2. A Bézier curveof degreen with control pointshy, ..., b, is a
curve of the form

n
rt)=>» Bi(bx, tel0,1].
k=0

In Figure[L.¥ we have plotted Bézier curves of various degrees.

The properties of a Bézier curve can of course be derived from the properties of
the Bernstein polynomials. It is not hard to show that:

1 ifk=0
Bl'(0) = ’ 1.8
«(©) {O otherwise (1.8)

1 ifk=n
Bl'(1) = ’ 1.9
(D {0 otherwise (1.9)
BL(t) < By <§) , tel0, 1], (2.10)

k k
n

> Bl =1, (1.12)

see Figurg 116. We leave the proof of these properties, and others, as Prob-
lem [L.31FL3]6. In the next section we will prove the corresponding properties
for Bézier curves without the use of Bernstein polynomials. But given this infor-
mation about Bernstein polynomials, it is not hard to see that a Bézier curve has
the following properties:

e The curve interpolates between the first and the last control point.

e The curve is contained in the convex hull of the control points, see Fig-
ure[TTb.

e At the parameter valuﬁ the control poinby has the highest weight. That
is the Bézier curve “tries to follow” the control polygon.

e The construction igffine invarianti.e.., Applying an affine transformation
to a Bézier curve is the same as applying the transformation to the control
points.

Now we could go on and investigate the Bernstein polynomials in greater details
and thus obtain information about Bézier curves. We mdlt do this, but instead
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Figure 1.6: The Bernstein polynomials of degree 2, 3, 4, and 5.

give a new definition of a Bézier curve which are more geometric and in my

opinion makes the analysis easier. We will in particular prove that Bézier curves
have the properties listed above.

Problems

1.3.1 Prove [I.B),[(T19),[(T10)[(T111), arid{(1.12).

1.3.2 Prove the recurrence relation for the Bernstein polynomials:
B"(t) = (1—t)B" *(t) +tB"}'(t), i=0,...,n. (1.13)

1.3.3 Show that the derivative of the Bernstein polynomials is given by

d
aBi“(t) =n(B"'(t) — B (). (1.14)

1.3.4 Prove the identities

n+1

n _ n+1 n —
/0 Bi'(t) dt = ] > B D), /o B"(t) dt FYET (1.15)

=i+l
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Figure 1.7: Bézier curves. In the first row the curves have degree 2, 3, and 3, in row
number two all three curves have degree 3, in row number three the curves have degree 5,
5, and 7, and in the last row all three curves have degee 9.


http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez2-1.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez3-1.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez3-2.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez3-3.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez3-4.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez3-5.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez5-1.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez5-2.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez7-1.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez9-1.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez9-2.html
http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez9-3.html
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1.3.5 Prove the identities

. T
t=>Y" IﬁBi”(t), =) r']E'n — 1)) B"(t). (1.16)

i=0 i=0

1.3.6 (Weierstrass’ approximation theor@nlLet f : [0, 1] — R be a continuous func-
tion. Show that the sequence of polynomials

B HH =) f ('ﬁ) B(t)
i=0

converges uniformly td in [0, 1] ash — oo.

Exercises

1.3.1 Write a program that use the recurence relation{1.13) to calculates all the Bernstein
polynomials of a given degree.

1.3.2 Write a program that uses Exerc[Se 1.3.1 to plot a Bézier curve.

1.4 Bezier curves and de Casteljau’s algorithm

At Citroen Paul de Casteljau introduced Bézier curves by repeated linear interpo-
lation, The work was done slightly before P. Bézier’s at Renault, but Citroen was
more secretive and Paul de Casteljau work was never published. As we shall see
this approach is not only geometric in nature, but it even offers simple proofs for
the basic properties of Bézier curves. With few exceptions we follow the paper
[T3], the proof of Theorerm L.114 is taken from[32].

1.4.1 The de Casteljau operator

De Casteljau algorithm is described in Fig{irg 1.8. Formally it can be written as

b2(t) = by, k=0,...,n,
- - k=0,...,n—1, (1.17)
bl () = (1 — b L) + thi (), 1. n

The de Casteljau algorithni (Z]17) will be the basis for our development of the
Bézier curve theory. As it stands, the algorithm is a bit hard to manipulate, so
we will look a litle closer on the algorithm and we will introduce operators or
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bo — b} — — bg_l — b =r()
/" / / /
b, — bi — — b?fl
/ / /
/ /
bn,l — br:!-]_l
/"
bn
I Control points Point on the Bézier curve

Figure 1.8: De Casteljau’s algorithm starts with a polygon withl points and im steps

the polygon is reduced to a single point, which is the desired point on the Bézier curve. In
each step the points in the new polygon are obtained by dividing the legs of the previous
polygon in the proportionh : 1—t. In the scheme this corresponds to multiplication of the
point from the horizontal arrow by % t and multiplication of the point from the diagonal
arrow byt. The two weighted points are then added and gives the new point.

matrices by which we can describe the algorithm. As we can see in the scheme
in Figure[L.B there are steps in the algorithm and each step gives one point less.
One step (going from one column to the next) is described by:

b! b | |
o) o} ) D X
. — . ’ . — . 1 , . 2
b 4 bl, | 4 bl |, I ' s
bln— bln—l bn |—-1 bn—I
b b! b! bl — b
“‘0 W H W {bp W { b, — b}, W
|—>(1—t)|:1 |+t|:2 |=|:1 |+t 2: o
o) Lo ) L Lo


http://www.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
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Using matrix notation we can write one step in the algorithm as

b'0+1 11—t ot 0O ... O b!
1 L P
b]_ . 0 1—-t t .. : b1
: : .. .0 :
] Lo 0 0 1o ol [bh]
1 0 0 ... 0 0 1 0 ... O\,
Lo P b!
I RS [ S D I S g
) Lo 0 :
0... 0 10 0.. 0 o0 1|/ |bl
[1 0 0 ... 0“ {—1 1 0 0‘“ {b'o_‘
01 0 " 0 -1 1 - bl
=11 | +1] | I
N 0 T ¢ :
0..0 10 0 ... 0 -1 1) b,_,

We now give names to the two matrices in the middle line:

10 0 ... 0 0O 1 0 ...0
ot o foo sy
A ‘{ oJ
0Oo... 0 10 0O.. 0 01
or equivalently we define two basic operatét@nd L, which act on a finite se-

guence of points producing a sequence with one point less. They simply remove
the last, respectively the first point, from the sequence:

R =

R: (bo, b1, ..., bk) — (bo, ..., bk-1), (1.18)
L: (bo, by, ..., bk) = (b, ..., bk). (1.19)
From R andL we define two new operators. Therward differenceoperator:
A=L-R, (1.20)
and for at € R thede Casteljawperator:
Ct)=(1—-t)R+tL = R+tA. (1.21)

In matrix notation we have

"—1 1 0 ... 0_‘ "1—t t o ... O_‘
o -1 1 °. : 0O 1-t t IR

A= | , Ct) = |

R A e
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Figure 1.9: A Bézier curve is contained in the convex hull of the control points.

As C(t) describes one step in de Casteljau’s algorithm, and themresteps all in
all, we have the following definition:

Definition 1.3. A Bézier curveof degreen with control pointshy, . . ., by is given
by
rit)=Ct)"(bo, b1,....by),  te[01]

The basic operatoR andL are obviously affinely invariant, so ti@&t) is affinely
invariant too. This shows thaffine invarianceof Bézier curves. We observe that

a point on a Bézier curve is found by performing repeated interpolation between
the control points so it is clear that such a point is a convex combination of the
control points, so we immediately have tb@nvex hull propertysee Figuré 1]9.

Theorem 1.4.1f r (t) is a Bézier curve with control points, .. ., b, then
r(t) € convex hull offbo, ..., bn}.
The followingfundamental propertis crucial for our analysis of Bézier curves.
Theorem 1.5. The basic operators “commute”
LR = RL.
We immediately have the following
Corollary 1.6. The operators L, RA, and C(t) “commute”.

We have put quotation marks around the word commute, because the equation in
Theoren{I]5 should really read

Lk-1R« = Re—1lk, (1.22)
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where the subscript indicates the length of the sequences on which the operators
act, i.e. theR’s on the two sides of the equation are different and similarly with
theL’s. On the other hand, it will always be clear what the length of the sequence
is. In order to keep the notation simple we won’t decorate the operators and we
will use the word commute without any further comments.

We better show that the two definitions of a Bézier curve agree:

Theorem 1.7.If r(t) is a Bézier curve with control pointsy, ..., b, given by
Definition[L.3, then

r® =) Bi(bbi

k=0
in accordance with Definitiop1.2.

Proof. The control point with indek can be found by

bk = LXR™*(bo, ..., bn). (1.23)
As RL = LR we can use the binomial formula and obtain

CH"=(tL+ 1 -DR)"
" /n
=Y (k)tk(l — )" KLKRNK,
k=0
Thus
r(t) = C(t)n(b()’ bl’ e bn)

n
=Y (n)tk(l — )" KLKR™ X (bg, by, . .., bn)
k=0 K

n
=Y Bl(Dbx.
k=0

We can immediately generalize{1.23) to the following

Lemma 1.8. The intermediate points in de Casteljau’s algorithm is given by

bl = C' O R™*LK(by, ..., bp).
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1.4.2 Differentiation of a Bézier curve

Theorem 1.9.The derivative of a Bézier curvét) of degree n with control points
bo, ..., by can be written as

1
') = bi () — by,

whereb”_1 and b“_l are the two second last intermediate points in de Casteljau’s
algorlthm Alternatlvely the derivativel =r'(t) is a Bézier curve of degree-n 1
with control points

A(bo,...,bn) = (bl—bo,...,bn—bn_l),

see Figurg T.10.

Proof. The de Casteljau operator (or matrix) is a function,d€(t) = R + tA,
and the derivative is of course

d
—C(t) =A
qic®

Thus, the derivative o (t)" is

C(t) ZC(t)k 1(%0(0) C(t)"K

- Z c*tacmnk (1.24)
k=1

=nCt)" A = nacH)" .

If we apply the two expressions in the last line to the sequdmce. ., b, we
obtain the two descriptions of the derivative. O

At the endpoints we have in particular that

r'(0) = n(b1 — bo),

r'(1) = n(bn — bp-1), (1.29)

I.e., the tangent at an endpoint is the line through the endpoint and the neighboring
control point. It is equally easy to find the higher order derivatives:
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Figure 1.10: To the left: The derivative as the difference of the penultimate points in
de Casteljau’s algorithm. To the right: The derivative as a Bézier curve with control
points equal to the differences of the original control points.

Theorem 1.10.The k'th derivative of a Bézier curvét) of degree n with control
pointsbo, ..., by is given by

rw = (nii!k)'AkC(t)”"‘(bo, ..., bn)
__n n—k A k
= o k)!C(t) A¥(bo, ..., bp).

The first expression says that tieh derivative can be found by performimg- k
steps in de Casteljau’s algorithm and then perfértimes repeated differences.
The second expression says that kite derivative is a Bézier curve of degree
n — k and its control points is found by performikgtimes repeated differences
in the original control polygon.

1.4.3 Linear precision and degree elevation

If the pointsby, ..., b,_1 all lie on the line segmenigb,, then the convex hull
property implies that the image of the curve is the line segment, but the parametriza-
tion needs not be the usual. The curve might oscillate back and forth, see e.g., the
y-coordinate of the first two curves in the last row in Fighre 1.7. The next theo-
rem tells us that the control points should be equally spaced on the line segment
in order to get the usual parametrization. This is calleéar precision see Fig-
urelTTI.

Theorem 1.11.Letbyg. .., b, be the control points for a Bézier curvé). Then

r{)=(1—t)bo+ thy


http://www.mat.dtu.dk/people/J.Gravesen/cagd/diff.html
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by b, b,

b0 bo ; Bo b3 = 64

Figure 1.11: To the left we have linear precision: The control points should be equally
spaced in order to get the usual parametrized line segment.

To the right we have degree elevation: If the degree of the original curviéhen each leg

of the control polygon is divided intn equally sized segments. Besides the first and the
last control point, we pick one of the points on each leg of the polygon. The last point on
the last leg, the penultimate point on the second leg, and so on, until the first point on the
last leg is chosen. This gives+ 1 points all in all, These points are exactly the control
points for the same curve considered as a Bézier curve of one degree more.

if and only if

Proof. Asr(0) = bg we have
—>
rt) = (1—t)bg +tby & r'(t) = bob, forallt.

Asr’(t) is a Bézier curve with control pointsbm, ..., Nbp_1bp, this happens
if and only if

nbk_1bx = bgby, fork=1,...n.
Finally this is obviously equivalent to

n_kbo+§bn, Ke1....n—1

bk =
[

The above is an example of a Bézier curve (in this case of degree 1) which can be
written as a curve of higher degree. The followthegree elevation theoretalls
us how to raise the degree of an arbitrary Bézier curve, see Higuie 1.11.

Theorem 1.12.Lethyg. .., b, be the control points for a Bézier curvet) 91‘ de-
gree n. Considered as a curve of degreeXyr (t) has control point$g. . ., bny1,
where

0 = bo,
kZLbk b1, k=1,...,n

n+1 +n+1


http://www.mat.dtu.dk/people/J.Gravesen/cagd/degraise.html
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Proof. Even though it is possible to prove this theorem using operators|, See [13],
this is the one case where it is easier to use the Bernstein representation. As

(1 _ t)Bn(t) — n—'(l _ t)n+1—iti
: n—i)i!
_ n+1-i (n+4+1! (1_t)n+1—iti
n+1 (n+1-—i)i!
n+1-—i
— 7B_I’H—l .
B,
and
tBn(t) — n—!(l—t)n_iti+1
| (n—i)i!
_ i+l (n+1)! (1— 1)MHD—(+Di+1
N+1((n+1)—(G{+D)G+1)!
i +1
= _I_l In—:_ll(t)
we get

n

rt)=(L-tH+tr)y =Y (A-0HBt) +tB"(1))b

i=0

_ n+1- n+1 i +1 n+1
Z( n+1 )+ +1B'+1(t) b

n+1—i
= Bg+1(t)b0 + Z ﬁ Bin+1(t)bi
i=1

n-1 :
i+1
+Y  —= B b + B (tby
—n+ 1

n . .
_ +1 n+1 n+1-1 . | . +1
= B{ (t)bwési (t)( b ng._l) B3 (tbn

n+1

=> B b
i=0
as claimed. O

1.4.4 Subdivision and the variation diminishing property

For the proof of the next theorem we need the following lemma, which also have
some interest in its own right.
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Lemma 1.13. De Casteljau’s operator @) is invariant under an affine change
of parameter, that is for b, t € R:

C(1-ta+tb)=(1—-t)C(a) +tC(h).
Proof. Using the definition ofC(t) we immediatly get:
C(l-ta+tb)=(1-(1-ta+th))R+ ((1-t)a+tb)L
=(1l—a+ta—th)R+ (a—ta+th)L,
and
1-tC@ +tCh) =1 -t)(1-aR+aL)+t((1-bR+bL)

=(1l-a—-t+taR+(@a—-ta)L +{ —th)R+tbL
=(1l—-a+ta—tbh)R+ (a—ta+tb)L.

The two expressions are equal and we have proven the lemma. O

If r (t) is a Bézier curve of degree then the curve — r((1—t)a+tb),t € [0, 1],

is obviously also a polynomial curve of degneeand it is a reparametrization of
the restriction of to the interval[a, b]. As it is polynomial it can be considered

as a Bézier curve and its control points can be found by de Casteljau’s algorithm:

Theorem 1.14.1f r (t) is a Bézier curve with control points, . .., by, then
t— r((1—ta+th)
is a Bézier curve with control points
bk = C@"*C(b)*(bo, ..., bn), k=0,....n.

Proof. (From [32]). We have to prove that
C((1—ta+th)"(bo, ..., bn) = C®)"(bo, ..., bn)
According to lemma&1.13 and the binomial formula we have

C((1—t)a+tb)"(bg,...,bn) = ((L—t)C(a) +tC(b))"(bo, ..., bn)

- Xn: (?) (1 - tC@)" " (tCb)) (bo. . .., bn)

=> <?)(1 —H"'t'C(@)""'C(b)' (bo. ..., bn)
i=0

n

=3 (?)(1— H"t'bi = C(t)"(Bo, . . ., bn),
i=0

and the proof is complete. O
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Figure 1.12: Subhdivision of a Rézier curve at the narameter \@alddne first part of the

curvet — r(ct) has control point$g, b(l)(c) b2 5(C), andb 5(c), the last part of the curve
t—~ r c+ 1- c)t has control pomtb (c), b? 1(0), bl 5(c), andbs.

%\subdwlsom

Figure 1.13: Drawing a Bézier curve by drawing the subdivided control polygons.

This process is callesubdivision and the two casgs, b] = [0, c] and[a, b] =
[c, 1] are particular simple and are illustrated in Figure]1.12.

Subdivision forms the basis for a powerful method by which we can treat Bézier
curves, se€[12]. Suppose we have some geometric quantity we want to determine,
you may think of just the graph, i.e, the image of the curve, but it could be the
length of the curve, the total curvature of the curve, the total curvature variation of
the curve, etc. Suppose this quantity is easy to determine for the control polygon,
then we can determine the quantity for the curve by the following principle:

e We determine the quantity for the control polygon.
e We estimate the error. If it is small, then we use this quantity.

e Otherwise we subdivide the curve and start over again with each half.

In Figure[TIB this method is illustrated. The two control polygons on the right
gives a much better approximation to the curve than the control polygon on the
left.

This method works in a lot of instances and also imply ¥heation diminish-

ing property see Figurg¢ 1.15. Consider once more the scheme in Higure 1.8 on

pagd 11l. If we keep the points in the top horizontal row and the points in the lower

diagonal row, then each step in de Casteljau’s algorithm increases the number of


http://www.mat.dtu.dk/people/J.Gravesen/cagd/subdiv.html
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points by one. Aftek steps in the algorithm we have the polygon consisting of
the points:

bo. b, .... b, ....bL_,....bL ;. by

After n steps we have the control polygons for both halfs of the curve. With this
interpretation of de Casteljau’s algorithm we have the following lemma:

bt b}

Figure 1.14: De Casteljau’s algorithm can not increase the number of intersections.

Lemma 1.15. A step in de Casteljau’s algorithm can not increase the number of
intersections with a hyperplane.

Proof. Consider Figur¢ 1.14, it is obvious that if the line segmignt, b} inter-

sect a hyperplane, then the hyperplane must also intersect either the line segment
bl._,b} " or the line segmerit,*b}.. I.e., for each intersection in the new polygon
exists a corresponding intersection in the old. |

AN

/ AY

Figure 1.15: The variation diminishing property: the lines intersect the control polygon at
least as many times as they intersect the Bézier curve.

Theorem 1.16.Letr (t) be a Bézier curve with control polygéh Let furthermore
a be a hyperplane, then
#(oe N r) < #(oz N P),
i.e., the number of intersections between the curve and the hyperplane is less than
the number of intersections between the control polygon and the hyperplane.
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Proof. Let us consider a hyperplane which intersects a Bézier curve in a number
of points. We now subdivide the curve in all those points, and hereby obtain a

polygon containing all these points. The hyperplane then intersects this polygon
at least as many times as it intersects the curve. According to Lémma 1.15 it must
intersect the original control polygon at least that many times. O

Problems

1.4.1 Prove [T.ZB).
1.4.2 Prove Lemma&_T18.

Exercises

1.4.1 Write a program that determines a point on a Bézier curve using de Casteljau’s
algorithm.

1.4.2 Write a program that determines a point and the derivatives to &rdera Bézier
curve using de Casteljau’s algorithm.

1.4.3 Write a program that finds the derivative of a Bézier curve.
1.4.4 Write a program that degree elevate a Bézier curve.

1.4.5 Write a program that subdivides a Bézier curve.

1.5 The polar form of a polynomial curve

Recall that, for each quadratic forfa : V — R on a linear spac¥, there is

a unigue symmetric, bilinear formh : V x V — R that satisfies the identity
F(v) = f (v, v). The polar form is to a Bézier curve what the symmetric, bilinear
form is to a quadratic form.

Definition 1.17. The polar formof a Bézier curver(t) = C(t)"(bo, ..., bn) is
the mapf (t1, ..., th) = C(ty) ... C(ta)(bo, - . ., bn).

Remarkl.18 We also say that is thepolarizationof F. Lately the wordblossom
has been used instead of the polar form.

Remarkl.19 As any polynomial curve can be written in the Bernstein represen-
tation, i.e., as a Bézier curve, we can determine a polar form of a polynomial. Itis,
on the other hand, possible to write the polynomial as a Bézier curve of arbitrary
large degree and if the (formal) degree of the Bernstein representatigmhisn

the corresponding polar form is called thegolar form
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Theorem 1.20.The n-polar form {ty, ..., ty) of a polynomial Kt) of degree at
most n satisfies the following properties:

1. f is symmetric.
2. f is n-affine (i.e., f is affine with respect to each variable).

3. f restricted to the diagonal dk" gives F, i.e., {t,...,t) = F(1).
Conversely, if f satisfies 1-3, then f is the polar form of F.

Proof. First assume that is the polar form ofF. As C(tj) andC(tj) commute,
f is symmetric. By Lemmd& 1.13 is n-affine, and we clearly havé (t) =
f(t,...,t). Now assumd satisfies 1-3, by LemnjaI]21 below we can write

f(ty, ..., th) = C(ty)...C(tn)(bo, ..., bn).

By 3 we have
Fiy=f,....,t) =C1®"(bo, ..., bn).

This shows thaby, .. ., b, are the control points foF (t) and hence that is the
polar form of F. O

In the proof above we have used the following lemma, which also has independent
interest.

Lemma 1.21.1f f : R" — R is symmetric and multi affine, i.e., satisfies 1 and 2
in Theoreni”I20 then

f(ty, ..., th) = C(t1)...C(ta)(bo, ..., bn)
whereby = f(0,...,0,1,...,1). (1.26)
IR
n_

Proof. We use induction on. If n = 1, then by the affine invariance we have
fty) = F(1-t)0+1ul) =1 —-t) FO) +t.f(1) =Ct)(f0), (D)

Now assume the lemma holds foran- 1. Using the affine invariance again we
have

f(tl,...,tn+1) = (l_tn—l—l)f(tl,---,tn,o)+tn+1f(t1,---atna1)

Lettingty.1 = 0, 1 respectively shows that the two functions

fO(tlv---,tn): f(tla"'vtnao)
fl(tlgtn): f(tltnl)
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are symmetric and-affine. By the induction hypothesis we can write

fity, ..., th) = C(t) ... C(ta) (b, ..., bl).

Using the symmetry we have

b = f5(0,...,0,1,...,1) = f(0,...,0,1,...,1,0)
N——  —m  — o — e e’ \em— e
n—k k n—k k
= f(0,...,0,1,...,1) = by,
S e e e’
(n+1)—k k
bf = f1(0,...,0,1,...,1) = f(0,...,0,1,...,1,1)
N, —— ot P I e
n—k k n—k k
=f(0,...,0,1,...,1) = b1
M e’ e e’

(n+1—(k+1) k+1

From this we have

f(te, ..., th41) = (L — ty)C(t) ... Ctn) (0], . . ., bY)
+th41C(ty) ... C(t) (b, - ... b)
= (1 —th11)C(t) ... Ctn)(bo, . .., bn)
+ th41C(t) ... C(tn) (b1, . .., bny1)
= (1 - th+1)C(t) ... C(t))R(bo, .. ., bny1)
+ th+1C(t) ... C(tn) L (bo, . .., bny1)
= ((1 - ths DR+ thp1L)C(ty) ... Cta) (bo. . . ., bnta),

as should be proved. O

The properties of Bézier curves that we found in Sedtion 1.4 can now be reformu-
lated in the language of polar forms:

Theorem 1.22.Let f be the polar form of a Bézier curvgty with control points

bo, ..., by. The intermediate points in de Casteljau’s algorithm are give by
bl = f(t,...,t,0,...,0,1,..., ). (1.27)
¢ n—¢—

The derivative is given by
n

I:(t):b—a

(ft,....t,b)— f(t,...,t,@) (1.28)
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and the higher order derivatives by

! K 7k
FR) = (b_a)rk](n_k)YZ(—l)'(i)f(t,...,t,b,...,b,a,...,a)
T i=0

n—k k—i i
(1.29)
The(n + 1)-polar form of F is given by
1
f5(ty, ..., thyr) = ] k; fte, ..., tket, tgds - - ., tn). (1.30)

Proof. AsC(0) = RandC(1) = L, LemmdgZL implies(I.27). For the derivative
we notice thatA = % and hence that

) .
K (="' (kK ki i
A" = i:EO b a)k <i>C(b) C(a)'.

Now Theoreni I]9 implied(T:28) and Theorgém 1L.10 implies1.29). If we define
f* by (I.30) thenf * is symmetric(n+1)-affine and the restriction to the diagonal
is clearlyF. By Theoren{ I.20f * is the(n + 1)-polar form of F. O

Itis well known that a polynomial of degrees determined uniquely by its values

in n 4+ 1 different points. Therefore the polar form is determined by its values

in n + 1 different points on the diagonal. We also know that the polar form is

determined by the+ 1 valuesf (0,...,0,1,...,1),k=0,..., n. We will need
————— ——

k n—k
yet another set afl + 1 points that determine the polar form uniquely.

Theorem 1.23.Let f : R" — R be symmetric and n-affine, and lets - - - < s,
be a sequence of points with s s,4+1. Then f is determined uniquely by the
values f(S+1,...,S+n),1 =0,...,n.

Proof. Letts, ..., ty begiven. If 1<k <nandk <i < n, then
= (S+n—k+1 — WS + (& — S)S+n—k+1
S+n—k+1— S
_ (S4n-k+1—S — & +S)S + (tk — S)S+n—k+1

S+n—k+1— S

tk—§ tk —§
= <1 — —) S+ ————Sinkt1
S+n—k+1— S S+n—k+1— S
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tk —S

. S+4n—k+1—S
and affine invariance yields

If we putozik = , thenty = (1 — ozik)s + oeiks +n—k+1 SO Ssymmetry

f(tl ...,tk, S-i—lv ~--»Si+n—k)

- (tl’ ce ey tk—la (1 - 05|k)3 + 05|k5 +n—k+1, S+l’ sy S+n—k)
= (1_O[|k)f(tl’ --"tk—laSa---’S—Fn—k)
+ O[|k f (tl LIRS tk—lv S—f—l? ey S+n—k+1)~
Whenk runs from 1 ton we start with the value$ (S+1, ..., S+n) and we end
with f(ty, ..., tn), see Figuré¢ 1.16. O

If we putty = t in the recursive algorithm described in the proof above then
we get thede Boor’s algorithmwhich evaluate the polynomial from the values
f(S14i, ..., Shyi) Of the polar form.

However it is not every set af + 1 values that determines aapolar form, cf.
ProblemT512.

Theorem 1.24.Let F, G be two polynomials of degree at most n and leg be
the corresponding n-polar forms. Furthermore le€tR and r € Ng be given.
Then

FOo=6®w), k=o0,....r,

if and only if
fty, ..., t,t,..., ) =gy, ..., t,t,..., 1) forallty,...,t, € R.

Proof. If we put(ty,...,t) = (t,...,t,b,...,b,a,..., a) the ‘if’ part follows

r—k \-—k—i i
immediately from [1.29). For the other implication we first show by induction on
k that

fa,...,.t,a,...,a)=9(,...,t,a,...,a fork=0,...,r.
n— n—

As F(t) = G(t) the equation holds fok = 0. Now assume that the equation
holds up tok — 1 > 0. In (T:29)a andb are arbitrary so if we pub = t then we
have

k k
Z(—l)i(ijf(t,...,t,a,...,a)=Z(—l)i(l_(>g(t,...,t,a,...,a)
| R,_/%,_.z | R e

i=0 n—i i

1=0 n—i i
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f(st,...,sn) f(s2,..., 541
N A - of VN (A-a3)
.ﬂAMN“...“m;aHHv .ﬂﬁwnw“.“.:.ayl_ﬁ_.v

ﬁAm._w...“MN3|Hv ﬁAM.TTH_.“...”MDv
oan_g N (=) o
._" AM;« H“_L ce ey $3|Nv ._" A.H“_L m4+“_. ce ey wN3|”_.v

N (1—ad) @ /N (1-ad) a1 /N (L—-ad) af
f(s3, ..., S-1.11, 1) f(ti, t2, sn-1..., Son—2)
N (1—od) ay /
N L—apD) an 3 N\ L—af an b/
f(sn tr, ..., tho1) f(te, ..., tho1, Shy1)
(A —af an
f(ty,..., th)

Figure 1.16: de Boor’s algorithm for polar forms. The entries of each pair of neighbours become the same if the first entry of the left
and the last entry of the right is deleted. We can determine the value when the deleted entry is «mB@@mﬁg Q_Jm + ks n_ki1
by multiplying on the left with(1 — Q_J_ on the right <<E§__A and adding the results. tf = --- = t, =t ands, <t < s,,1 then we

have the ordinary de Boor’s algorithm.
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By the induction hypothesis we have

2304y<)fap.wuawn,m::22@4y<>ga“n,na““,m
i—0 | — \“if—d e | ——— ——

n—i n—i i

so subtracting these two equations gives us

f,...,t,a,...,a)=g9g(,...,t,a,...,a),
n—k k n—k k

as wanted. Now note that the two functions
frty, ... )= fte, ..., t,t,...,1)
and

gty ... ) =gt ...t ..., 1)

are symmetric and-affine and we have just shown that

f*t,...,t,a,...,a) =0%(,...,t,a,...,a) fork=0,...,r.
S e N’ —— S— —
k r—k k r—k
Theoren{1.23 then shows that = g*. O

Theorem 1.25.Let F(t) and G(t) be two polynomials of degree at most n with
corresponding n-polar forms f, g, and let there be given numbers

SIS <Sr+1="""=H<H+1 = = nr,
wherel <r <n. Then
FWs)=60(s,), k=0,...,n—r,
if and only if
f(s,....S+i)=96,...,S+i), 1=1...,n—r+1
Proof. Lett = s, uy = s fori <n-—r,andu; = s4 fori >n-r,ie., we
have

u_’]_f"'SUn_r <t:"':t<Un_r+1§"‘§u2n_2r.
—_—
r
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If we put

f*(tls---stn—r)= f(tls"-stn—rst5---st)
—_——

and

M, ..., th—r) =0q(ty, ..., th—r, t,..., 1),
g (ta n—r) = g(t1 n—r _/)

r

then Theoren 1.23 shows that = g* if and only if

f*(U1+i, ..., Uien—r) = 9*(U14i, ..., Ujzn—r), foralli=0,....,n—r.
The result is now a consequence of Theofem|1.24. O
Problems

1.5.1 Determine the 3-polar forms for:

(a) The polynomials 1t, t2, t3.
(b) The Hermite polynomials of degree 3, di_{1.4)[]p. 3.
(c) The Bernstein polynomials of degree 3.
1.5.2 Let f (13, to) be a symmetric bi-affine function. Show that the three valigs 0),
f (1, 0), and f (2, 0) are not independent and don’t determiheniquely.
1.5.3 Construct the full triangular scheme in Figlire 1.16 in the cubic case3.

Exercises

1.5.1 Write a program that calculates the polar form of a Bézier curve.

1.6 B-spline curves

If we want a large degree of flexibility of a polynomial then the degree has to
be large. The evaluation becomes more expensive and the control polygon no
longer has to resemble the curve, cf. Figure 1.7. Furthermore, if a control point
is changed, then the whole curve is changed. The solution to these problems
is to use several polynomials defined on different intervals and meeting with a
certain degree of differentiability. This will be secured using Thedrenj 1.25 of the
previous section.
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Definition 1.26. A knot sequencer knot vectorin degreen is a sequence

o< <th<thy1 < <then-1 <theN < -+ < onygN

boundary knots inner knots boundary knots

The first and lash + 1 knots are calleBoundary knotsthe others are calledner
knots If t,_1 < t; = --- = t,1,-1 < t4+, then we say that the knat has
multiplicity v. We very often havéy = - -- = t, andty.n = - - - = tonen, 1€, the
boundary knots have multiplicity + 1.

Definition 1.27. A B-spline curveof degreen with knot sequencé, ..., tonyn
andcontrol pointsor de Boor pointdl; .. ., dy4n iS a piecewise polynomial curve
of degreen defined on the intervdk,, t,..n]. The polynomial segments are de-
fined on intervals of the forrft, , t, 1 1], with t; < t,;1 and the corresponding polar
form f, is given by

frtteongis oo trpic) =drongi, IT=1...,n4+1

cf. Theoren{I.23. l.e., the polar form evaluated omaH 1 sets ofn consecutive
knots in the subsequente ni1, ..., 4, tre1, ..., tran.

Remarkl.28 The outermost knot andton+n do not enter into the definition.
Their presence is formally needed when we introducebtis spline functions
(B-splines), cf. RemarkK 1.B4.

In Figure[L.I we have plotted B-spline curves of various degrees. If a knot has
multiplicity n, sot, = --- = t,1n—1, Say, then one of the control points are of
the form f (t;, ..., t,), i.e. it is a point on the curve, and we say that the knot
hasfull multiplicity. If the multiplicity isn + 1 (or higher) then the curve may be
discontinuous. As an immediate consequence of Theprem 1.25 we have

Theorem 1.29.If an inner knot t has multiplicityv then a B-spline curve of
degree nis CV att,.

Conversely we have

Theorem 1.30.Suppose we have numbegs UL ., Uy, integersvy, ..., vm—1, and
a curve defined ofug, um] such that y_; < uj and

1. The restriction to each subinterv@ilij_1, uj] is polynomial of degree n,
j=1...,m.

2. ltisC"™ Vi attj, j=1,...,m—1
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Figure 1.17: B-spline curves. In the first two rows the degree is 3, in the third row the
degree is 2, and in the last row the degree is 5. In all cases the boundary knots have full
multiplicity and the inner knots are uniform. Compare with Figuré 1.7.
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Then the curve can be written as a B-spline curve with knot sequence

tOv’”thI’H—N:uOs"~vu07uls~~'vuls~~-vum—ls-~~vum—lsumv~~-vum

N

n+1 V1 Vm—1 n+1

where N = 1+ er“:_ll vj. Furthermore, if we put m= n + > =1 vj, for
r =0,..., m,then the control points are given by

di = frt,....tign—1) fori=m_1—n+1,....,m_1+1,

where f is the polar form of the polynomial segment definedun 1, u;] =
[tmr,]_s tmr,1+1]a r= ls e m.

Proof. We only have to show that the control points are well defined. l.e., if
m_1—Nn+1<i<my_1—n+1thenwe need to show that

fr (tl PRI tl +n—1) = fr—H (tl P ti—i—n—l)-

If | = 1 this follows from Theoreni L.25, and induction gives the result for a
general. O

This theorem gives in particular that a B-spline defined on some knot sequence

can be considered as a B-spline on a refined knot sequence and it also tells us
what the new control points are. The process of refining a knot sequence is called

knot insertion Inserting a single knot is described in the following theorem.

Theorem 1.31.Supposels, ..., d,-n are the control points for a B-spline curve
of degree n on the knot sequenge.t., tonn. Let t* € [tr_1,t ], such that

th <t_1 <t <then. Ifweinsert t in the knot sequence then the new control
points are given by

di i=1....,r—n
d"={Q—-a)di1+aodi i=r—n+1...,r
di_1 i=r4+1....,n+N+1
t—tia

whereqj = ———.
tiyn—1—1ti-1

Proof. Lettf, ..., t5,  , be the new knot sequence, i.e.,
[ i=0,...,r—1
ti* = t* | =T

ti.q, i=r+1....,2n+N
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Ifi <r —n,theni +n—1<r —1and

dF = g, ..t ) = 9k, .. tign_1) = d

whereg is the polar form of some polynomial segment. Likewise, i r + 1,
then

df =g(t", ..., ti*+n—l) =9gti_1,...,ti1n2) =di_1
whereg is the polar form of some polynomial segment.
We now letf be the polar form of the polynomial segment defined on the interval
[tr—1,t;] and consider — n < i < r + 1. The new control points are given by
dl* = f(tl* ey ti*+n—1) = f(t| s e e es tr_]_, t*, tr, ey ti+n_2).

If we in the proof of Theoremh T.23 I¢f = t* ands = tj,_, then we get

flt,..., -, t 6, .. tiin2)
= f(S—rqn, ... S0, 11, S, ..., S2n—r-2)
=1- Olil_r+n_1) f(S—ren-1,.-., S+2n—r—2)
+ Olil_r+n_1 f(S—r4n,---» S+2n—r-1)

= (1—(¥|)f(t|_1, ~~-»ti+n—2) +O[| f(tl ~--»ti+n—l)
= (1 —aj)di—1+ i d|

where
_ 1 t1 —S—r4n-1 t —ti_1
O =0 _rypn_1= = —
S—r+2n-1—S—r+n-1  titn-1—1ti—1
See the first two rows in Figufe 1]16 O

Thede Boor’s algorithnis the process of repeated insertion of a knot until we get
full multiplicity and have obtained a point on the curve. We can formulate it as a
theorem:

Theorem 1.32.Letr be a B-spline curve of degree n with kngfst., tohn and
control pointsdq, ..., dnen. Ift € [, tr]and t, < t_1 < t; < then then we
can determine the poimit) on the curve by de Boor’s algorithm. First initialize:

S = tr—nyi i=1...,2n
d2(t) = dr 11 nyi i=0,...,n
Thenfork=1,...,n do:
t_
= |
Sn+1+i-k — S i=k,...,n

d“t) = (1 — of)d* ) + ofd )
Finally, the point on the curve is(t) = dp(t).
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e S 19% %

(1, D)+

L2

13

2,2 e =
2,3 ——
3,3 —%—

do

Figure 1.18: de Boor’s algorithm for a cubic spline. To the left we have the parameter
line. When the interval labelegk, i) is mapped affinely to the edgé—1d*~*, thent is
mapped to the poirdX.

This is the same algorithm that is described in Figure]1.16. We just have to put
ty=---=ty,=tand

k

Tty =f Lo oL S i).

d| () (Sl+k+|, ,SJ, s - ] ss1+1, ,S']-H)
n—k—i i

See Figurd 118 for a geometric picture. As we repeatedly uses convex combi-
nations we have the convex hull property, but & [t,_1, t ], then we only uses
the control pointd, _p, ..., dr+1 SO we havethe strong convex hull property
r([t-—1. tr1) is contained in the convex hull g _, ..., dr 41}, see Figuré 1.19.
The derivative of a B-spline curve can be found by formulas analogous to Theo-

Figure 1.19: A B-spline curve of degreds contained in the union of the convex hull of
any set oin + 1 consecutive knots.

remC®

Theorem 1.33.Letr be a B-spline curve of degree n, with knagis.t., tonyn,
and control pointds, ..., dn+n. The derivative’ is a B-spline curve of degree
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n — 1, with knot sequenca.t.. ., tonn_1, (i.€., with the same inner knots) and
control points
di/ _ n(di — di—l).
tiyn-1—ti-1
Alternatively, if t € [t;, tr+1], where { < t; 41, then run de Boor’s algorithm to
the second last stefi,e., insert t as a knot to multiplicity A 1). The derivative
is then given by

(1.31)

dn—l _ dn—l dn—l _ dn—l
S’H—l — 5 tr+1 — tl’

Proof. It is clear thatr’ is piecewise polynomial of degree— 1 and ifr is C"”

at some inner knot, theriis C"~"~1 at the same knot. Theordm 1.30 now implies
that the derivative’ has the same inner knots as the original curveet f be the
n-polar form forr in the intervallti +n—1, ti1n]. By (L:Z8), p[2K, we see that the
(n — 1)-polar form forr’ in the same interval is given by

—————(fug, ..., Un—1, tign—1) — F(u, ..., Un—1, ti1)).
tin-1—t-1

Using Theoreni .30 again we see that the control points are given by

n
d|/ = —(f (tl [RICE ti+n—27 tl+n—l) - f(tl [ I ti+n—23 tl—l))
tiyn-1—ti—1
n
titn—1— ti—l( ' -1)
This established{1.B1). Ldt be then-polar form forr in the intervallt;, t ;. 1].
The two points in the second last step of de Boor’s algorithm are given by

dp1®) = f(t,....ts) = f(t,....tt)
A7) = f(t, . tsp) = Tt tg)
cf. Figure[I.I6. The expression (1.32) is now a consequen¢e of (1.28). [

We have aclosedB-spline if we have a (bi-infinite) knot sequence with periodic
differences, and a (bi-infinite) periodic control polygon. Alternatively we have a
B-spline defined orty, th4n] with the knot sequenct, .. ., ton+n and control
polygonds, ..., dn+N such that

titn —tipn—1 =t —ti_1, i=1...,2n, (1.33)
di+n = dj, i=1...,n+1, (1.34)
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di = d

Figure 1.20: A closed cubic B-spline with a uniform knot sequencé,(Q., 11).

see Figur¢ T.20.
If we are given a knot sequence and foe 1, ..., N + n apply de Boor’s algo-
rithm to the scalar coefficients (control points)
1, i=j _
dj=3ij= . J ]=1...,N+n,
0 1#]

then we obtainN + n functions N(t) called thebasis-or B-splines see Fig-
ure[IT.Z]L. Sometimes we will writl"(t|t) to emphasize the dependence on the
knot sequenceé = to, ..., tonen. The B-splines can be used to parameterize a
B-spline curve explicitly, cf. Problefmn 1.6.1:

n+N
rt)y= > diN"(t) (1.35)
i=1
As the de Boor algorithm only uses the coefficietht$;—n, ..., dr 1 in order to

evaluate the B-splineli”(t) fort e [t;, t;11], it follows that
Nin(t) =0 ift ¢ [ti—1, titnl.

On the other hand, when we run de Boor’s algorithm forat; , t; +1[, then the
coefficientsx¥ and 1— o are strictly positive so

N"(t) >0 iftelti—1, tisnl.
All'in all we have that thesupportof a B-spline is

supp(N") = [ti—1, tinl. (1.36)
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te, t 4
t1,.... 1 6% tg, ..., t12 1s-.-stg ts, 6, t7 t9, ..., t12

Figure 1.21: Cubic B-splines with different knot sequences

Remarkl.34 If i = 1 then we need the kntg and ifi = N — n then we need

the knottonn. On the other hand, these two knots only have an effect on the
B-splines outside the intervé, thon], SO they have no influence on a B-spline
curve, cf. RemarkKL.28.

If we choose control pointd; = 1 for alli, then the resulting function is constant
1, so the B-splines form artition of unityon the intervalt,, ..., than1:

N't)>0, i=1...,N+n,
N-n (1.37)

dON =1
i=1

The B-splines can be found by a recurrence analogoustqg (1.13),

1 iftelti—1, 4] .
NO(t) = i=1...,2n+N.
i {0 otherwise *
t—t_ i —t 1.38
Nil’ (t) — —IlNir_l(t) + 1+r N-r_l(t), ( )

tipr—1—ti—1 tigr —t 1

i=1....,2n+N-r, r=1,...,n.

Once more the outermost kndtsandta,+n are needed. The derivative of a B-
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spline is

n—-1 n n—-1
& N"t(t) — ———N"H). (1.39)

thi—1 — ti—1 thei —t 11

The higher order derivative can be found by recursive use of this equation:
dK n k—1 n k—1

d
—N"(t) = N t) - —————N"Lt), (1.40
arx thi—1 — g dtk=1 " ® thei — b dtk—1 w1, (140)

or we can extend the recursion (1.38) to include the derivatives to any desired
order:

d« t—ti_q o

“ Nt)y= —— " = N1

ax V= T ek OF
k dk—l

tipr_1 — ti_q dtk=1

tigr —t d
tiyr — t dtk

N ()
dk—l

_ k _
N/ 1(t)——ti+r — TN ®. (1.41)

_I_

To start the recursion we have of course tﬁ%Nio(t) = Oforalli andk > O.

Let f(t) = Zi”ilN di N"(t). Obviously the graph is a B-spline curve and now
we want to find the control points. The ordinates are by definitigrbut what
are the abscissas? The graph is a curve parametriz@j If)yt)) SO we want to
express +— t as a B-spline function. The de Boor control points of this function
are called theGreville abscissaand we only need to find the-polar form and
insertn consecutive knots. This is easy, thgolar form of the polynomiat is
%(tl + - -+ 4+ ty) so the Greville abscissas are

& = %(ti + -+ tigno), (1.42)

and the graph can be parametrized as

t n+N & .
(110) = 2 (&) weo

1

Problems

1.6.1 Prove that[[T-35) is a parametrization of the B-spline curve.
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1.6.2 Prove the recurence formulg{1.38). Hint: Consider the de Boor algorithm for a
telt_1,t[,

dr—n dr—n+1 ce dr—l dr
" v N v
di”ha () . d® (1)
N i
N v
di™ (t)

and prove by induction that

rty= > d'OND),

i=r—n+m

where we now leN"""(t), m = n, ..., 0 be given by[I:38). First show that the
equation is true fom = n. Then assume it's true for some (with 0 < m < n).
Write di in terms ofdim‘l, collect coeficients Otﬂim_l and compare with{T.88).

1.6.3 Let N"(t) be the B-splines of degreeon the bi-infinite uniform knot sequenée
(@) Show thatN"(t) = N{'(t —i) for alli € Z.
(b) Prove theefinemenkquation:

N =D N'@) =) N@ —i+1).

i=1 i=1

1.6.4 Prove [1.39),[(T.40), and@{T141).

Exercises

1.6.1 Implement the knot insertion procedure.

1.6.2 Implement de Boor’s algorithm.

1.6.3 Write a program that splits a B-spline curve into its Bézier segments.
1.6.4 Write a program that finds the derivative of a B-spline curve.

1.6.5 Write a program that calculates all B-splines of degr@a a given knot sequence,
using the recurence relation {1.38).

1.6.6 Write a program that calculates all B-splines of degnesnd their derivatives to
orderk < n on a given knot sequence.






Chapter 2

Differential Geometry of Curves

2.1 Introduction

Intuitively a curve is a one-dimensional object, i.e., an object that can be described
by a single parameter. A curve with a particular choice of parameter is called

a parameterized curvand we have in the previous chapter already seen many

examples of this concept.

In this chapter we will studyocal properties of abstract curves. The main result
is that a plane curve is completely determined by a single real valued function,
the curvature and a space curve is completely determined by two real valued
functions, thecurvatureandtorsion A curve inR" is completely determined by

n — 1 functions, called the curvatures.

2.2 Parameterized Curves

Our study of curves will be restricted to a certain class of curves. First of all we
want to use calculus in the analysis so a curve has to be described by a differential
functiorf]. If the derivative of a map : R — R" vanishes at some point then the
image can have sharp corner or a cusp, see Problemis 2.7.Tand 2.2.2, and we want
to avoid that too. So we will only work witregular curves Our main interest are

plane curves or space curves so in the following you may thifik"aisR? or R,

Definition 2.1. A regular parametrizatiorof classCK, with k > 1, of a curve in
R" is a vector functiom : | — R" defined on an intervdl which satisfies

1Besides the convenience of being able to use calculus there is a more severe reasons for
insisting on differentiable functions. There exists continuous @y — [0, 1]" whose image
is all of [0, 1]" and we do not want to call them curves.

41
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1. r is of classCk.
2. r'(t) #0Qforallt e I.

The variabld is called theparameterand| is called theparameter interval

Example 2.1 The functionr (t) = (t, t? — 1), t € R, is a regular parametrization because
r is of classC™ andr’(t) = (1, 2t) # (0, 0) for all t € R. The image of is the parabola
shown in Figurg 2|1

Example 2.2 The functionr(t) = (r cost, r sint, ht), wherer,h > 0, is a regular
parametrization becauseis of classC® and |r'(t)|? = r2sir’t + r2cogt + h? =
r2+ h2 #£0forallt € R. The image of is theright circular helix shown in Figuré 2]1.

A

o

\V

K

.

Figure 2.1: To the left a parabola to the right a circular helix.

Definition 2.2. An allowable change of parameterf classCK is a real function
f : 11 = | such that

1. f is of classCk.
2. f/(t) £0allt € I.

As | is an interval we have eithel’(t) > 0 for allt € I, in which case we call

f orientation preservingor f’(t) < 0 for allt € I, in which case we calff
orientation reversinglf f : 11 — | is an allowable change of parameter of class
CK then the conditiorf’(t) # 0 implies that the inverse exists and is an allowable
change of parameter of cla€X. If r : | — R" is a regular parameterization

of a curve andf : 11 — | is an allowable change of parameter and both are of
classCX thenry =r o f : I3 — R"is of classC too, and it satisfies] (t) =
r'(f(t)) f'(t) £ 0,i.e., itis a regular parametrization, see Figuré 2.2. We say that
r1 is areparameterizatiorf r, and this defines an equivalence relation on the set
of parametrizations, cf. Problem 2]2.5. We will consider a regular parametrization
of classC* and any reparametrization as defining the samee that is
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%)
rir=rof f \
o

Figure 2.2: Reparametrization of a curve

Definition 2.3. A regular curvein R" is a collection of regular parametrizations
r: 1 — R" of classCK any two of which are reparametrizations of each other.

An oriented regular curvén R" is a collection of regular parametrizations| —
R of classCk any two of which are orientation preserving reparametrizations of
each other.

A regular parametrization: | — R" uniquely determines a curve and all other
parametrizations are related to it by an allowable change of parameter. Thus we
may say “the curve given br(t)...”. However, a property of or a concept associ-
ated with the parametrization: | — R" need not be a property of the underlying
curve. Any property of or concept associated with the curve must be common to
all representations or, as we say, “independent of the parameter”.

A regular curve given by : | — R" is said to besimpleif there are no multiple
points; that is, ift; # to impliesr(t1) # r(t2). This is clearly a property of the
curve, not of the parametrization. Locally, a regular curve is always simple, cf.
Problem2216.

If we think of the curve as the path of a moving patrticle thé&ty) is the velocity
of the particle at timé = to.

Definition 2.4. The velocity vectorof a regular parametrization : | — R"
att = tp is the derivativer'(tg). The velocity vector fields the vector valued
functionr’ : | — R". Thespeedodfr att = tp is the length of the velocity vector
att = to, r’(to)\. Thetangent vectors the unit vectot(tg) = r'(tg)/|r'(to)|, and
thetangent vector fields the vector valued function— t(t).
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Observe that the regularity condition ensures that the instantaneous speed always
is different from zero so we are able to divide py| and definet. When we

have a vector field : (a, b) — R" along a curve then we should think of the
vectorv(t) to be attached to the poioi(t), see Figur¢ 213. If andr; = r o f

Figure 2.3: To the left the velocity vector field and to the right the tangent vector field.

are reparametrizations of each other thé¢) = f'(t)r’'(f(t)) so the velocity
vector depends on the parametrization, but the tangent vectors satigfjes-
fr@) /1 f(O1t(ft)) = £t(f(t)) so the tangent vector is a well defined property
of an oriented curve, but is in general only defined up to a sign.

Definition 2.5. The straight line through a pointt) on a regular curve parallel
to the tangent vector is called thengent lineto the curve at (t).

A more geometric way of defining the tangent

line at a pointxg on a curve is as the limit po- —=
sition of asecanti.e., a straight line through two /%
pointsx; # X2 on the curve whemy, X2 — Xo,

see Figur¢ Z214. Figure 2.4: Asx; and x;

. .. . approachesxy the secant ap-
That the limit position of such a secant indeed Iroaches the tangent line.

the tangent is shown in Problgm 2]2.7.

The tangent to a regular curve given by: | — R" at the pointr(tg) can be
parameterized as

u > r(tg) + ut(tp) or U r(tg) + ur’(tp) (2.1)
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2.2.1 Length of curves

An arc of a curve given by : | — R"is a curve given by the restriction ofto
aclosedinterval[a, b] C |. The points (a) andr (b) are called thend pointsof
the arc.

Definition 2.6. If r : | — R" is a regular parametrization of a curve dadb] €
| then thelengthof the arcr[a,p) IS

b
/ Ir’(t)| dt.

The following proposition shows that the length of an arc is independent of the
parametrization.

Proposition 2.7. Let f : 11 — | be a reparametrization of a curve: | — R",
andletry =ro f. If f([ag, b1]) = [a, b], then

b by
/ Ir'(t)| dt = f Ir (u)| du.
a a1

The proof is left as Problen 2.2.8.

Definition 2.8. If r : | — R" is a regular parametrization of a curve apd |
then thearc lengthmeasured fronty is the function

t
sty = | |r'(z)|dr, tel. (2.2)

If t > to, thens > 0 and is equal to the length of the arc betweép) andr (t).

If t < tp, thens < 0 and is equal to minus the length of the arc betwe#) and

r(t).

If r is of classCK then the velocityr’ is of classCk—1 and as the velocity never
vanishes the spedd'| is of classCk~! too. It now follows that the arc length

s is of classCk and thats'(t) = |r’(t)| > O for allt € |. Hences = s(t) is an
allowable change of parameter and we canam®a parameter on the curve. This,
of course, is an abuse of notati@genotes both the function defined Ipy{2.2) and
a parameter, i.e, a real number. Similarly, we will denote the inverse function of
t — s(t) by s — t(s) sot will also denotes both a function and a parameter. The
reparametrization of — r(t) by arc length, i.e.s — r(t(s)) will be denoted

by the same symbal, the advantage of this abuse of notation is that we now can

write identities like

dr
ds

dr
dt

dt
ds

dr
dt

ds
dt

dr
dt

dr
dt

_ - - —1 (2.3)
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A parametrization by arc length is calledhatural parametrizationor more pre-
cise

Definition 2.9. A parametrizatiom : | — R" is called anatural parametrization
if |r'(s)|=1forallse I.

We now have

Proposition 2.10.1f r : | — R" is a natural parametrization, then
1. The length of the arc betweers;) andr(sp) is |2 — S1].
2. If s* > r*(s*) is another natural parametrization, thens +s*-+constant.
3. Ift is an arbitrary parameter, thefds/dt| = |dr /dt|.

4. The tangent vector is= dr/ds.

Proof. The proof off1 and2 is left as Problemns 212.9 &nd 2}2.10. Now 3 follows
from (23). Finallyt = & /|4 | = & 'which provegls. O

A more geometric definition of arc length is in
terms of approximating polygons. Let an arc be
given by a parametrization(t) with t € [a, b]
and consider a partition
a=t<t1<---<th=Db (2.4)

) . ) Figure 2.5: An approximating
of the interval[a, b]. This determines a sequencgqjygonP and a refinemen®’.

of points inR"
Xo=r(o), Xa=r1), ... Xm=r(tm).

The points form armpproximating polygon Rs shown in Figurg 2.5 The length
of P is clearly

m n
EPY =) 1% —Xi—al = Y _Ir(t) —r(ti_)]
i=1 i=1

If the partition is refined to give a better polygonal approximati?ig see Fig-
ure[2.b then we clearly hav&P’) > ¢(P) so we are lead to consider the quantity

m
0= sup{Z|r(ti) —r(t_y)l |la=to<ti<---<tn=bme N}. (2.5)
i=1

Observe that this makes sense even i§ only continuous, but we may have
£ = o0.
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Definition 2.11. The image of a map : [a, b] — R" is calledrectifiable with
length? if

m
€=Sup{2|r(ti)—l’(ti—1)| a=ty<ty<--- <tm:b,meN} < 00.
i=1

The following theorem shows that the two notions of arc length coincide.

Theorem 2.12.Letr : [a, b] — R" be of class €, then the image is a rectifiable

arc with length
b
z:/ Ir'(t)] dt.
a

Proof. Letr(t) = (xa(t), ..., Xa(t)) and putM = max{|r'(t)| | t € [a, b]}. If
we have a partition{2.4) then

Do) —rtiDl < Y0 X ) = Xj(ti—a)]
i=1

i=1j=1
= D IXGE DG =Dl <Y Y IXGE DIG —tiia)
i=1j=1 i=1j=1
< Xm:i Mt —ti—1) = Xm:nl\/l(ti —ti-1) =nM(b - a),
i=1j=1 i=1

whereti_1 < & j < tj. SoZ is finite and the arc is rectifiable.

Now consider an arbitrary > 0. Asr is of classC! we can find$; > 0 such that

IXi () — X ()] < e/(Bnb—a), j =1.....n,if [t —t'| < 81. Furthermore,

we can finds, > 0 such that for a partition {2.4) with — t,_1 < 52 we have
SRrmrd — S 1 — ti_l)‘ < ¢/3. Now lets = min{s1, 85}, and
choose a partition such that the corresponding approximating polygon has a length
that satisfies G< ¢ — £(P) < ¢/3. If we refine the partition then the inequalities
are still satisfied so we may assume that the partitiortjhag;_1 < 8. For such

a partition we have

b
‘e — / Ir/(t)| dt
a

b
<€ —E(P)|+ ‘K(P)—/ |r’(t)|dt‘
a
m b
+ Z\r(ti)—r(ti—l)\—/ Ir'(t)] dt
i=1 a

m b
+1> —/a I/ (t)] dt

i=1

=<

wlm

Wl m

n
DX (t) = Xj(ti-1)ey

=1
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whereey, .. ., &, is the standard basis IR", by the mean value theorem we get

b
(ti —ti—1) —f r'(t)| dt
a

) G —ti-1)

PRICIHE

i—1|j=1

3+

by adding and subtractiny; |r (ti)[(ti — ti—1), we obtain

IA

wl M

ol

D OxE e | — | Do X(te;
i—1\|iz1 =1

n b
+ > IrI —ti_l)—f v (6] dt
i=1 a

as||pl — 19l| < Ip — gl we have

m

+> Z (4. — X} W)y | (6 —ti-n)| + 5
i=11li=1
53 ;gx<si,->—x’-<ti>\<ti—ti_1)
2 m n
<§+§; n(b_ ) —ti_) =€
ase is arbitrary we see th%nf—fab|r/(t)|dt‘ = 0. O

2.2.2 Contact

An important notion in geometry is the concept of contact between objects. First
we need the distance between points and subsets.

Definition 2.13. Let p be a point inR" and letA be a nonempty subset &".
Thedistancebetweenp andA is

d(p, A) =inf{|p—ql | q € A}.

Normally A will be a nice geometric object like a line, a plane, a circle, etc., but
the definition makes sense for any subseR®f
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Example 2.3 Let L be the line parametrized &~ Xo+tewhereeis a unit vector. Then

dix,L) =+/r-r—(r-e)2, wherer =Xx— Xo. (2.6)

Let C be the circle parametrized &as— Xg + r coste; + r sinte;, whereey, € is an
orthonormal pair of vectors. Then

dx,C) = \/r FHr2-2r/(r-e)2+(r-e)2 wherer = X — Xo. (2.7)

Definition 2.14. Letr : | — R" be a regular parametrization of a curve andAet
be a subset dk". We say that the curve hasntactwith A of orderk atr (tp) if

d(rt), A)
(t — to)

If t = f(u) is a reparametrization witli(ug) = to then we have

—- 0 for t — tg.

d(r(f(uy, A) d(r). A)  (fw) - fup)"

U—u*  (fu)— fup)< U— Uk
d(r ), A) (f(u) - f(Uo))k

- (t—to)k u— Uup

and as(f(u) — f(uo)) / (u—ug) — f’(Up) # O foru — up we see that the
notion of contact of ordek is a property of the curve. It can in general be difficult

to determine the order of contact, but when it comes to contact between curves the
following theorem is helpful

Theorem 2.15.Letr1 andr, be natural parametrizations of two regular curves
of class . Supposex(s) # ri1(s) if s # s, thenr1 has contact of order k with
ro atrq(sp) if and only ifr(ll)(so) = rg)(so) foralll =0,..., k.

Proof. We only prove the ‘if’ part. As the Taylor expansionsrafandr, agree
up to orderk we haver1(s — sp) — ra(s — So) = 0((s — s0)¥) and hence

d(ri(s), r2) B infs, |r1(s) — ra(sy)|

(s—so)f (s — so)X
ri(s) —ra(s)]  o((s —s0)¥)
< — = — —> 0 fors— .
(S—%0) (S—%0)
The ‘only if’ part is considerable more difficult, and we will return to a special
case in Chaptdi 4 O

It can now be shown that the only straight line which has contact of order 1 with
a curve at some point is the tangent line at that point, cf. Proplem P.2.16.



50 CHAPTER 2. DIFFERENTIAL GEOMETRY OF CURVES

Problems
2.2.1 Show, that the vector function

(—e V¥ eV fort <0
r{) =141(0,0) fort =0
eV eV fort>0

is of classC®, and that’(0) = 0.

2.2.2 Show that the vector function
rt) = (%1%, teR

is of classC*, and that’(0) = 0.

|
2.2.3 Prove that a Bézier curve is either constant or piecewise a regular curve.

2.2.4 Prove that a B-spline curve is piecewise a constant or a regular curve.

2.2.5 We say that two vector functions: I; — R",i = 1, 2, of classCk areequivalent
and writer, ~ r5 if there exists an allowable change of paramdterl, — I of
classCK such that, = r; o f. Show that~ is anequivalence relation.e., that

@r~r.
(b) QA ~rp=1rx~1"r1q.
(C) M ~ToAlo~I3=1T1~TI3.
2.2.6 Show that ifr : | — R"is of classC* andr’(t) # Ofor at e | then there exists
ane > 0 such that ;_c 1+ IS injective.

2.2.7 Letr : | — R" be a regular parametrization, andtgt 1. Show that ift;, t; € |
are different and sufficiently close tgthen there is a well definesecantthrough
r(ty) andr(ty). Show that ift; < t, andty, to — tg then the unit vector in the
directionr (t) — r(t;) converges to the tangent vectot).

2.2.8 Prove Proposition 2.7, p-#45.
2.2.9 Provell in Proposition Z.1L0, p.]46.
2.2.10 Prove[? in Proposition Z:110,[p146.

2.2.11 Find the arc length of thieelixin ExamplgZ]2, and determine a natural parametriza-
tion.

2.2.12 Determine a parametrization of the tangent line to the parabola in Example 2.1 at
an arbitrary point.

2.2.13 Determine a parametrization of the tangent line to the helix in Exampgle 2.2 at an
arbitrary point.
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2.2.14 Prove [Z2.B), pL49.

2.2.15 Prove [Z7), p£49.

2.2.16 Prove that if a curve has contact of order 1 with a straight line then the line is the
tangent line.

2.2.17 Let aregular curve be given by a parametrizati¢n defined on the intervah, b],
lets(t) be the arc length function, let=t; < t; < --- < t, = b be a sequence of
parameter values, and pait= s(tj) andv; = s'(tj) = |r'(t;)].

(&) Show that the inverse functidigs) satisfied; = t(s) andt’(s) = wi = 1/v;.
(b) Show that there is a unique B-spline functibn [s, sn] — [a, b] of degree
3 with knot vector
S0, S0> S05 S0s S15 S15 825 25 - -+ 5 Sm—1, Sm—15 Sm»> Sm»> Sm»> Sm
such thatf (s) = tj, and f'(s) = wj.

(c) Determine the control points fof (in this situation we consider a map into
R so a control point is just a real number).

Exercises

2.2.1 Write a program that uses numerical integration to determine the arc length of a
Bézier curve.

2.2.2 Write a program that for a given Bézier curve of degndands

(a) The length¢,, of the control polygon.
(b) The distancé between the end points.
(c) The weighted averag@lc + (n — 1)¢p)/(n + 1).

Compare with the result of Exerci§e Z]2.1 and investigate what happens under re-
peated subdivision.

2.2.3 Write a program that uses numerical integration to determine the arc length of a
B-spline curve.

2.2.4 Write a program that finds the length of a B-spline curve by writing it as a sequence
of Bézier curves and finding the length of each of these.

2.2.5 Write a program that finds @ approximationf to the inverse of the arc-length
function for a Bézier curve by implementing the procedure outlined in Proplemp.2.17.
Experiment with the program and investigate how many krfoteeds in order to
give a good approximation.

2.2.6 Write a program that finds @ approximationf to the inverse of the arc-length
function for a B-spline curve by implementing the procedure outlined in Prob-
lem[Z2Z1)7. Experiment with the program and investigate how many Knoeeds
in order to give a good approximation.
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2.3 Plane Curves

We now specialize to curves in the plane, i.e., we
consider a regular parametrization | — R2.

If t is the tangent vector at some point then the n

normal vectons the vectom such thatt, n) is a

positively oriented orthonormal basis Bf, see

Figure[Z.B. Just like the tangent vector, the Nogig,re 2.6: The tangent vector
mal vector is an invariant concept associated Withyng the normal vecton of a
an oriented curve. It changes sign if the orientgatane curve.

tion is reversed.

Now consider a natural parametrizatisn— r(s), thent = r’ and as the inner
productt -t = 1 is constant we have

dit-t) dt
= =gttt =2t (2.8)

i.e., d/ds andt are orthogonal sotdds is proportional to the normal vector

Definition 2.16. Lets > r(s) be a natural parametrization of clad$ of a plane
curve. Theplane curvatureof the curve at a point(sp) is

. dt
k(sg) =t'(sg) - N(sp) and thecurvature vectois « = = Kn.
If t'(sp) # 0then theradius of curvaturas p(sp) = 1/x(sp), thecenter of cur-

vatureis the pointc(sp) = r(sp) + p(So)n(S0) = r(So) + t'(S0)/|t'(S)|% and the
circle of curvatures the circle with centec(sg) and radiugp (so)|.

If the orientation on a curve is reversed then both the tangent vector and the arc
length changes sign, so the derivatitgds = «n is left unchanged and is thus a
property of the curve. On the other hand¢hanges sign se andp changes sign

too. All in all we have

Proposition 2.17. For a regular plane curve we have th@t|, |p|, k = «n, pn,
and the circle of curvature are invariant concepts associated with the curve. While
t, n, k, and p are concepts associated with an oriented curve and changes sign if
the orientation is reversed. We furthermore haveRhenet-Serret equatiofsr a
plane curve:

dt dn

d_s = KkN, E = —t. (29)

Proof. The only thing left to prove is the Frenet-Serret equations and we leave
that as Problern23.7. O
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As the normal vector is to the left we easily see that if 0 then the curve turns
left, if « < O then the curve turns right, and thatif= 0 at some point and has
different sign on each side of the point then the curve has an inflection point.

Example 2.4 Consider the circle with radius> 0 given by the parametrization
r(t) = (Xo +r cost, yp +r sint).

We easily see that'(t) = (—r sint, r cost), and|r'(t)| = r, so the arc length measured
fromt = Oiss = [;rdr = rt. l.e,,t = s/r and we obtain a natural parametrization
bys r(s/r) = (xo +rcogs/r), Yo+ r sin(s/r)). The tangent vector is= dr /ds =
(—sin(s/r), cogs/r)) and the normal vector is = (— cogs/r), — sin(s/r)) andxkn =
dt/ds = 1/r(— cogs/r), —sin(s/r)) = n/r. From this we see that the curvature is
constant = 1/r, the radius of curvature jg = r and the circle of curvature is the circle
itself.

A more geometric way of defining the circle of Xo
curvature at a poirtg on a curve is as the limit
position of a circle through three distinct points
X1, X2, andxz on the curve agi, X2, X3 — Xo,
see Figur¢ 217, and Problém 2]3.1.

It can also be shown that the circle of curvature is
the only circle that has contact of order 2 with the

curve, cf. Problem 2.3.2 Figure 2.7: IfX1, X2, X3 — Xo

Given a natural parametrization it is a simple matkenC — C,.

ter to determine the curvature. It is in general impossible to determine a natural
parametrization, but the following theorem tells how to calculate the curvature
from an arbitrary regular parametrization.

0

X1 X3

Theorem 2.18.Lett+— r(t) = (x(t), y(t)) be a regular parametrization of class
C2. The curvature is then given by

X'(t) x"(t)
_[ro.ro] Yo y'o
v (X 02+ y 1)2)¥?

Proof. Let s denotes the arc length of the curve. We then have

dr _dsdr _ ds,
dt  dtds dt’

dr dzst+ ds\? dt dzst+ ds\? i
—_— = — — —_— = — — )} knN.
dt2 ~ dt2 dt ) ds  dt2 dt
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Hence

dr d?r
dt’ dt?

8, 85 (),
at - dt2 at ) ©
() () g = [
ot \at) at ) T gt

The curvature is often used to assess the quality of a curve, either in the form of
acurvature plotor aporcupine plot see Figur¢ 218. In a porcupine plot the curve

3
K. |

Figure 2.8: To the left a curvature plot and to the right a porcupine plot of a cubic B-spline
curve. The endpoints of Bézier segments are indicated on both plots.

is plotted along with the vector field-scalex «n’. A designer normally wants a
slowly varying curvature plot without unnecessary undulations, so the curve above
would not be satisfactory. The designer would then change the curve slightly
either by changing the control points manually, or by an automatic procedure, eg.
by minimizing f(d;c/ds)2 ds, under the side condition that the control points are
only allowed to move a certain distance. This process is cé#leshg and the

goal is to obtain dair curve.

As the tangent vector is a unit vector we can write it as (cos¢g, sing) where

¢ is an angle determined up to a multiple of 2see Figurg¢ 2]9. If the tangent
vector field is a continuous vector function— t(u), then it is not hard to see
that it is possible to make a continuous chaice> ¢ (u) of this angle. Such a
choice is unique up to a (constant) multiple of and it has the same degree of
differentiability ast.
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t = (cosg, sing)
¢

o

Figure 2.9: The tangent direction is the anglbetween the tangent and theaxis.

Definition 2.19. Letr : | — R? be a regular parametrization of cla8¥. The
tangent directions a continuous choice @fsuch that(u) = (cosd)(u), sin¢(u)).

We immediately have the following results.

Proposition 2.20. The tangent directiorp is a property of an oriented plane
curve, but if the orientation is reversed then— ¢ + m. If ¢ is the curva-
ture thend¢ /ds = «. Furthermore, ifc # 0O, then¢ can be used as a parameter
andds/d¢ = p, wherep = 1/« is the radius of curvature.

Proof. As the tangent direction is a property of an oriented curve the same is true
for the tangent direction. If the orientation is revergechanges sign and that
corresponds to adding to the tangent direction. On one hand we hai&lsl =

« n and on the other hand we haveedsg, sing)/ds = d¢/ds(— sing, cosg) =
dp/dsn, so dv/ds = «. If « # O, theng is a monotone function of, so the
inverse function exists and is differentiable with derivatiggdp = 1/(d¢/ds) =

1/k = p. [

We can now prove that the curvature determines a plane curve uniquely up to a
Euclidean motion, i.e., up to a rotation and a translation. We formulate it as the
following theorem.

Theorem 2.21.Letk : | — R be a continuous function. Then there exists a
natural parametrization : | — R? of class & such thatx is the curvature of .
Furthermore, the curve is determined uniquely up to a Euclidean motion.

Proof. Assumer is a curve with curvature and tangent directiop. Then
dp/ds = k S0 ¢(S) = ¢o + J¢«(r)dr. The tangent vector is now(s) =
(cosg(s), sing(s)) and as d/ds = t we must havex(s) = xo + f;t(r) dr.
Different choices ofg corresponds to rotations and different choiceggpdorre-
sponds to translations. All that remains is to show that the curvaturésaf, but
by construction we have= dr /ds and d/ds = «n which shows that indeed is
the curvature of . O



56 CHAPTER 2. DIFFERENTIAL GEOMETRY OF CURVES

By inspection of the proof above we realize that the functier ¢(s) determines

the curve up to a translation. The equatipr: ¢ (s) is called anntrinsic equation

of the curve, but the equatiolss= s(¢) or dp/ds = « also determine the curve

up to a translation and a Euclidean motion respectively. In fact any equation,
including differential equations, that links the arc length and the tangent direction
is called arintrinsic equationof the curve. Inl[14] the intrinsic equatiors g =

o was instrumental for the design of scroll compressors.

If r is a natural parametrization of a plane curve, and werput r(sy), and
lett, n, andx be the tangent vector, the normal vector, and the curvatusg at
respectively, then the Taylor expansiornrdd second order & is

r(s)=ro+(s—so)t + %(S—So)ZKnJrO((S—So)Z)- (2.10)

This expression is called theanonical formof a plane curve. It follows from
TheorenT 2.5 that every plane curve at a point with non vanishing curvature has
second order contact with a unique parabola, cf. Prolplem 2.3.4. We also see that
any plane curve is locally the graph of a function from the tangent line to the
normal line, see Figurie ZJ10, and Problem Z]3.10.

Figure 2.10: A plane curve is locally the graph of function “from” the tangent line “to”
the normal line.

We end this section by stating some propertieswblutesandevolutesall proofs
are left as exercises.

Definition 2.22. Letr : | — R? be a regular parametrization of a regular curve
with tangent, arc lengths, and radius of curvature. An involuteofr is a curve
given by

ri(t) = r(t) + (c — stH)Ht(), (2.11)

for ac € R. Theevoluteof r is the curve given by
r’(t) = r(t) + p®n(), (2.12)
see Figur¢ Z.11
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r’(t)

Bt /
r ()\ \ o) \r(t)

Figure 2.11: To the left two involutes of a curve and to the right the evolute.

Different choices of the constantin (2.11) lead tgoarallel curvesand the dis-

tance between the curves is exactly the difference between the two constants, see
Figure[Z. Il and Problem 2.3]12. Furthermore the two constructions are the in-
verse of each other in the sense that the evolute of one of the involutes gives the
original curve back, cf. Problem 2:3]14, while a curve is itself one of the invo-
lutes of its evolute, cf. Problen Z.3]15. An involute to an evolute is parallel to the
original curve and any parallel curve is obtained this way. For other properties of
involutes and evolutes, cf. Probleins 2.3/11=213.16.

Problems

2.3.1 Letr : | — R? be a natural parametrization of a regular curve.tLet — R? be
the tangent vector field and assume ti{a§) % 0. Show thatifs; < s, < 53 are
sufficiently close tay then there is a well defined circle throun(s,), r(s,), r(ss).
Show that ifs;, 5, 3 — S then the centre and radius converges to the centre of
curvature and the absolute value of the radius of curvature respectively.

2.3.2 Show that ifk(s9) # 0, then the curve has contact of order 2 with the circle of
curvature at the point(sy). Show that the contact with any other circle is of lower
order.

2.3.3 Show that ifk (59) = 0 then the curve has contact of order 2 with the tangent line
at the pointr (sy).

2.3.4 Show thatifk (59) # 0 then the curve has contact of order 2 with a unique parabola.

2.35 Lett > r(t) = (x(t), y(t)) be a regular parametrization of cla3. Show that
the curvature vector is given by

X'(t) X'(t)
y'® y'®

(X2 + y'(t)2)?

k() =x®)n) =

(—y'@®), X'®)).
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2.3.6 Find the curvature of the parabola in Examplgé 2.1, p. 42 at an arbitrary point.
2.3.7 Prove the Frenet-Serret equations for a plane curve cf. (29), p. 52.

2.3.8 Show that if the curvature of a plane regular curve is zero then the curve is a straight
line.

2.3.9 Show that if a plane regular curve has constant curvature different from zero then
the curve is a circle.

2.3.10 Show that a regular plane curve locally is the graph of a function “from” the tangent
line “to” the normal line, cf. Figur@ 210, p. 6.

2.3.11 Letr : | — R? be a natural parametrization of a regular curve and consider the
involute r’(s) = r(s) + (c — s)t(s). Determiner?’. For which values of is

r*’(s) # 0? Determine the tangent vector, the normal vector, and the curvature of
re.

2.3.12Letr : | — R? be a natural parametrization of a regular curve. |Lfe§5) =
r(s) + (¢ — s)t(s), i = 1, 2, be two different involutes af. Show that a tangent
line of r is a normal line of both andr}, and thar} — r} = (c, — c;)n?, where
n* is thecommomormal ofr andr}.

2.3.13 Letr : | — R? be a natural parametrization of a regular curve and, let and,
be the tangent vector, the normal vector, and the radius of curvature respectively.
Consider the involute’(s) = r(s) + p(s)n(s). Determine”’. For which values of
sis rb’(s) =# 0? Determine the tangent vector, the normal vector, and the curvature
of r’. Show that a normal line afis a tangent line of”.

2.3.14 Show that a curve is the evolute of any one of it's involutes.
2.3.15 Show that the a curve is an involute of it's evolute.

2.3.16 Consider a regular curve with non vanishing curvature ang lbe the tangent
direction. Consider the intrinsic equatios/d¢ = p(¢) wherep is the radius of
curvature. Show that the radius of curvature for the evolutejsig. What is the
radius of curvature for an involute? Find the intrinsic equation for the evolute and
the involutes.

Exercises
2.3.1 Write a program that finds the curvature and/or the curvature vector at an arbitrary
point of a plane Bézier curve.

2.3.2 Write a program that finds the curvature and/or the curvature vector at an arbitrary
point of a plane B-spline curve.

2.3.3 Write a program that plots the curvature as a function of arc length for a plane
Bézier curve.
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2.3.4 Write a program that plots the curvature as a function of arc length for a plane
B-spline curve.

2.3.5 Write a program that makes a porcupine plot of a plane Bézier curve.
2.3.6 Write a program that makes a porcupine plot of a plane B-spline curve.
2.3.7 Write a program that plots a Bézier curve and it's evolute.
2.3.8 Write a program that plots a Bézier curve and an arbitrary one of it's involutes.
2.3.9 Write a program that plots a B-spline curve and it's evolute.
2.3.10 Write a program that plots a B-spline curve and an arbitrary one of it’s involutes.

2.3.11 Write a program that plots a curve with the intrinsic equatisfde = p(¢) in the
case where (¢) is a polynomial.

2.4 Space Curves

We now consider curves in space, i.e., we have a regular parametrizatlor>
R3. The curvature vector for a plane curvecds = dt/ds so the first part of the
following definition is natural.

Definition 2.23. Lets — r(s) be a natural parametrization of cla@3 of a space
curve. Thenormal planeof the curve at a point(s) is the plane througi(s)
orthogonal to the tangent vector. Thervature vectoris «(s) = t'(s), and the
curvatureis k (s) = |k (S)| = |t'(s)].

If x(s) # 0, then theradius of curvaturas p(s) = 1/x(s), theprincipal normal

vectoris n(s) = k(s)/x(s) = t'(s)/|t'(s)|, the centre of curvature ig(s) =

r(s) + p(s)n(s), and thecircle of curvatureis the circle with centre(s) and

radiusp(s). Thebinormal vectoris b(s) = t(s) x n(s), and theorsionis 7(s) =

—b’(s) - n(s). Theosculating planas the plane through(s) orthogonal to the
binormal vector and theectifying planeis the plane through(s) orthogonal to
the principal normal vector.

Notice that the curvature of a space curve is nonnegative, and that the two normal
vectors only are defined if # 0. The calculation[{2]8) on pag€]52 also holds in
RS sot andn are orthogonal ant n, b is a positively oriented orthonormal frame
called theFrenet-Serret framelf the orientation on a curve is reversed then both
the tangent vector and the arc length changes sign, so the derivigtilze-d «n

is left unchanged and is an invariant property of the curve, &s s andn. On

the other hand changes sign sb andz change sign too. All in all we have
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Figure 2.12: The Frenet-Serret frame at a point of a curve. The normal plane is spanned
by n andb, the osculating plane is spannedtlandn, and the rectifying plane is spanned
byt andb.

Proposition 2.24. For a regular space curve we have thatp, k = «n, n, and

the circle of curvature are invariant concepts associated with the curve.tAnd

b, andtr are invariant concepts associated with the oriented curve. They change
sign if the orientation is reversed.

Just as for plane curves the circle of curvature at a pgimn a space curve can

be defined as the limit of a circle through three distinct poxats<o, andxs on

the curve axi, X2, X3 — X, see Figur¢ 2]7. Likewise, the osculating plane at a
point Xo on a space curve can be defined as the limit position of a plane through
three distinct pointgy, X2, andxs on the curve agj, X2, X3 — Xp.

It can also be shown that the circle of curvature is the only circle that has contact of
order 2 with the curve, and the osculating plane is the only plane that has contact
of order 2 with the curve.

The derivative ot, n, andb are given by thé&renet-Serret equation®.1I3) in the
following theorem.

Theorem 2.25.Let s — r(s) be a natural parametrization of a space curve
with non vanishing curvature(s) # 0, torsion t(s) and Frenet-Serret frame
t(s), n(s), b(s). Then

t'(s) 0 k) 0 t(s)
n'(s) | = | —«(s) 0 ()| |n(s) (2.13)
b'(s) 0 —-7(8) O b(s)

Proof. The equatiort’(s) = «(s) n(s) is the equation that defin@asandn. As
t, n, b is an orthonormal frame we have

b = (b -t + ® -nn+ b -b)b
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As |b(s)| is constant a calculation lik€ (2.8),[p] 52 shows thiatb = 0. Similar,
t(s) - b(s) = 0 is constant too, so

dit-b) dt db
0= =— b+t — 2.14
ds ds + ds ( )
and we see thdt’ -t = —b-t' = —«b-n = 0. The definition ofr tells us
thatb’ - n = —z so all in all we have the equatidi(s) = —z(s)n(s). Finally,

calculations like [[218) and{Z114) shows that

n'(s) = (N'(s) - t(9))t(s) + (N'(s) - n(s))n(s) + (n'(s) - b(s))b(s)
= —(t'(s) - n(9))t(s) +0n(s) — (b'(s) - n(s))b(s)
= —k(S)t(s) + t(s)b(s). O

Ast’ = «kn andb’ = —tn we see that the curvature is a measure for how fast the
tangent line turns arourty and the torsion is a measure for how fast the osculating
plane turns arount

For practical calculations we need a formula that expresses the curvature, torsion
and Frenet-Serret frame in terms of an arbitrary parametrization, this is the content
of the next theorem.

Theorem 2.26.Lett+— r(t) = (x(t), y(t), z(t)) be a regular parametrization of
class G. The curvature is then given by

_ o <o

K (t) ‘ ‘3 (2.15)
r'(t)
The torsion is given by
T(t) _ [r/(t)’ r”(t), r///(t)] (2 16)
vty x )|
The binormal vector is given by
b(t) = DX O 2.17)

/() x r’(®)|
The principal normal vector is given by

n(t) = b(t) x t(). (2.18)
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Proof. Let s denotes the arc length of the curve. We then have

dr _dsdr _ ds,
dt ~ dtds dt’
o (&) & o (&)
dt2  dt? dt/) ds dt? dt '
dr dSSt d?r ds dt 2o|2r ds <ds>3d/< (ds)3 dn

o ad Taddas Tara " T \a) " \a) “as

ds  [ds\® , . 3d2rds (9 3 de o (9 3 o
=|-—=—= — — — ) — — Th.
ds ~ \at) © dzat " \dt) ds at)

Hence
3

Tl (> b
a a2 T\t dar| ©

which implies [215) and{Z.17). We also have
dr d?r o ds, dzst+ ds 2 W AteBn (9 3 b
—, =, = | = =l == — ) K — ) K
dt’ dt2’ dt3 dt ’ dt? dt ’ at
6 2. 12
= (3—?) k2t[t,n,b] = ar . dar

dt a2
which implies [2.16). Finally,[(2:18) simply follows from the fact than, b is a
positively oriented orthonormal basis. l

dar d?r <ds>3 ‘dr
ktxn=|—

Just as in the case of a plane curve a designer will often use a curvature plot or a
porcupine plot, see Figufe 2.8 to asses the quality of a curve. And in an automatic
fairing procedure it is again usually the integfe(bllc/ds)2 ds that is minimized,
under some suitable side conditions. One may (and should?) take the torsion into
acount too, but there is no universally accepted way of doing this.

Just as the plane curvature determines a plane curve up to a Euclidean motion, the
curvature and torsion determine a space curve up to a Euclidean motion.

Theorem 2.27.Let | be an interval, letc : | — R be a strictly positive &
function and let : | — R be a @ function. Let furthermoregse |, let xo be a
fixed point ofR3 and letto, no, bo be fixed positively oriented orthonormal basis
of R3. Then there exists a unique regular natural parametrization] — R3

of class C such that the curvature is, the torsion ist, r(ss) = Xo, and the
Frenet-Serret framét, n, b) satisfied(sg) = to, N(Sp) = no, andb(sy) = bo.
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Proof. The Frenet-Serret equatioris (2.13) isreear system of ordinary differ-
ential euations (iR?). It follows that there is unique solutiann, b defined on
all of 1, with t(sg) = to, N(Sp) = ng, andb(sy) = bp. The sett(s), n(s), b(s)
IS a positively oriented orthonormal frame e 59, we want to show that it is
a positively oriented orthonormal frame for alle 1. To that end we define six
functionsf; : | — R by

f1(s) =t(s) - t(s) fa(s) = t(s) - n(s) f3(s) =t(s) - b(s)
f4(s) = n(s) - n(s) f5(S) = n(s) - b(s) fs(S) = b(s) - b(s)

Ast, n, bis a solution to the Frenet-Serret equatidns {2.13) we have

fil=2-t=2kn-t=2 f
fo=t-n+t-n""=kn-n—kt-t+tt-b=—-xf1+7vfz+xfs
fa=t'-b+t-b'=«kn-b—rt-n=—1fa+«fs
f,=2n-n""=-2kn-t+2tn-b=-2¢ f2+2t fs
fe=n"-b+n-b'=—-«xt-b+tb-b—tn.-n=—-«xfz—tfsa+7fs
fe=2b-b'=-2tb-n=-2rfg

We see that f1, ..., fg) is a solution to the following linear system of ordinary
differential equations
[f7] [0 2 0 O 0 O] f] [ f1(s0) | 1]
f2/ —« 0 T K 0O O fo f2(s0) 0
fé 10 -t O 0 k 0 fa fa(sp)| |0
f,l |0 =2 0 0 2r 0f)fs)’ fasp)| |1
fé 0 0O -« -t 0 1 f5 f5(s0) 0
| fé_ | 0 0 0 0 —-2¢ 0_ | f6_ | fe(So)_ _l_

We can immediately see that the constant funcsier (1,0,0,1,0, 1) also is a
solution. By uniqueness we have t&u(s), ..., fs(s)) = (1,0,0,1,0, 1) for
alls e |, i.e.,t(s), n(s), b(s) is an orthonormal frame for afl € | . Then we have
[t(s), n(s),b(s)] = +1foralls € | and aqt(s), N(S), b(sp)] = 1 continuity
shows that(s), n(s), b(s) is positively oriented for al € .

We have in particular thats) is a unit vector for alk € | so if we put

S
r(s)=x0+/ t(uydu, forsel
S

thenr : | — R3is a natural parametrization witt(sp) = Xg. Asr’ = t and
t, n, b is a solution to the Frenet-Serret equatidns {2.13) we see tadz is the
curvature and torsion respectivelyroédnd that, n, b is the Frenet-Serret frame.
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We have now established the existence,dfut the definition of (s) was forced
if r was to solve the problem. O

If r is a natural parametrization of a space curve, and we @t r (), and let

t, n, b, «, andt be the tangent vector, the principal normal vector, the binormal
vector, the curvature, and the torsiorsgtrespectively, then the Taylor expansion
of r to third order afg is

H9=m+@—%ﬂ+%6—w%n
+%@—%ﬁ¢«%+xh+xﬂﬁ+q@—%ﬁy(zw)

This expression is called tleanonical formof a space curve. In a neighbourhood
of rg the projection into the osculating plane looks like the paralkgla %K xf,
the projection into the rectifying plane looks like the cubis = %K‘L’ xf, and
projection into the normal plane looks like the cuo@: %(tz//c) xg, see Fig-
ureZ1B.

X2 X3 X3

\\i b b

t  Xo X1t \ n X

Figure 2.13: The projection of a curve into the osculating plane, the rectifying plane, and
the normal plane.

Problems

2.4.1 Find the curvature, the torsion and the Frenet-Serret frame diglein Exam-
ple[Z.2, p[4R.

2.4.2 Show that if the curvature of a regular space curve is zero then the curve is a straight
line.

2.4.3 Show that if a regular space curve has non vanishing curvature and constant torsion
equal to zero then the curve is contained in a plane. Hint: first show that the
binormalb is constant. Then consider the quantity) - b, wherer : | — R3is a
regular parametrization of the curve.
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2.4.4 Show that if a regular space curve has constant curvature different from zero and
constant torsion equal to zero then the curve is a circle.

2.4.5 Consider the curve given by the parametrization

(t,t4,0) fort <O
r(t) =4(,0,00 fort=0
(t,0,t% fort>0

Show that this is a regular parametrization of cl&Ss Let« be the curvature and
show thatc (t) = 0 if and only ift = 0. Show that the torsion is zero for alk~ 0.

2.4.6 Show that if a regular space curve has constant curvature and torsion, both different
from zero, then the curve is a circular helix, cf. ProbleEm2.4.1.

2.4.7 Letr : | — R3 be a regular parametrization and assume ith&t andr”(t) are
linearly independent. Show that the Gram-Schmidt orthonormalization procedure

of (r'(t), r"(t)) gives(t(t), n(t)).

Exercises
2.4.1 Write a program that finds the curvature and torsion at an arbitrary point of a Bézier
curve inR3.

2.4.2 Write a program that finds the curvature and torsion at an arbitrary point of a B-
spline curve ink3.

2.4.3 Write a program that plots the curvature and torsion as a function of arc length for
a Bézier curve iR3,

2.4.4 Write a program that plots the curvature and torsion as a function of arc length for
a B-spline curve imR3.

2.4.5 Write a program that finds the Frenet-Serret frame at an arbitrary point of a Bézier
curve inR3,

2.4.6 Write a program that finds the Frenet-Serret frame at an arbitrary point of a B-spline
curve inR3,

2.5 Curves in higher dimensional spaces

In this section we introduce the generalization of the Frenet-Serret frame and the
Frenet-Serret equations to higher dimensions.

Theorem 2.28.Letr : | — R" be a natural parametrization of a regular
curve inR" of class @ with tangent vectok(s). If the first n— 1 derivatives
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r'(s), r’(s), ..., r™b(s) are linearly independent then there exists i normal
vectorsni(s), ..., Nh—1(S) and n— 1 curvaturexy, ..., kn—1 such thak;(s) > 0
fori =1,...,n—2andt(s), n1i(s), ..., Nnh_1(S) is a positively oriented orthonor-

mal frame that satisfies tHerenet-Serret equations:

] [0 « O 0 o[ t ]
n/l -1 0 «x2 0 0 ny
n. 0 —«x2 O K 0 n
2 . : . ’ (2.20)
n:,]_z 0 0 —Kn-2 0 Kn—1 Npn—2
_n;.]_l_ | 0 0 0 —Kn-—-1 0 _nn_]__
Furthermore, form=1,...,n—1
sparr’(s), r"(s), ..., r™(s)} = spar{t(s), n1(s), ..., Nm(s)} (2.21)

Proof. To ease notation a bit we paop = t. We now use induction to prove that
fork=1,...,n—2wecanfindy,..., ngandky, ..., xk such that

1. ng, ..., ng are orthonormal.

2. ZZ1) holdsfom=1,..., k.
3. ng = k1N andny, = —kmNm-1 + kmy1Mmez form=1,... k-1

Asr’ andr” are linearly independent we have in particular that r” # 0. So
we can puk = [t'| andny = t'/x1. Then we have

t' = x1n1, and spafir’, r"} = spar{t, n1}.

Furthermoret is a unit vector so[(2.8) shows that n; = 0, i.e., g, N1 are
orthonormal. This proves the calse= 1.

Now assume we have proved the statement for saniBy hypothesis 1, a calcu-
lation like (Z-14), and hypothesis 3 we have that

—kxk form=k-1

Nm - N = —N, - Ng = _
k m 0 otherwise

By hypothesis 2 we have that

k
m=0
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Differentiation then gives

K K
rk+2 _ Z a/\Nm + Z amn’,
m=0 m=0
K k
= apm+ Y am(—KkmMm-1 + Km41Nmr1) + N
m=0 m=0
Asr®+2 ¢ sparr’, ..., r&+Dl we see thatj ¢ spar{no, ..., ng}. Furthermore
the orthogonal projection af, on sparno, ..., N} is
k K
D (M- DeNm = — D (N NNy = — Kk 1Nk 1.
m=0 m=0

If we now putkxi1 = |nj + kk—1Nk—1| thenki1 > 0 so we can defing1

(Ny + kk—1Nk—1)/kk+1. By construction we hav@1| = 1 andngq1 - Nm =0
alm = 0,...,k, song, ..., nk1 are orthonormal. We also have thgt =
—kkNk—1 + Kk+1Nk+1 by construction. Finally
k+2
spar{r’, ..., r(k+ ' = spar{no, ..., Nk, i} = spar{no, ..., Nk, Niy1}.
This completes the induction.
We have now found,, ..., n,_»> and there is a unique unit vectap_1 such
No, ..., Np_1 is a positively oriented frame. We pit_1 = n;_, - np_1 and then
we have
n-1 n-3
/ / / /
Nz = (Mo M)k = — Z(nn—z )Nk + (Nf_p - Nn—1)Np1
= —Kkn—2Nn—2 + kn—1Nn—1

and

n—1 n—1

Mg =D (Mg M)k ==Y (Nn_1- M)k = —Kkn_1NMn_2

k=0 k=0

This completes the proof. O

The proof of Theorerh Z.27 generalizes to curveR'trand give us the following
theorem.

Theorem 2.29.Let | be an interval, letfork=1,...,n—2,xx : | — R be
a strictly positiv @—k-1 function and letcn_1 : | — R be a @ function. Let
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furthermore § € |, let xg be a fixed point oR3 and letto, N10,...,Nn—1,0 be

a fixed positively oriented orthonormal basis®f. Then there exists a unique
natural parametrizatiorr : 1| — R" of class C' such that the curvatures are
K1, ...,kn_1 and the Frenet-Serret fram@, nq, ..., hh_1) satisfiest(sy) = tg
andng(sp) =ngofork=1,....,n—1.

The following theorem tells us how to find the normals and curvatures from an
arbitrary parametrization of a curveRf".

Theorem 2.30.Letr : | — R" be a parametrization of class"Gsuch that the
first n— 1 derivatives are linearly independent. The normajs. . ., n,_» can be
found by the Gram-Schmidt orthonormalization procedure.

Step 1:

Loop: form=1,...,n—2do

m—1 Vin
Vi =™ 3 ™D e = —
k=0 |Vm|
Letey, ..., e, be the standard basis iR".
Form=1,...,nwe put
n—-2 W
Wm = en — Z(em )Nk and ifwm # 0then np_g = +—"
k=0 |Wm|
where “+" is used if[no, ..., Nh—2, €m] < 0 otherwise “~" is used.
The curvaturesy, ..., kn—1 are now given by
(m+1)
r ‘n
km=-———", m=1...,n—1 (2.22)
Ir'1\Vm—1l

Proof. By Problem[2.5]2 the Gram-Schmidt orthonormalization procedure gives
the firstn — 2 normals. For at least oma we have thang, ..., np—2, eéq IS a
basis. For such emnng, ..., Nh_2, Wm/|Wm| is an orthonormal basis sg§,_1 =
+Wm/|Wm|. The sign is determined by the requirement thgt . ., np_1 IS posi-
tively oriented, i.e., by the requirement thas, . .., n,_1] = 1. So the signis the
same as the sign o, ... Nn—1, Wm/|Wml] = [No, ... Nn—1, Wm] /IWm| which

has the same sign @80, ... Nn—1, Wm] = [No, ... Nn—1, &m].
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Form=1,...,n—1we now have
m—2
Vm—1/Nm-1 = r™ — Z(r(m) - i) Nk
k=0
so differentiation with respect ®gives
diVm—1] dnm-1
Nm—1 + |[Vm—
ds m—1+ [Vm-1l ds
dr™m =2 d(r™M . ny) m-2 dn
— (m)
- e ™ g
ds = ds = ds
p(m+l  m=2 d(r(m) i m-2 dny
— (m)
= — —Ng — rm.ng)—.
[r’] kXZ(:) ds k kXZ(;( ) ds

If we take the inner product with, then we obtain

FMED

[Vm-1lkm = "l

This is the same a§(2]22). O

Problems

2.5.1 Letr : I — R" be a natural parametrization of a regular curve of cla$sand
assume that the derivativess), ..., r"b(s) are linearly independent. Show that
if the Gram-Schmidt orthonormalization procedure is useftts), ..., r " (s))
then we ge(ng(s), .. ., Nh_2(9)).

2.5.2 Letr : | — R"be aregular parametrization of cla@%and assume that the deriva-
tivesr'(t), ..., r™ () are linearly independent. Show that the Gram-Smidth or-
thonormalization procedure ¢f'(t), ..., r™=Y(t)) gives(no(t), ..., Nn_2(1)).

2.5.3 Check that the procedure in Theorém 2.30 floe= 2 gives the same result as
Theoreni218.

2.5.4 Check that the procedure in Theorém 2.30 floe= 3 gives the same result as
Theoreni226.

2.5.5 What simplifications can be made to the procedure in Thedgrem 2.26 if we only
wantks, ..., kn_12, lkn_1l, i.€., if we ignore the sign of, 1.
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Exercises
2.5.1 Write a program that for a Bézier curve implements the procedure in Thg¢oregm 2.30

with the simplification from Problemn 25.5.
2.5.2 Write a program that for a Bézier curve implements the procedure in Théorem 2.30.

2.5.3 Write a program that for a B-spline curve implements the procedure in Theo-
rem[2-3D with the simplification from Problegm 2]5.5.

2.5.4 Write a program that for a B-spline curve implements the procedure in Theo-
remZ=30.



Chapter 3

Polynomial Surfaces

3.1 Introduction

We will introduce two surface types, tensor product (Bézier and B-spline) sur-
faces and triangular Bézier surfaces. The latter is a direct generalization of the
de Casteljau constrution to surfaces or any other higher dimension.

The tensor product constrution works for any pair of curve schemes. Suppose
we have two curve schemes— YL ai¢i(t) andt > > i, bjyj(t) where

Pp1(t), ..., dn(t) andyi(t), ..., ¥ym(t) are two sets of linearly independent real
functions defined offia, b] and|[c, d] respectively. We can now define a surface
scheme, i.e., a space of surfaces definefhoh] x [c, d] by

m

vy Y > a sy, aeR

n
i=1j=1

From the point of view of linear algebra the two set of functions are bases for two
vector space¥ andW respectively. If we form théensor product Vi W then
the productg) @ ¢j,i =1,...,n,j =1,..., misabasis foV @ W. The map

n m n m
>SN agouie > > aisWyie), ajeR,
i=1j=1 i=1j=1
fromV ® W to C([a, b] x [c, d], R) is linear and injective, so the basis func-

tions ¢; (u)yj (v) in our surface scheme can be considered as a basis in the tensor
product of the two curve scheme, hence the name tensor product surface.

71
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3.2 Tensor product Bézier surfaces.

Recall that the Bernstein polynomiaB{‘(t), i = 0,...,n are a basis for the
polynomials of degree at most Hence the productBi”(u)BJm(v), i=0,...,n,
j =0,..., mare a basis for the polynomials(n, v) of degree at mostin u and
m in v. Thus, a surface parametrisatiofu, v) which is polynomial of degree at
mostn in u andmin v, can be written as a so calléshsor product Bézier surface

ru,v) =Y Y biB"WBMw)

i=0 j=0
=y (Z bi | Bi”(u)> B'w) =) (Z bi | Bj%)) B"(u). (3.1)
j=0 \i=0 i=0 \j=0
i (W) di(v)

The coefficientd; ; are calleccontrol points or Bézier pointsand form thecon-

trol net The last line shows that we can consider a tensor product Bézier surface
of degreen x m as a Bézier curve of degree in the space of Bézier curves of
degreen (with “control points”c; (u)) or as a Bézier curve of degraén the space

of Bézier curves of degrea (with “control points”d; (v)). Imagine the surface as
being swept out by moving a curve through space while at the same time changing
the curve, see Figuie B.1. To evaluate a point on the surface we can sidges

Figure 3.1: A bi-cubic tensor product Bézier surface. To the left the control net with
u-parameter curves, and to the right wittparameter curves.:

of de Casteljau’s algorithnm the columns of the control net:

b (U, v) = (1 — Wb{ }**(u, v) + ub 15U, v), (3-2)

andm steps in the rows of the control net:

by*®(u, v) = (1 — V)b]"$™ (U, v) + vb{ S 1 (U, v). (3.3)
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The order in which these+ m steps are performed doesn’t matter (de Casteljau’s
algorithm in one direction permutes with de Casteljau’s algorithm in the other
direction). If we alternate between the two directions, then we can combine two
steps in different directions into one step (callediract de Casteljau stgp

bl 7w, v) b3 | 1
bir:?(u’ v)=[1-u ul| e, 'r’lﬁ,_l [ ] . (3.4
b7 W) by ) v

This isbilinear interpolationin each cell of the control net. We can also use the
de Casteljau operator to define these surfaces R.@emove the last row in the
control net and leL.; remove the first row in the control net. Similarly 18
andL» remove the last and first column respectively. We also haveltfference
operatorsA; = Lj — R and twode Casteljau operators

Cit)=1-tR +tLi = R +tAj, =12
A tensor product Bézier surface can now be written as
r(u, v) = C1(w)"Co(v)™(bj ;). (3.5)

A parameter curve is the restriction of the nrdp, v) to a horizontal or vertical

line and they are Bézier curves of degreandm respectively. The restriction to
any other line in the parameter plane is still a Bézier curve, but the degree is in
generain + m. The bilinear interpolation described above is giverCay, v) =
C1(w)Co(v), and ifn > mthen we can write

r(u, v) = Cy(w)"""Cu, v)M(bi ), (3.6)
see Figurg¢ 3] 2.

R -5-a

Figure 3.2: Evaluating a point on a bi-cubic Bézier surface by repeated bilinear interpola-
tion, (three direct de Casteljau steps).

It follows from the construction that we haedfine invariancecf. Problen 3211,
and theconvex hull propertycf. Problem3:2]2. The foupoundary curve®f
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Figure 3.3: Subdivision of tensor product Bézier surfaces. At the top left the surface is
shown with the original control net and to the right the control net subdividad-a0.5.

At the bottom to the left the control net is subdividedvat= 0.5 and to the right it is
subdivided in both directions.

r(u, v) are Bézier curves whose control polygons are the boundary polygons of
the control net.

Just as in the curve case we can perfaubdivisionon a tensor product Bézier
surface. Performingn steps of de Casteljau’s algorithm in the columns of the
control net yields a-parameter curve (in Bézier form) on the surface and as a
byproduct the control net for the two pieces on each side of this curve. Similarly,
m steps of de Casteljau’s algorithm in the rows of the control net yields a
parameter curve on the surface and the control net for the two pieces on each side
of the curve. Performing alh + m steps yields a point on the surface and the
control net for four pieces of the surface, see Figure 3.3.

A polynomial surface can be considered as a polynomial surface of higher degree
in u and/orv, and we can perforrdegree elevationWe raise the degree inby
raising the degree of each colurbg, . . ., bpj in the control net and we raise the
degree inv by raising the degree of each rdyy, . . ., bim.

3.2.1 Differentation of a tensor product Bézier surface

The partial derivatives of a tensor product Bézier surface is a tensor product Bézier
surface with control points essentially given by differences in the control net.

o' TSy n'm!
—(u, —
s Y T T m sy

Ca )" Com)"PAAS (ki) (3.7)
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m!
- rr)lvznm —g AMACIW TG (i) (38)

We have in particular

]
~(U,v) = nCLW)"ICo0) A by ), (3.9)
d
(U, 1) = MG Co)™ A (b, ), (3.10)
ar h e
S5y (U v) = nmG(u) 1C()™tA1A(bi ) (3.11)

The mixed derivative is callethe twistand its control pointsAlAz(bi,j) mea-
sure the deviation of the cells in the control net from being parallelograms, see
Figure[3:4. Of particular interest is tloeoss boundary derivativeéhey are given

Figure 3.4: The twist vector&; A,b; j measure how far the cells are from being parallel-
ograms.

by
g—L(o, v) =NnCM(v)(b1,0 — boo. ..., b1m — bom) (3.12)
g—L(l, v) =NnNCM(w)(bn,o — bn-1,0. ..., bn,m — bn—1,m) (3.13)
%(u, 0) = mC"(u)(bg,1 — bo,o, - .., bn,1 — bn o) (3.14)
g—i(u, 1) = mC"(v)(bo,m — bom-1, - - -, Pnm — b, m_1) (3.15)
Problems

3.2.1 Show that if the control points of a tensor product Bézier surface is subjected to
an affine transformation, then the new surface is the image of the original surface
under the same affine transformation.
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3.2.2 Show that a tensor product Bézier surface is contained in the convex hull of the
control points.

3.2.3 Show that the corner twist measures the diviation of the corner cell in the control
net from being a parallelogram, cf. Figure]3.4.

3.2.4 Given a surface defined on some rectangle. Show that if you know the cross bound-
ary derivative on an edge of the rectangle, then the corner twists (the mixed 2nd
order partial derivative) are determined at the two vertices of that edge.

3.2.5 Now assume that the cross boundary derivatives are known on two edges meeting
at a corner. According to the previous exercise the twist at this corner is determined
in two ways, can you be sure that the two results agree?

Exercises

3.2.1 Implement de Casteljau’s algorithm for tensor product Bézier surfaces. (Use pro-
cedures/functions/sub routines for Bézier curves.)

3.2.2 Implement subdivision for tensor product Bézier surfaces, split it into four pieces.
(Use procedures/functions/sub routines for Bézier curves.)

3.2.3 Write a program that determines a point and all partial derivatives to &rdara
tensor product Bézier surfaces.

3.3 Tensor product B-spline surfaces.

Let two knot vectorsy = ug, ..., Usgpen @ndv = v, ..., vomem be given and
consider theuv-plane (the parameter plane). The vertical limes- u; and the
horizontal linesy = v; are callecknot linesand they are assigned the same mul-
tiplicity as the corresponding knots. N"(u|u) denote the B-spline functions of
degreen on the knot vectou and ij(v|v) denote the B-spline functions of degree
m on the knot vectov, then atensor product B-spline surfae@th knot vectorau
andv is written as

N+n M+m
ru,v) =Y > dijN"UwN"wv)
i=1 j=1
M+m /N+n N-+n /M+m
=> ( di | Ni”(u|u)> NP@lv) =) (Z di,,-ij(vw)) N (ulu).
j=1 \i=1 i=1 \ j=1
¢j (u) ai (v)

(3.16)
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Figure 3.5: To the left the knot lines and to the right the control net and the tensor product
B-spline surface.

Thecontrol pointsor de Boor pointgl; j form thecontrol net see Figurg 3]5.

Just as in the previous case we can regard the surface as a B-spline curve of degree
m with knot vectorv and “control pointscj (u), i.e., a curve in the spline space of
degreen on the knot vectou, or as a B-spline curve of degreewith knot vector

u and “control points’g; (v), i.e., a curve in the spline space of degne®n the

knot vectorv.

To evaluate a point on the surface we can talséeps ofde Boor algorithmin the
columns of the control net, amd steps in the rows of the control net.

Theorem 3.1. Letr be a tensor product B-spline surface of degreennwith
knots W, ..., UznyN @andvy, . .., vamym and control pointsly 1, ..., dngN.m+M-
If u € [uk—1, ux] andv € [v—1, v1] with ux_1 < ux andv_1 < v, then we can
determine the point(u, v) on the curve by de Boor’s algorithm. First initialize:

S = Uk—n-+i i=1...,2n
tj = Vl—m4]j j=1...,2m
dg’j()(u, v) = Oky1nil+1-mtj i=0,....n, j=0,....m
Thenfor p=1,...,n do:
p u--=s
o = ——- s
i Shiltiop — S !_g,...,n
, -1,0 -1,0 J=9,....m
dP (U, v) = (1= of)dP 17U, v) + o dP o, v)
andforg=1,..., mdo:
v —t;
Bl = ———— .
tmt1+j—q =t j=k...,m

dyfw, v = (1- g1y i 1w, v + By T, v)

n|

Finally, the point on the curve is(u, v) = dym(u, v).
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Figure 3.6: The Bézier patches of a bi-cubic B-spline surface. To the left we show the
control points.

The order in which these + m steps are performed doesn’t matter (de Boor’s al-
gorithm in one direction permutes with de Boor’s algorithm in the other direction).
So we can extend the recursion to give points

di?]q(u’ v) = (1- O‘ip)dip—_ll,’jq(us v) + Ofipdir,)j_l’q(U, v)

= (1= AP v + S ) (3.17)

It follows from the construction that we haedfine invariancecf. ProblenT 3311,
andthe strong convex hull propertgf. Probleni3.3]2. If the outer knots have full
multiplicity then the fourboundary curve®f r (u, v) are B-spline curves who’s
control polygons are the boundary polygons of the control net.

One step of de Boor’s algorithm in the columns or the rows or the control net
gives the control net for the surface with an extra knot line inserted, this is called
knot line insertion and as in the curve case de Boor’s algorithm is the same as
repeated knot line insertion. On each rectafgleu; ;1] x [vj, vj11], bounded by
consecutive knot lines, the surface is polynomial, and can of course be considered
as a Bézier surface, calledB#zier patch The tensor product Bézier control
points are found by inserting each of the four knot lines to full multiplicity, see

Figure[3.6.
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3.3.1 Differentation of a tensor product B-spline surface

As in the curve case the partial derivatives can be found from de Boor’s algorithm

B1I1)

ar dnEM(u, v) — dp- T, v)

o) = == g ; L (3.18)
ﬂ(u ) dpm=t(u, v) — dym=i(u, v) (3.19)
v tn+1 — tm . .

Alternatively :2-r and 21 are B-spline surfaces of lower degree, with the same
knot lines ag, except that two of the outermost knot lines are removed, and with
control points

di,j —di_1 dij —di—
] i—1,] and ] i,j—1
Ui+n—1 — Ui-1 Vj+m-1 — Vj-1
respectively. If the outer knots have full multiplicity, then the first two rows of

control points are Bézier control points for the first rows of Bézier patches. Thus,
the cross boundary derivatives are easy to express as B-spline curves, e.g.:

(3.20)

8 m
= Um, 1) = ———— Y (daj — duHMT).

ou Um+1 — Um =0

There are similar formulae for the other three cross boundary derivative.

The restriction to the horizonal and vertical lines are B-spline curves of degree
n and with knotsuo, . .., usnn and B-spline curve of degrea and with knots

vo, - .., U2m+M respectively. The restriction to any other line is still a B-spline
curve, but the degree i+ m and it has a knot each time the line crosses a knot
line. If the multiplicity of the knot line isv, then the multiplicity of the knot on

the slanted line isn+ v if the knot line is horizontal and it is + v if the knot line

is vertical.

Problems

3.3.1 Show that if the control points of a tensor product B-spline surface is subjected to
an affine transformation, then the new surface is the image of the original surface
under the same affine transformation.

3.3.2 Show that a tensor product B-spline surface of degrea with control pointsd; ;
is contained in

Uconvex hull ofdrtissi |1 =0,...,n, j=0,...,m}.

rs
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Exercises
3.3.1 Implement the knot line insertion procedure for tensor product B-spline surfaces.
(Use procedures/functions/sub routines for a B-spline curve)

3.3.2 Implement de Boor’s algorithm for tensor product B-spline surfaces. (Use proce-
dures/functions/sub routines for a B-spline curve)

3.3.3 Write a program that determines a point and all partial derivatives to &rdara
tensor product B-spline surface.

3.4 Triangular Bézier surfaces

Let A, B, andC be the corners of a triangle in the plane. For any pBim the
plane there is a uniguearycentric combinatiohat givesP:

P=uA+vB4+wC, u+v+w=1,

the triple(u, v, w) is calledbarycentric coordinate®r the pointP, see Figuré&3]7.
Points in the interior of the triangle corresponds to positive barycentric coordi-

Figure 3.7: Barycentric coordinates in the plane.

nates:u, v, w > 0, and consequently, v, w < 1. By lettingw = 1—-u—v
we obtain ordinary coordinatgsl, v) in the plane. (It corresponds to choosing
C as the origin an@CA andCB as basis vectors in a coordiante systeRgints

in the plane have barycentric coordinates that sums to onec#orin the plane

can be considered as the difference between two pBiQts= Q — P and have
barycentric coordinates that sum to zero.

The control nefor a triangular Bézier surface of degreeonsists ofw
points arranged in a triangular grid, see Fighre 3.8. If we let (i, j, k) or
i = (i1, 12,13) denote a multi-index, then a control point can be denbiedVe
furthermore puti| =i + j + k=) ,i, and lete; = (1,0,0), & = (0, 1, 0),
andes = (0,0, 1). Now letu = (u, v, w) be barycentric coordinates for some
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Figure 3.8: To the left the control net for a cubic triangular Bézier surface. The shaded
triangles correspond to the edges of the control polygon of a Bézier curve — this is where
the interpolation takes place. The surface is shown to the right.

point in the plane (normally the point will be inside the triangldg, Casteljau’s
algorithmis the following. Put

bO(u) = by, all i with |i| = n
andforr =1,...,n:

bf (u) = ub{; 2 (u) + vb{ S () + wb{ 2 (),  alliwith|ij=n—r

the point on the surface is the final point:

r(u) = bggo(u).

This is the direct generalisation of de Casteljau’s algorithm for Bézier curves (the
numbers 1- t andt are exactly the barycentric coordinates fawvith respect to
the points 01 € R). In the cubic case we have the following diagrams:

bgso bl
bO bO 020 c b2 c
. 02(1J 123 C(w) béllbilo ) , 01(2) ) bgoo’ (3.21)
b012b111b210 bl pl pl b001b100
bO bO bO bO 002%~101~200
0031027201300

see Figuré 319, where one step in de Casteljau’s algorithm (going from triangu-
lar net to the next) is considered as an operé&tar taking a triangular net and
producing a smaller net by linear interpolation. With this notation we have

r(u) =Cw"(bi). (3.22)
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Figure 3.9: de Casteljau’s algorithm for a triangular Bézier surface.

If we fori = 1, 2, 3 introduce the shorthand notatién = C(g), then we can
write C(u) = uC1 + vC2 + wCs. The operatoC, simply deletes the row, = 0

(and subtracts 1 from). The operators obviouslyommutesand this implies that

all operators built from these three basic ones commute too. In other words we
can calculate with them as with ordinary numbers.

As the surface is defined by repeated interpolation we immediatelyditne in-
varianceand theconvex hull propertyPutting one of the barycentric coordinates
equal to one in de Casteljau’s algorithm givgs= bir;elj, I.e., the row opposite
the corneibn_r)e; is deleted. We end with

r(lv O’ O) = bn007 r(oa 17 O) == b0n07 r(oa 07 1) == bOOm

so we havecorner point interpolation We get theboundary curvedy putting
one of the barycentric coordinates equal to zero and then de Casteljau’s algorithm
reduces to the curve algorithm, e.g.:

bl o, (t.0,1—1t) = (1 —t)bjor—it1+thiz10ri.

So the boundary curves are Bézier curves of degraad the control polygons
are the boundary polygons of the control net.

As bijk = cilcgc'g(bi) a point on the surface is given by
p(u) = C“(u)(bi) = (uCl +vCr + wC3)n(bijk)

AL T SOy
= ) v W CacaCs (biik)
i+j7k=n 1K

nt oo
= D, ivjvkvulvjwkbij" = D bikB(W)

i+j+k=n lil=n
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Figure 3.10: There are essentially three different Bernstein polynomials of degree 3.

where we have introduced tiBernstein polynomials

ny ; nt o
Bin(u):<i>”|:izj!k!ulvlwk’

see Figur¢ 3-10.

3.4.1 Subdivision of a triangular Bézier surface

Let a, b, andc be three sets of barycentric coordinates corresponding to some
triangle in the plane. We could use barycentric coordinates with respect to this
new triangle instead and ask for the control poljtsvith respect to this triangle.

If a point in the plane has barycentric coordinates: (u, v, w) with respect to

the new triangle then the barycentric coordinates with respect to the old triangle
Isua+ vb + wc so the point on the surface is

r(u) = C"(ua+ vb + wey(bj) = (UC(@) + vC(b) + wC(c))" (bi)
-y i'?—fwuiviw"ci(a)cj(b)ck(c)(bijk)
i+j+k=n""4

=Y BluC @C! (b)C*(c)(br).

li]=n
and we can read off the new control points
ik = C' @C (1) () (by). (3.23)

This is the direct generalisation of tBabdivision formuldor Bézier curves, see
Figure[3.I1L.

When we run de Casteljau’s algorithm for a pdhthen we can pick up the con-
trol points for the restriction to the three triangkeBP, BCP, andCAP. They are
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Figure 3.11: Subdivision of a triangular Bézier surface. To the left the parameter plane.
We identify a set of barycentric coordinates= (a;, ay, ag) with the corresponding point

a = aA + a,B + azC. In the middle we have the control points, and to the right the
surface.

bl o, bfs;» andb(, respectively. If we arrange all the points [i(3.21) in a tetra-
hedron, then one of the sides contains the old control points and the other three
each contain the control points for one of the above mentioned restrictions, see
Figure[3.IR. If we recursively use this kind of subdivision then we never subdi-

b 4
C A

Figure 3.12: Subdividing a triangular Bézier surface by de Casteljau’s algorithm.

vide the edges of the domain triangles so the domain triangles becomes thinner
and thinner. This is not desirable, we prefer that all the domain triangles have the
same shape. This can be achieved if we divide the triangle in four pieces as in Fig-
ure[3-IB. The three patches at the corners can each be obtained by two succesive
applications of de Casteljau’s algorithm, and the middle patch can be obtained
by three succesive applications of de Casteljau’s algorithm, see Figure 3.14. The
problem with middle patch is that we use extrapolation in the last of the three
steps. If we look at[{3723) we see that it is possible to obtain the control points for
the middle patch by using only interpolation, but then it's considerably harder to
avoid repeating a calculation.

The straight line spanned by two points with barycentric cooordinatasd b
can be considered as the boundary of a new domain triang&raight lines
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Figure 3.13: Subdividing a triangular Bézier surfaces in four equally sized pieces.

are mappped to Bézier curves of degreestill considering the straight line as a
boundary [3:23) gives that the control points@ce)' C! (b)(b;), wherei + j = n.

3.4.2 Differentation of a triangular Bézier surface

One way of looking at these surfaces and in particular at the apparently strange
parametrization is to considefu) as the restriction of a tri-variate function to the
planeu + v 4+ w = 1, see Figur€ 3:15. The assignment of barycentric coordinates
to a point is an isomorphism from our parameter plane to this plaf.irit is

now obvious that the normal partial derivativigs, e.g.,01r = g—L doesn't tell us
anything about the behaviour of the function (or surface). Instead we will for any
given vectorV in the plane determine ttdirectional derivative

dr(u4tVv)
du t=0
The chain rule now yields the following formula:
ar(u) ar(u) ar(u)
au P or TV
AsC(u) = uCy + vC2 + wCz we have
aC(u) aC(u) aC(u)

= = Cp,
ou v Jw

and ag (u) = C"(u)(b;) and everything commute the usual rules for differentiat-
ing a product yields

oy r) =

oy ru) =«

B

Cs.

. ar(u) ar(u) ar(u)
W) = P T S

= Nn(aC1+ BC2 + yC3)C"H(u)(bi)
= nC(V)C" () (bi) = nc" W (V) (bi). (3.24)
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Figure 3.14. Running de Casteljau’s algorithm tothat has barycentric coordinates
(% 0, %) with respect taA, B, C) gives as a byproduct the control points with respect to
the domain trianglé\, B, c. Running de Casteljau’s algorithm once more for the paint
gives the control points with respect to the domain triargle, c. In a similar manner
we can obtain the control points with respect to the domain triarigjlésa andC, c, b.

To get the control points with respect to the domain triargle, ¢ (the middle patch)
we can take the control points with respect to the triagla, ¢c and run de Casteljau’s
algorithm forb, but ash has barycentric coordinatés 1, 1, 1) with respect t@, a, c, we

extrapolate.

Let us first see how (V) = aC;1 + BC2 + y(C3 acts on the triangular net. If we
put (dijk) = C(V)(bi) thena + B + ¥ = 0 and we have

dijk = abit1,jk + Bbijrik + vbij kst
= aBit1,jk — bi,jk+1) + BDIj+1.k — bi jk+1) (3.25)

le.,C(V) acts as a difference operator in the control net. Once again we are in
the same situation as in the curve case. We can stop de Casteljau’s algorithm at the
second last stage and then obtain the directional derivative as a suitable difference
in the triangle. Alternatively we can find the differences in the control net and
obtain a new triangular Bézier surface that represents the directional derivative.

Combining the above and the result about the boundary curves we have that the
directional derivative along an edghé¢ “cross” boundary derivativeis a Bézier
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Figure 3.15: A pointP and a vectorV in the planeu + v + w = 1. The vectorv

is mapped linearly to the triangles along the edge and defines the the “cross” boundary
derivative in the given direction.

curve of degre@ — 1 and that the control points are given by

dojk = ab1 jk + Bbo, j+1.k + ¥bo,j k1

= Boj+1k —b1jk) + ¥ Mo j k1 —b1jk), J+k=n-1,
diok = abi+1,0k + Bbi, Lk + ¥bi,jk+1

=abiy10k — bi,Lk) +yDijkr1—bi1k), T+k=n-1
dijo = abit1,j,0+ Bbij+1.0+ vbij1

= abit1,j0—bij0) +BMij+10-bij1), 1+]j=n-1

Exercises

3.4.1 Implement de Casteljau’s algorithm for triangular Bézier surfaces.

3.4.2 Implement a function that can find the Bézier curve corresponding to the “parame-
ter curves™u = constanty = constant, aneb = constant.

3.4.3 Write a program that determines a point and all partial derivatives to &rdara
triangular Bézier surface.

3.4.4 Write a program that splits a triangular Bézier surface into three pieces as in Fig-
urel3TP.

3.4.5 Write a program that splits a triangular Bézier surface into four pieces as in Fig-
urel3TB.






Chapter 4

Differential Geometry of Surfaces

4.1 Introduction

Intuitively a surface is a two-dimensional object, i.e., an object that can be de-
scribed by two parameters. One complication compared to curves is that a given
pair of parameters in general only can be used locally in a part of the surface.
Think of a world atlas, it takes more than one chart to describe the globe.

A particular local choice of coordinates is calleda@ordinate patcland it is sim-
ply a map from a portion oR? into R3. We have in the previous chapter seen
many examples of this.

4.2 Regular coordinate patches and the tangent plane

Just as for a curve we want parametrization with a suitable degree of differentiabil-
ity and a regularity condition. For curves we wanted the derivatives to be nonzero,
for surfaces the corresponding requirement is that the two partial derivatives are
linearly independent. This can be formulated as the following definition.

Definition 4.1. A coordinate patchor chart or local parametrizatioh of class
CK is a one-to-on&€X mapr : U — R3, whereU is an open subset @2 with
coordinategu, v) and (dr/au) x (ar/dv) # 0onU. The pair(u, v) are called
local parametersor local coordinatesand the image of the lines = constant
or u = constant are called the first and secqagameter linegespectively, see

Figure[4-1L.

Observe that if : U — R3is a coordinate patch of clag¥, andV C U is and
open subset df, thenry : V — RR3 is a coordinate patch of clag¥ too.

89
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U

' (Ug, v
(U0, vo)

Figure 4.1: A coordinate patch and two parameter lines.

Example 4.1 The simplest example of a coordinate patch is the parametrization of a
planer (u, v) = (u, v, 0), (u, v) € R2. The partial derivatives amg (u, v) = (1, 0, 0) and
r.(u, v) = (0, 1, 0), so the cross productig x r, = (0,0, 1) # Oforall (u, v) € R

Example 4.2 Consider the unit spher® < R3, a line through the north pol@, 0, 1),
and a point(u, v, 0) in thexy-plane. The line can be parametrized as (tu, tv, 1 —t)
and the square of the distance to the origirf (8°+v?+1) —2t+1. The line intersects the
unit sphere in points where the distance to the origin is 1, i.e., wheR+v?+1) — 2t +

1 = 1 or equivalently whent2= t?(u? + v? + 1). One solution to this quadratic equation
ist = 0 which corresponds to the north pole, and the otheris2/(u? + v + 1) which
corresponds to the poix, y, z) = (2u, 2v, u? + v? — 1)/(u? 4+ v? + 1), see Figur¢ 42.
The opposite magx, y, X) — (U, v) is calledstereographic projectiofirom the north
pole and defines a map froR? to S:

(2u, 2u, U2 + 12 — 1)

2
e WweR: (4.1)

re(u,v) =

We find

r(Uy, vy) =r-(Us,v)

_____________
s .

(U+, v+)

Figure 4.2: Stereographic projection from the north and the south pole.
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(1— u? +v?, —2uv, 2u)
(1+ U2+ v?)°
(—ZUU, 14 u?—v?, 2v)
(1+ 12+ v2)?

rt=2

r+

and
(—2u, —2v,1—u? - vz)

£0, forall (u,v) € R?
(1+ w2+ 02)°

+ +
ry xry =4

sort is a coordinate patch. In a similar way we define stereographic projection from the
south pole and the opposite map gives us another coordinate patch

(2u, 2v,1—u?— vz)
u+v2+1
cf. Problem[4.2]3. The image of is V* = S\ {(0,0, 1)} and the image of ~ is

V~ = S\ {(0,0, —1)}. So the regior5?\ {(0,0, £1)} = V* NV~ is parametrized in
two different ways. Iff t(u,, vy) =r (u_,v_) then

r=(u,v) = , (u, v) € R?, (4.2)

(u-,vo) (U, v4)
T )=
uz + v ui + v

(Up, vy) = (4.3)

cf. ProblemT4.Z]5. This is an example of a change of coordinates, cf. Defipifjon 4.2

Definition 4.2. An allowable change of coordinates classCK is bijective map
f : U — V of open sets ifR? such that bothf and its inverse is of claggX.

If f:U — V is an allowable change of coordinates asgdt) = f(u, v) then

we will often write (s, t) = (s(u, v), t(u, v)) for f, and(u, v) = (u(s, t), v(s, 1))

for the opposite map. So with an abuse of notation weulev) denote both a
point inU < R? and a pair of functions. This is the same terminology we used
for reparametrization of curves.

If (u, v) and(s,t) are coordinates related by an allowable change of coordinates
then by the chain rule we have

du Jduras Js guds 4 Judt guds 4 dudt u  du 1 0

gs UL Gyl =|9s0u T gtay gsty T gtay | = |qu v =

Jdv Ju||gt dt IS 4 Jv ot Buos + dv ot Jdu  du 0o 1l-
as otd Lau dv dsou " 9tau  dsov ' It v au v

[elol)
<

We have in particular that
det| I | 20
u v
If the determinant is positive then the change of coordinates is catledtation
preservingotherwise it is callesrientation reversing
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Figure 4.3: Two smoothly overlapping coordinate patches.

Definition 4.3. Two coordinate patchag : U — R3andr, : V — R3 of class

Ck overlap smoothlyf r;*(r2(V)) andr;*(r1(U)) are open subsets &, and

there exists an allowable change of coordindtesr]l(rz(V)) — rgl(rl(U))

such thar1(u, v) = ra(f(u, v)) for all (u,v) € rzl(rg(V)). Furthermore, if the
change of coordinates is orientation preserving then we say that the two coordinate
patches defines the same orientation in the overlap.

There does not exits a coordinate patch that covers all of the sphere, so a reason-
able definition of a surface needs to involve more than one coordinate patch.

Definition 4.4. A subsetM C RS is aregular surfaceof classCK, if there for
eachP € M exits a open se¥ < R3, and a coordinate patah: U — R3 of
classCX such thatM NV = r(U); and ifr; : U — R3andr, : V — R3 are two
such coordinate patches with(U) N ra2(V) # @, then they overlap smoothly.

Definition 4.5. A regular surface is calledrientableif the coordinate patches can
be chosen such that they pairwise defines the same orientation in the overlap.

A particular choice of such coordinate patches is calledrantationof the sur-
face.

Example 4.3 The coordinate patches or r~ from Example 4]2 overlap smoothly and
as any point on the unit sphe® s in the image of + orr~ S is a regular surface. From
(Z3) we see that

aup  aug vi-u2 —2u-v 2 2Y2 _ a2 2 1
det du_’ E = det U2+02)2 (U2 +02)? = —(U_ _ U_) — Su-ut = —

Juy vy —2u_v_ uZ 2 (UZ + U2 )4 (UZ + v2 )2'

gu- du- W2 +v2)2 (U2 +02)2 - - - -

The change of coordinates is not orientation preserving, but if we define a new coordinate
patcht by T(u, v) = r— (v, u), then we easily see that andt overlaps smoothly and
defines the same orientation in the overlapS$ds orientable.
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4.2.1 The tangent plane

Definition 4.6. Let M C RR3 be a regular surface of cla€X. A regular curve of
class ¢ on Mis a space curve : | — M C RS such that there for eadh < |
exists an open subintervigle J < |, a coordinate patch: U — R3 on M, and
aregular curve — (u(t), v(t)) € U with x(t) =r(u(t), v(t)) forall t € J.

o (2RO N

Figure 4.4: Aregular curve on a surface

The pair of functions — (u(t), v(t)) is called docal representatiof the curve.

If a curve onM is smooth in the sense above then clearly it is also smooth as a
space curve. The opposite is also true, cf. Lemima 4.11.

Let x(t) = r(u(t), v(t)) be a parametrization of a smooth curve on a regular
surfaceM. The velocity vector is then given by

X'(t) = U'Oru(u®), v(®) + v'Or.(um), vb)), (4.4)
where we have used the notation
ry = ﬂ and My, = ﬂ
Ju dv

We see in particular that two smooth curves on a surface have the same velocity
vector at a common point if and only the local representations have the same
velocity vector.

Definition 4.7. Let M be a regular surface and IBt € M. Thetangent space
TpM of M at P consist of all velocity vectors & to curves orM throughP. If
r : U — M is a coordinate patch arfel = r (ug, vo) then (4:#) shows that

TpM = {tary(Uo, vo) + tar, (U, vo) | t1, t2 € R}.
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Thetangent plango M at P consist of all pointQ € R3 such thaﬂ% e TpM,
i.e., itis the plang P + t1ry(Uo, vo) + tor w(Uo, vo) | t1, t2 € R}.

Asry andr, are linearly independent for a regular surface we seeTipt is a
two dimensional vector space with basisr .

If (u, v) and(s, t) are two set of local coordinates related by an allowable change
of coordinates then we see that

— | JS ot .
Y 35 aud LMt

and ifv = ary+br, = crs+dr; are expansions of a tangent vectavith respect
to the two bases ofp M, then

ds 4ds
|- g][E]
=% @ (4.6)
[d fu gl LP
Definition 4.8. Let M be a regular surface and IBte M. A normal vectorto at
P is a vector that is orthogonal M. If r : U — M is a coordinate patch and
P = r(up, vg) thenry(ug, vg) x r,(Ug, vo) is a normal vector, and all others are
proportional to this. By normalization we getiait normal vector

fu X Iy

N 4.7

- ru X Iy

The unit normal in[(4]7) are often referred toths normal vector, but it is only
defined up to a sign, see Problem4.2.11.

Example 4.4 Consider the coordinate patch {4.1) on the unit sphere. If we normalize
re x ri we obtain

2 2
N+=_(2u,2v,u +v l)=—r+(u "
14+ u2+4v? n

(the inward normal). Similaf{4.2) yields the unit normal vector

_ (2u,2v,1—u2—v2) W
B 1+ u2+ 02 =r ),

(the outward normal on the sphere).

The above example illustrates Problém 4.2.11, an allowable change of coordi-
nates is orientation preservinghfis preserves and it is orientation reversindlif
changes sign. This obvious gives the following result, cf. Proljlem 4.2.12
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Theorem 4.9.For a regular surface the following three statements are equivalent.

1. The surface is orientable.
2. The surface posses a continuous unit normal vectorfield.

3. The surface posses a continuous non vanishing normal vectorfield.

Figure 4.5: A coordinate patah: U — M can be extended to a local diffeomorphism
T:V > RS

Lemma 4.10. Let M be a regular surface of class*Cletr : U — M be a

coordinate patch and Igiuo, vo) € U. Then there exists an open setVU and

an injective & mapt : V = V x] — ¢, e[~ R3 whos inverse is €100, such that
r(u,v) =T(u,v, 0)forall (u,v) € V, see Figuré¢ 4]5.

Proof. LetN(u, v) = ry(u, v) x ry(u, v)/|ry(u, v) x ry(u, v)| be the unit normal

and defing(u, v, t) = r(u, v) + tN(ug, vg). This is clearly aCX map. Further-
more, the partial derivatives &lg, vo, 0) arery(Ug, vo), ry(Uo, vo), andN(Ug, vo)
respectively and they are obviously are linearly independent. The lemma is now a
consequence of the inverse function theorem. O

Lemma 4.11. Consider a regular surface Mc R2 of class &, and let¢ < k.
If fisamap W— M where WC R" is an open set, then the following three
statements are equivalent.

1. Considered as map W> R3, f is Ct.
2. For each coordinate patch: U — M the mapr 1o fii10w) IS Cct.

3. For each point Pe M exists a coordinate patah: U — M with P € r(U)
such that the map™ o f,¢-1, ) is C".
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Proof. 1 — 2: Letr : U — M be a coordinate patch and consider a point
P e f~1(r(U)). By Lemma[4.10 we can extemdo a magr : V — R3, where
Visan open set iiR3 andP e r(V) The inversé~! : 7(V) — R3is of class
Ckandag1o fe10vy =17 1o fit-1¢u) the latter is of clas€®.

2 — 3: Is trivial.

3 — 1: LetP € W and choose a coordinate patchU — M with f(P) €
r(U) such that the map= o f -1, is C*. We haveP ¢ f~1(r(U)) and as
fit-1c @y =T or*o ft-14uy We can conclude that is Ct in f ~1(r(U)). As
P was arbitray we are done. O

Definition 4.12. Amap f : W — M that satisfies one the three equivalent con-
ditions in Lemmd 4.11 is called@‘ map. Ifr : U — M is a coordinate patch
and f (u) = r(fy(u), fou)) forallu e f~1(r(U)) then(fi(u), fo(u)) is called
thelocal expressiomf f.

Similar we have

Lemma 4.13. Consider a regular surface Mt R3 of class ¥, and let¢ < k. If
f isa map M— R", then the following two statements are equivalent.

1. For each coordinate patch: U — M the map for : U — R"is C¢.

2. For each point Pe M exists a coordinate patah: U — M with P € r(U)
such that the map r : U — R"is C*.

Proof. 1 — 2 is trivial, so we need only consider 2= 3. Letr : U —

M be a coordinate patch and letp, vg) € U. Now choose a coordinate patch
ri : Ug — M with r(ug, vg) € r1(Us) such that the mag ory : Uy — R"is

Ct. Letg : r~1(r1(Uy)) — U1 be an allowable change of coordinates such that
r(u, v) = ry(gu, v)) for all (u, v) € r=1(r1(Uy)). Then(up, vo) € r1(r1(Uy))
andf or(u,v) = f orqog(u,v) forall (u,v) € r1(ri(Uy)), and we see that

f orisCtinr=1(ri(Uy)). O

Definition 4.14. Amap f : M — R" that satisfies one the two equivalent condi-
tions in Lemmd 4.13 is called@‘ map. Ifr : U — M is a coordinate patch then
(u,v) — f(r(u,)) is called thdocal expressiomnf f.

Finally we consider maps between two surfaces.

Lemma 4.15. Consider two regular sufaces MM, < R3 of class ¢ and let
¢ <k.If f: M1 — My, then the following three statements are equivalent.

1. Considered as map M— R3, f is Ct.
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2. For each pair of coordinate patches : Ui — M;, i = 1,2, the map
120 f o ytory -1y, I8 C.

3. For each Pe M; exists coordinate patches : Uy — M;, i = 1, 2, such
that Pe rl(U]_), f(P) (S I‘z(Uz) andl’z_l e} f e} rll(forl)il(rZ(UZ)) |S Ce

Definition 4.16. Amap f : M; — My that satisfies one the three equivalent
conditions in Lemmd 4.15 is called@‘ map. Ifr; : Uy — M;, i = 1,2,
are coordinate patches ardri(u, v)) = ra(f1(u, v), fo(u, v)) for all (u,v) €

(f or)~Y(ra(Uy)), then(f1(u, v), f2(u, v)) is called thdocal expressiomf f .

If f is bijective and the inverse map i<C4 map too, therf is called adiffeomor-
phism

Letr; : Ui — M;, i = 1, 2 be coordinate patches for two regular surfaces and let
f : M1 — M> be a smooth map with the local expressidn(u, v), fa2(u, v)). If

y : | — My is a smooth curve iM1 with the local expressioKy1(t), y2(t)),
thenf oy : I — My is a smooth curve irM, and the local expression is
(f1(y1(1), y2(1)), fa(y1(t), y2(1))). Differentiating one of the coordinates yields

4t i), 720) = 2 ). 7)) 7 ) + L (D). vat)) vt
d_t( i (ya(t), y2( )) = %(n( ), y2(1) v () + %(Vl( ), Y2(1)) vo(t)

In other words, with respect to the basig, r1, of T, )Mz and the basisy, r2,
of Tt ) M2 the tangent vectorg’(t) € T, t)M1 and(f o y)'(t) € Tt ) M2
has the coordinates

[Vi(t)] and [%(“(””2@) %(Vl(t)»yz(t))} [yl’a)]
72 2 (1 (1), y2(0) D2 (1), ya(t)) | L72®)
respectively. If we put = 0, then the last expression only dependsyd)

andy’(0), but not on any higher order derivatives. l.e uif | — M1 is an other
smooth curve withu(0) = ¥ (0) andu/(0) = y'(0), then(fou)’'(0) = (foy)'(0).

Definition 4.17. Let M1, M> € R3 be two regular surfaces and IBte M;. The
differentialof a smooth mag : M; — M is a linear map

dfp: TpM1 — TipyM2: ¥/(0) > (f 0 ¥)(0)

wherey : | — Mj is a smooth curve withy (0) = P.

Furthermore, let; : Ui — M;, i = 1,2 be coordinate patches and suppose
the local expression fof is (f1(u, v), f2(u, v)). If we for a tangent vectov €
Tryu,v)M1 and the image &) (V) € T, u.0) M2 has the expansions

v=olry + 0%, and  dfrun (V) = whroy + w?ry,
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respectively, then we have the following matrix expression

- (% £
w? | T o ofa | |02
au - v

Theorem 4.18 (The inverse function theorem)Let f : M; — M» be a C
map between regular 'Csurfaces. If, for a point Re My, the differentiald fp :
TpM1 — T¢(pyM2 is regular, then there exists open neighbourhoods Ry C
My and f(P) € Vo, € My of P and f(P) respectively, such thatf is a diffeo-
morphism V— W of class C, i.e., f is alocal diffeomorphisnof class C.

Proof. Choose coordinate patchgs: U; — M;,i = 1,2, with P € r1(U1) and
f(P) e ra(U2). Let(f1, f2) be the local expression fdr, such that we have the

following picture

f
M{ —— Moy

W T
fq, f
Uy (f1, f2) U,

The regularity od dp implies the regularity of the Jacobian ©Of;, f2) so by the
usual inverse function theorem we can choose a smidijgfand U2) such that

(f1, f2) is a diffeomorphism clas€t. If we putVi = riU),i = 1,2, then
fv, : Vi — V2 is a diffeomorphism class®. O
AN

Figure 4.6: A regular surface is locally the graph of a smooth function “from” the tangent
plane “to” the normal line.

Theorem 4.19.Let P be a point om a regular surface M of clask, @t vy, vo
be a basis for the tangent space N and letN be the unit normal vector at P.
Then there exists a neighbourhood UGE R? and a CX-function f: U — R
such that the map

U—R3:(U,v) —~ P+uvy+ovvy+ fu, v)N
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is a coordinate patch of classk®n M. Furthermore, f0) = %(0) = %(O) = 0.

Proof. The orthogonal projectio®® — TpM is a C® map so the restricion
M — TpM is aCK map. The differential aP is clearly the identity map
TpM — To(TpM) = TpM, in particular regular. BY the inverse function the-
orem it locally has &C¥ inverse and if we compose this inverse with the map
R2 — TpM : (u,v) — Uuvi + vVvo we obtain a mapy — M C RS of the
required form. O

Observe thatf measures the distance from the given point on the surface to the
tangent plane.

Problems

4.2.1 Let(x, Y, X) — (U, v) be the stereographic projection from the north pole, cf. Ex-
ample[4.2 and Figurige 4.2. Determiqeg v) as a function ofx, v, z).

4.2.2 Let (X, Y, X) = (u, v) be the stereographic projection from the south pole, cf. Ex-
ample[4.2 and Figurie 4.2. Determiqeg v) as a function ofx, v, z).

4.2.3 Find the opposite map,” : R> - S C R3, of stereographic projection from
the south pole, cf. Example #.2, Figure]4.2, and Prolllem|4.2.2. Show thsia
coordinate patch of clags™.

4.2.4 Find the parameter lines for the two coordinate patches (4.1)and (4.2).

4.2.,5 Letr™ andr~ be the two coordinate patché€s{4.1) and|(4.1). Showthat™, v*) =
r—(u-,v) if and only if (&=3) holds and thaf{4.3) defines an allowable change of
coordinates.

4.2.6 Show thatspherical coordinates
r(u, v) = (sinu cosv, sinu sinv, cosu), (u,v) € (0, 7) x (—m, )
is a coordinate patch on the unit sphere, see Fifjure 4.7. What are the parameter
lines?
4.2.7 Show that

r(u,v) = (r cosv,r sinv,u), (U,v) €R x (—m, )

is a coordinate patch on a cylinder, see Figurg 4.7. What are the parameter lines?
4.2.8 Show that
r(u, v) = (vcosu, vsinu, hu), (u, v) € R? (4.8)

is a coordinate patch. This surface is calldteéicoid see Figur€4]7. What are the
parameter lines?
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Figure 4.7: Spherical coordinates on the sphere, see Prgblemn 4.2.6. Cylinder coordinates
on the cylinder, see Problem 4]2.7. Parameter lines on the helicoid, see Pfoblém 4.2.8 and
on the graph of the functiofx, y) — y? — x2, see Problerh 4.3.9.

4.2.9 LetU C R? be an open subset and let U — R be aCk function. Show that
r:(u,v) — (u, v, f(u, v)) (4.9)
is aCk-coordinate patch. A patch of this form is often calleMange patch

4.2.10 Show that the cylinder and the helicoid are regular surfaces.

4.2.11 Show that the unit normal in (1) is invariant under orientation preserving
change of coordinates, but changes sign under an orientation reversing change of
coordinates.

4.2.12 Prove Theorern4.9.

4.2.13 Find the unit normal vector of the cylinder, the helicoid, and the graph of a function
f:U—>R.

4.2.14 Consider a plane curve given by the parametrizafior> R? : u — (r (u), z(u))
withr (u) > O for allu e |. If this curve is rotated around theaxis, we obtain a
surface of revolutiotWe can parameterize it as follows:

r(u, v) = (r(u) cosv, r (u) sinv, z(u)). (4.10)
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Now assume that the original cur(/e(u), z(u)) is regular and one-to-one.

(&) Show that[[4-10) is a coordinate patchi€ (vq, vp) with v, — v < 27.
(b) ShowthatM = {r(u,v) | u € I, v € R} is a regular surface.
(c) Find the unit normal vector of the surface.

4.2.15 Let (r (u), z(u)) = (2 + cosu, sinu). Show that the corresponding surface of rev-
olution is a regular surface, (called@us), and determine the unit normal vector.

4.2.16 A ruled surfaceis a surface generated by a one parameter family of linesx Let
| — R3be aregular curve of clag and letq : | — RS2 be a non vanishing vector
function of classCK. We get a ruled surface by the following parametrization:

ru, v) = x(u) + vq(u) (4.11)

The parameter lines = constant are called theulings of the surface, and a
parametrization of this form is called a parametrizationuled form It is in gen-

eral a non trivial task to determine whether the nfap{4.11) is one-to-one, and it can
only be done by a case by case study. The regularity condition on the other hand is
easier to handle. Find the cross prodyci r,.

4.2.17 Show that the hyperbolic parabolaid= y?> — x? is a doubly ruled surface; that is,

it can be generated by two different families of lines. Find parametrization of the
surface in ruled form.

4.2.18 Letx(u) = (cosu, sinu, 0), letq(u) = (sinzu cosu, sin3u sinu, coszu), and let
—m < u < m. Consider the ruled surfacE{4.11) fes < v < 3. Compute the
unit normalN(u, v) and show that

uIirg X(u,v) = uIirr_1 X(u, —v) and . Iir_n N(u, 0) = —ulirg N(u, 0),

see Figuré¢ 4]8. This is calledbbius band

Exercises

4.2.1 Write a program that calculates the normal vector of a tensor product Bézier sur-
face.



102 CHAPTER 4. DIFFERENTIAL GEOMETRY OF SURFACES

4.2.2 Write a program that calculates the normal vector of a tensor product B-spline
surface.

4.2.3 Write a program that calculates the normal vector of a triangular Bézier surface.

4.3 First fundamental form

In this section we will study how to measure length, angles, and area on a surface.
As we shall see this is all determined by theer productin the tangent spaces
TpM, P € M. If we are given a coordinate patch: U — M then we have

a “natural basis'ty, r, for Tp M, but it is in general not orthonormal. Indeed, if

v = ary + br, andw = cry + dr, are two tangent vectors then

V-w = (ary+br,) - (cry +dry)
=acry-ry+ @d+bory-r, +bdry, -r,
=acE+ (ad+ bo)F 4+ bdG,

where we have introduced the three functions
E(u,v) =ry(u,v) -ryu, v)
F(u,v) =ry(u,v) - ry(u,v) (4.12)
G, v) =ry(u,v) - ry(u, v)

In the literature you can also find the notatpn = ry-ry = E, Q1o =ry-ry, = F,
O21 ="y -ry = F,andgy =r, - r, = G. In matrix notation the formula for the

inner product reads
v-w=1[a b [E g] [g] (4.13)

Let P = r(ug, vo) be a point on a regular surface. As a function of the coordinates
(a, b) of a tangent vectov = ary(ug, vo) + br,(Ug, vg) € TpM, the length
squared is given by

l(v) = |v|> = Ea® + 2Fab+ G (4.14)
The functionl is a quadratic form offp M called thefirst fundamental fornand

E, F, G are the coefficients of this form with respect to the bagis .

Itis important to realize that the first fundamental forns invariant under change
of coordinates, but the coefficients F, G do depend on the parametrization.

If x(t) = r(u(t), v(t)) is a parametrization of a smooth curve bh then the
arc-lengths satisfies

S(1)? = UME(u), v() + 20" )V (O F (ut), v(t)) + o' ©)?G(ut), v(t)).
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In short notation we have

ds du\? du dv dv\2

In the literature you will often find the the following form:
ds® = Edu® + 2F dudv + G dv?.

If we interpret & as the length of a tangent vector aid, dv) as coordinates for
the tangent vector then this is simply the formula for the first fundamental form.

We see immediately thd& = 1 if an only if u is arc length on the first set of pa-
rameter curve<; = 1if and only ifv is arc length on the second set of parameter
curves, and= = 0 if and only if the two set of parameter curves intersects each
other orthogonal.

The length of a segment of a curve> r(u(t), v(t)) is given by

t1 1
s(ty) = / s'dt = / VEU)2 + 2Fu'v’ + G(v')2 dt.
t t

0 0

Theanglea between two tangent vectovs= ar, + br, andw = cry + dr, is
given by

vew acE+ (ad+ bco)F +bdG
VIIw] \/(Ea2+2Fab+sz)(Ec2+2ch+Gd2)

Let (u, v) and(s, t) be two set of local coordinates related by an allowable change
of coordinates and leE1, F1, G1 and E», F,, G2 be the corresponding coeffi-
cients of the first fundamental form. In Problém4.3.7 it is shown that

9s ot ds s
BL-BHEGEE s
1 1 v 9v 2 21 Ly 900
It is simply the transformation rule for a quadratic form on a vector space.

Example 4.5 Consider the coordinate patch on the sphere given by {4.1). We find that

4 4

E=rj-ri=———5, F=rj-1r;=0 G=rj-rj=—7-—-.
Y (14w +?) ’ (1+ w2+ v2)?

Observe that,, r, is an orthogonal basis for the tangent space, it is an orthonormal basis
scaled by a factor of A1+ u? + v2). The parameter lines are in particular orthogonal.
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4.3.1 Area
If v andw are two vectors ifR® andw is the angle between them then we have
v x w|? = (Jv||w]| sinoz)2 = [VIw|?(1 - co ) = [V W] — (v - W)

Now letr : U — M be a coordinate patch on a regular surf&teThe vectors
andr, span a parallelogram with area

rux rel = /I = (ry - r? = VEG - F2

So itis plausible (and in fact true) that if we have reg@mn M with D C r(U),
then theareaof D is given by a double integral:

aree(D):// Iry xrv|dudv=// vVEG—F2dudv. (4.16)
r-1(D) r-1(D)

Figure 4.9: A spherical region o®’.

Example 4.6 Consider the regiod on S? with spherical coordinates
(U, v) € [uo, U1] x [vo, v1],
see Figur¢ 4]9. If we use the parametrization
r(u, v) = (sinu cosv, sinu sinv, cosu),

then we haveE = 1, F = 0, andG = sirfu, cf. Problen4.312. S&EG — F? = sintu,
and the area of the region becomes

vl ug
aregD) = // VEG = F2dudv = f / sinu dudv = (v1—vg)(COSUg—COSU1).
r-1(D) vo JUg

If we in particular havely = 0,u; = m, vg = 0, andv; = 27, thenD is the whole sphere
and we see that
aredS?) = (2r — 0)(cos 0— cosw) = 4.
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Problems

4.3.1 CalculateE, F, andG for the coordinate patch on the unit sphere.

4.3.2 CalculateE, F, andG for the sphere parametrized by spherical coordinates cf.
ProblenZ716.

4.3.3 CalculateE, F, andG for the cylinder and the helicoid, cf. Probl¢m 4]2.7 and 4.2.8.
4.3.4 CalculateE, F, andG for the graph of a functiorf : U — R, cf. Problen{Z4:2]9.
4.3.5 CalculateE, F, andG for a surface of revolution, cf. Problem 4.2.14.

4.3.6 CalculateE, F, andG for a ruled surface, cf. Problem4:2.16.

4.3.7 Prove [47Ib), hint: us€{4.5) dr(4.6) and(4.13).

4.3.8 Find the area of the region on the helicdid(4.8) giverilny) € [0, 27] x [—1, 1].

Exercises

4.3.1 Write a program that calculatds, F, andG for a tensor product Bézier surface.
4.3.2 Write a program that calculatés, F, andG for a tensor product B-spline surface.

4.3.3 Write a program that calculatés, F, andG for a triangular Bézier surface.

4.4 Second fundamental form

Figure 4.10: The Frenet-Serret frate, b and the Darboux fram€&, U, N.

Let M be a regular surface with unit normidl Lett, n, b and« be the Frenet-
Serret frame and the curvature of a curveMrrespectively. Ad is a tangent
vector to the surface it is orthogonalhtbso if we putT =tandU = N x T, then
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T, U, N is another positively oriented orthonormal frame along the curve, called
the Darboux framesee Figur¢ 4.10.

The curvature vector is orthogonalttso we can write
k = kn = kgU + knN, (4.17)

wherek, is called thenormal curvatureand«g is called thegeodesic curvature
We have of course thaly = xn - U andkn, = «n - N and we will now find a
formula for the latter.

Let the arc length parametrization of the curve be given on the faisn =
r(u(s), v(s)), wherer : U — M is a coordinate patch oM. By the chain
rule we have

_dx_dur —|—dvr
T ds ds Y ds’

- ()L ()
T ds ds2 ds\ds ') ds\ds °®
d2u du\? du dv
= (@ru + (E) Fuu + Egrvu)
d2v dv du dv\2
+ <@ru gt (E) r,,v)

—@r +@r + d_u 2r +2d—Ud—vr + d—v 2r
T ds2 Y ds2 ds/) "7 Tdsds ds/) "V

t

Asry andr, are orthogonal ttN we obtain

du)? du dv dv\?
Kn:Kn'N:<£> ruuN—FZEErUUN—‘—(E) I‘vv-N.

If we put
L=ry-N, M=ry,-N, and N=r,-N (4.18)

then we can write

du\? du dv dv\?

The tangent vectdr has coordinate¢ds, 9¢) with respect to the basis,, r,, for

TpM. So we see that the normal curvaturedepends on the tangent only. So if
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NA b

tangent plane

Figure 4.11: The curvature, the normal curvature and the geodesic curvature.

two curve onM have the same tangent at some common point, then they have the
same normal curvature at that point.

If we look in the normal plane of the curve then we have the picture in F[gurg 4.11.

If 6 is the angle between the tangent plane of the surface and the osculating plane
of the curve on the surface, then we can see that the geodesic curvature and the
normal curvature is given by

Kkn = —k SIiNG and kg =k COSh. (4.19)

The normal curvature is determined by the tangent vector which in turn is deter-
mined by the line of intersection between the tangent plane and the osculating
plane, so we may writd (4.119) as

K = —
sing

"~ tand

and kg

A particular example of the situation in Figure 4.11 is obtained by intersecting
the surface with a plane that contains the tangent line and have thetawite

the tangent plane @ < M. If 6 = n/2 then we intersect the surface with a
plane containing the surface normal, we call thisoamal section The geodesic
curvature atP is then zero and the normal curvature satisfies: +«.

Definition 4.20. Thesecond fundamental forim a quadratic form on the tangent
spacelpM. If v = ar + br, is a tangent vector then it is given by

I(v) = La® + 2Mab+ Nb2. (4.20)

SolL, M, andN are the coefficients of the second fundamental form with respect
to the basisy, r,.

As we saw above it makes sense to talk about the normal curvature in a direction
at a given point on a regular surface.
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Theorem 4.21.Letv € Tp M be a tangent vector of a regular surface. The normal
curvature at P M in the directionv is the ratio between the second and first
fundamental form:

I(v)

=1 (4.21)

Kn

Proof. Letx(t) = r(u(t), v(t)) be a curve oM. The velocity isy = 3r,+3r,,
and if s denotes the arc length the unit tangent vector is

(@)

du dv (E’,—?) dt
(%)

CetTET @)

Ny + My.

The normal curvature is

du ; ds\? du /ds\ /dv /ds
2 v v
L () +2ME S +N(P)
(%)*
t
L (%)% roMd 1 N(2)° 1)
2 v v 2 ’
E(%) +2F%+6(H)° 'V

dv / ds\?
dt dt

where we have used th%ti. is the length of the velocity vector which squared is
given by the first fundamental form. O

In the literature you will often find the the following form:
kn ds? = L du? + 2M dudv + N dv?.

If we as before interpretsas the length of a tangent vector i, dv) as coor-
dinates for the tangent vector then this equivalenfio|4.21).

Example 4.7 Consider the coordinate patch on the sphere given by{4.1). We find that

(4u(u? — 3v? — 3), 4v(3u? — v2 — 1), 4(1 + v — 3u?))
(1+ w2+ 02)°
(4v(3u2 —v2—1),4uBv? —u?-1), —16UU)
(1+ u2 412)°
(4u(3v? — u? — 1), 4v(v? — 3u? — 3), 41+ U? — 3v?))

rt = )
" (1+u2+02)°

+

uu ’

+

uv T

’
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By taking the inner product withl, see Examplg 4.4, we obtain

4 4
L=ru+u-N=—2, M=r}  -N=0, N=rv+v-N=—2.
(14 u?+?) (14 u2+12)
If we compare with Examplg 4.5 we see thatll and hence:, = I (v)/I(v) = 1 at any
point and in any direction on the sphere.

As the first and second fundamental form both are quadratic forms on the tangent
space they behave similar under a change of local coordinat@s.uif and(s, t)

are two set of local coordinates related by an allowable change of coordinates
andL, M1, N; andL2, M2, N2 are the corresponding coefficients of the second
fundamental form then

s u-15 1l 4008
Ea 4.22
[Ml Nl] [g—f} 5ol M2 N2 0 S’—It) ( )

From linear algebra we know that there exists an orthonormal basis that diagonal-
ize a given quadratic form. We formulate it as follows:

Theorem 4.22 (Euler). Let M be a regular surface and let B M. There exists
numberse; and k2, and an orthonormal basis;, e, for the tangent spacepM
such that the second fundamental form is given by

I (@aey + bep) = k1a® + Kkab?.
Equivalently, the normal curvature in the directionss e; + siné ey is

Kn = K1 cofo + K2 SNt o (4.23)

The numberg; andx; are called th@rincipal curvaturesand the directions given

by e; ande; are called therincipal directions Before we describe how to deter-
mine the principal curvatures and the principal directions we note some immediate
consequences of Theorém 4.22.

Corollary 4.23. The two principal curvatures are the minimum value and maxi-
mum value of the normal curvature. Any value between the two principal curva-
tures is the normal curvature for some direction.

If k&1 = k2 then the normal curvature is the same in all directions, any orthonor-
mal basis will diagonalize the second fundamental form and all directions are
principal.

The following theorem tells how to determine the principal curvatures and the
principal directions.
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Theorem 4.24.Let P € M be a point on a regular surface, let and«, be the
principal curvatures at P, and leg = ajry+bir,, 1 = 1, 2, be the corresponding
principal directions. They are determined by the following matrix equations:

o MB]-0[F &) e

The principal curvatureg; and «, are in particular the roots of the quadratic

equation
L M E F
([ ] -+[r c])=0

Whengk; is known the corresponding principal directien = ary + bjr, is de-
termined by the matrix equation

(5 W)= [F cPla]=[ol

Proof. The first and the last matrix equation are equivalent, and there is a non
trivial solution to the latter if and only ik; is a solution to the middle equation.
I.e., we only have to prove the first statement.

There exists a unique symmetric linear map TpM — TpM such that [v) =

v- f (v) forallv e Tp M, and the quadratic form Il is diagonalized by diagonalizing

f. So the principal curvatures and principal directions are the eigenvalues and
eigenvectors foff, i.e., they are determined by the equatidriis;) = «jg.

Define the matrices

_|E F L M & .
I Y S

and recall that ifv andw are the coordinate matrices for two vectorsv € Tp M
with respect to the bag'rsj, r, then the inner product is given iy w = v | w.

If F denotes the matrix fof with respect to the basig, andr, then we have
vTlv=0vTIFuforall 2 x 1 matricesw. Thus = | F andF = I-1I. Hence

f(e)=rie & Fa =«8 < l_lllg:lqg — la =«lea. U

Corollary 4.25. At a point P with F= M = 0, the principal curvatures and
principal directions are given by

L
=

e =
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Proof. WhenF = M = 0 the matrix equation for the principal curvatures and
principal directions becomes

L-«E 0 al |0
0 N—-kN|[|b| (0]
and we see immediately that the solution is as claimed. O

Definition 4.26. Let P € M be a point on a regular surface anddetand«, be
the principal curvatures &. The Gaussian curvature KP) of M at P is the
product of the principal curvatures:

K(P) = x1ko2. (4.24)

Themean curvature KIP) of M at P is the mean value of the principal curvatures:

K1+ K2
2

H(P) = . (4.25)

The sign of the Gaussian curvature is used to classify point on a surface.

Definition 4.27. Let P € M be a point on a regular surface, and ketP) and
H (P) be the Gaussian and mean curvatur® at he point is called

e ellipticif K(P) > 0, i.e., the principal curvatures have the same sign.
e hyperbolicif K(P) < 0, i.e., the principal curvatures have different signs.

e parabolicif K(P) = 0 andH (P) # 0, i.e., exactly one principal curvature
is zero.

e planarif K(P) = H(P) =0, i.e., both principal curvatures are zero.

At an elliptic points the normal curvature has the same sign in all directions so
the surface curves in all directions either towaMl®r away fromN, locally it

looks like a bowl and is on one side of the tangent plane. At a hyperbolic points
one principal curvature is negative and one is positive. In the direction of the
negative principal curvature the surface curves away fibm@nd orthogonal to

this direction it curves towards, locally it looks like a saddle. Furthermore there
are two directions where the normal curvature is zero, such a direction is called
anasymptotic direction

An umbilical pointis a point withk1 = k2. AS (k1 — k2)? = (k14 k2)% — dk1kr =
4(H? — K) a point is an umbilical point if and only iH2 — K = 0.
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Example 4.8 Consider the torus
ru,v) = ((2 4+ cosu) cosv, (2 + cosu) sinv, sin u),
we calculate

ru(u, v) = (= sinu cosv, — sinu sinv, cosu)

ry(u, v) = (—(2+ cosu) sinv, (2 + cosu) cosv, 0),

E(uv)=ry-ry=1,

Fuv)y=ry-r, =0,

G(U,v) =T, - I, = (24 cosu)?,

gy Xr,= (—(2 + cosu) cosu cosv, —(2 4+ cosu) cosu sinv, —(2 + cosu) sinv),

[ry xr,|=vEG-—F2=2+ cosu,

ry X r . .
NUu,v) = ——2% = (— cosu cosv, — cosu sinv, —sinv),
|ru X rvl

ruu(U, v) = (—cosu cosv, —cosu sinv, —sinv),

ruw(U, v) = (sinu sinv, — sinu cosv, 0),
Fow(U, v) = (—(2+ cosu) cosv, —(2+ cosu) sinv, 0),
L(u,v) =ry-N=1,
M(u,v) =ry, -N =0,
N(u, v) =r,, - N = (2 + cosu) cosu.

We see that we are in the situation of Corollary #.25, Wite= M = 0. So the principal
directions are the parameter directions and principal curvatures atelL /E = 1 and
ko = N/G = cosu/(2 + cosu). The Gauss curvature ks (u, v) = cosu/(2 + cosu)
and the mean curvature K (u, v) = (1 + cosu)/(2 + cosu). We have elliptic points
for —w/2 < u < /2, hyperbolic points forr/2 < u < 37/2, and parabolic points for
u=+mn/2, see Figur€ 4.12.

We can determine the Gaussian and mean curvature without calculating the prin-
cipal curvatures

Proposition 4.28. Let P be a point on a regular surface M and let E, G and
L, M, N be the coefficients of the first and second fundamental form at P in some
coordinate patch. The Gaussian and mean curvature are given by

K(Py = N = M2
~ EG-F2
GL—-2FM +EN
H(P) = i

2(EG - F?
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ZA parabolic points

|

hyperholic point elliptic points

T

parabolic points

Figure 4.12: The classification of points on the torus.

furthermore, the principal curvatures are

ki = H(P) £ vVH(P)2 — K(P)
Proof. With the notation from the proof of Theorem 4.24 we have

defl) LN - M2
del) EG-—F?2’

K(P) = k1xo = de(F) = det(1™'1) =

To find H(P) we need the matrig.

ey L G —-F][L M
= = = EG-F2|-F E M N

1 |:GL—FM GM—FN]

EG-F2(-FL+EM —-FM+EN
Thus
1
H(P) = KHZ_KZ = Etrace(;)

_Liace GL—-FM GM-FN

2 EG—F2|-FL+EM —FM+EN

_ GL—-2FM +EN

 2AEG-F?
Finally,

(k1 — M) (k2 — A) = A% — (k1 + k2)A + k162 = A2 — 2H(P)A + K (P),

and the roots 0£2 — 2H (P)x + K (P) are as stated. O
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We saw in Theorenm 4.9 that we locally can write the surface as a graph of a
function defined on the tangent space. We also saw that the first order term of this
function vanishes. As we are about to see the second order term is essentially the
second fundamental form of the surface.

Proposition 4.29.Let P € M be a point on a regular surface, let: U — M

be a coordinate patch around P and lef M, N be the coefficients of the second
fundamental form calculated in this coordinate patch. gtvo be a basis for
TpM and parametrize the surface as

T(s,t) = P +svy+tva + f(s t)N(P).

If vi =ryandvy =r, then

f(s,t) = L(P)s? + 2M(P)st+ N(P)t? 4 o(s? + t?).
If v1, v2 is an orthonormal basis in the principal directions then

f(s,1) = k1(P)S% + k2(P)t? + o(s? + t2),
wherek1 andk» are the principal curvatures.
Proof. For(s,t) = (0, 0), i.e., at the poinP we have
Ts(0,0) = vq1 + f5(0, )N = vy, T1(0,0) = vo + f;(0, O)N = va.
and
Tss(0,0) = fsg(0, 0N, Tsi(0,0) = (0, 0N, T:(0,0) = f1(0, O)N.

We see that if use the coordinate pakdhen the basis fofp M is vy, v, and the
coefficients of the second fundamental formTgriv with respect to this basis is

~ ~

L=TssN = fs5(0,0), M =FstN=fs(0,0, N =TyN= f(0,0).
As (0, 0) = f5(0, 0) = f;(0, 0) = 0 the Taylor expansion of is
f(s,1) = fss(0, Ot + 25¢(0, 0)St + f11(0, 0t + 0(S? + t?)
= Lt? + 2Mst + Nt? + o(s? + t?).

Now we only have to note that the coefficients of the second fundamental form on
TpM with respect to the basig, r, areL(P), M(P), N(P) and that the coef-
ficients of the second fundamental form ©pM with respect to an orthonormal
basis in the principal directions axe(P), O, x2(P). O
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If we replace the functiorf above with second order term dfthen we obtain

a paraboloid, called thesculating paraboloidwhich has second order contact
with M at P. If we intersect the osculating paraboloid with a plane parallel to the
tangent plane then we obtain a conic section which

e at an elliptic point is an ellipse, a poinP{, or empty.

¢ at a hyperbolic point is a hyperbola (with asymptotes in the asymptotic di-
rection) or two intersecting lines (throudh in the tangent plane in the
asymptotic directions).

e ata parabolic point is two lines (parallel with the asymptotic direction), one
line (throughP in the tangent plane in the asymptotic direction), or empty.

e at a planer point is the tangent plane or empty.

TheDupin indicatrixis the union of the intersection with the two planes that have
distance one to the tangent plane.

Problems

4.4.1 Find the coefficients of the second fundamental form for the cylinder, cf. Prob-
lem@.2.¥. Determine the Gaussian curvature, the mean curvature and the principal
curvatures and directions.

4.4.2 Find the coefficients of the second fundamental form for the helicoid, cf. Prob-
lem@.Z8. Determine the Gaussian curvature, the mean curvature and the principal
curvatures and directions.

4.4.3 Find the coefficients of the second fundamental form for the graph of a function,
cf. ProblemT4:Z]9. Determine the Gaussian curvature, the mean curvature and the
principal curvatures and directions.

4.4.4 Find the coefficients of the second fundamental form for a surface of revolution,
cf. Problem4-Z14. Determine the Gaussian curvature, the mean curvature and the
principal curvatures and directions.

4.4.5 Find the coefficients of the second fundamental form for a ruled surface, cf. Prob-
lemd.ZIp. Determine the Gaussian curvature, the mean curvature and the principal
curvatures and directions.

Exercises

4.4.1 Write a program that calculatés M, andN for a tensor product Bézier surface.
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4.4.2 Write a program that calculatés M, andN for a tensor product B-spline surface.
4.4.3 Write a program that calculatés M, andN for a triangular Bézier surface.

4.4.4 \rite a program that calculates the Gaussian and mean curvature for a tensor prod-
uct Bézier surface.

4.4.5 Write a program that calculates the Gaussian and mean curvature for a tensor prod-
uct B-spline surface.

4.4.6 Write a program that calculates the Gaussian and mean curvature for a triangular
Bézier surface.

4.4.7 Write a program that calculates the principal curvatures and the principal directions
for a tensor product Bézier surface.

4.4.8 Write a program that calculates the principal curvatures and the principal directions
for a tensor product B-spline surface.

4.4.9 Write a program that calculates the principal curvatures and the principal directions
for a triangular Bézier surface.



Chapter 5

Rational Curves and Surfaces

5.1 Projective geometry

The fastest way of defining a rational Bézier or B-spline curvR9ris probably

as acentral projectionof a polynomial curve irR9+1. The study of central pro-
jections started in the Renaissance when the artists started to use true perspective,
see Figur¢ 5]1. In a central projection any line through the centre (the eye point)
is mapped to a single point in the image plane, every plane through the centre
is mapped to a single line, and we arrive in a natural way to the concept of a
projective space

Thed-dimensionabrojective spac&®PY consists of all 1-dimensional subspaces
of R4*+1 i.e., if[X4, ..., X4+1] denotes the 1-dimensional subspacR®f! spanned

by (X1, ..., Xd+1) # (O, ..., 0), then
RPY = {[xq, ..., Xd11] | (X1, ..., Xg+1) # O}. (5.1)

In other words, an element (a point) of the projective space is a line through
0 in R9*+1, and we can specify such a point by hiemogeneous coordinates
[X1, ..., Xd+1]. HOmogeneous coordinates are not unique, # 0 then the ho-
mogeneous coordinatgs,, ..., Xq+1] and[ixy, ..., AXq+1] represents the same
point in projective space.

Consider a plane iiR%t1 not throughO. A line throughO is either parallel to the
plane or it intersects it in a unique point. By choosing a suitable basis we can
assume the plane is given by.1 = 1, and we have the standard embedding
RY < RPY:

(X1, ... Xd) — [X1, ..., Xd, 1] (5.2)

117
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Figure 5.1: Albrecht DurerArtist Drawing a Lute woodcut fromUnterweysung der
Messung mit dem Zyrkel und RychtschéyP5 (The Metropolitan Museum of Art, Harris
Brisbane Dick Fund, 1941).

and the opposite mafixy, ..., Xa1] € RPY | xg41 # 0} — RY:

X Xd
[X1, ..., Xd+1] — ( = e ) (5.3)
Xd+1 Xd+1

Points inRPY with xg+1 = 0 can be considered amints at infinityin RY and
they can be identified with a non-oriented directiorRit (they are lines ifRd+1
parallel toRY). Considered projectively, two parallel linesi{ are two planes in
R4+ that intersect in a line parallel to the two given lines, i.e., two parallel lines
intersects at the point at infinity given by the common direction of the two lines.

A d-dimensional subspace &f*1 is given by an equation
X1 + - -+ + ad+1Xd+1 = 0,

witha = (a1, ..., ag+1) # 0. Another set of coefficients = (bs, ..., bgt+1) #0

gives the same subspace if and only if there is=& 0 such thab = ia. So the
space ofd-dimensional subspaces “is the same” as the space of 1-dimensional
subspaces. In other words we can consider an eleméRP®fs either a point

or a line, and we can consider an elemeniR#® as either a point or a plane,
this is referred to aduality. Thus, any statement in projective geometry has two
interpretations, see Tallep.1 gnd 5.2.
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Concept/result Dual concept/result

Point Line

Line Point

All points on a line All lines through a point

All lines through a point All points on a line

Two distinct points lie on exactly oneTwo distinct lines intersects in ex-
line actly one point

Two distinct lines intersects in ex-Two distinct points lie on exactly one
actly one point line

Two points with homogeneous coorTwo lines with homogeneous coordi-
dinates[a] and [b] span a line with nates[A] and[B] intersect in a point
coordinatega x b]. with coordinategA x B].

Table 5.1: The duality of the projective plane.

Concept/result Dual concept/result

Point Plane

Line Line

Plane Point

All points on a line All planes through a line

All lines through a point All lines in a plane

All points on a plane All planes through a point

All planes through a point All points on a plane

Two distinct points lie on exactly oneTwo distinct planes intersects in ex-
line actly one line

Two distinct planes intersects in ex-Two distinct points lie on exactly one
actly one line line

A line and a point not on the line lie A line and a plane not containing the
on exactly one plane. line intersects in exactly one point

A line and a plane not containing theA line and a point not on the line lie
line intersects in exactly one point on exactly one plane.

Table 5.2: The duality of the projective three space.
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1
a

oe
©

p*

Figure 5.2: A pointp and its dual linep*.

More precisely we have the following description

Theorem 5.1. In RP? we have the following relation between a point p and its
dual line ", see Figuré 5]2

1. Ifapoint pe R? ¢ RP? has distance g 0to 0 = (0, 0), then the dual line
p* has distanc% to O, the line throughD and p intersects porthogonally
andOis between p andp

2. In particular, if p= (a, 0), then pris the line ¥ = —%.
3. If p =0, then p is the line at infinity.

4. If p is a point at infinity, then pis the line throughO orthogonal to the
direction corresponding to p.

Proof. If p = (a, 0), then it has homogeneous coordingi@s0, 1] and the cor-
responding line is the intersection between the pxet x3 = 0 with the plane
x3 = 1, i.e., it’s the line with the equatiomx; + 1 = 0. The general case can by
a rotation inR? always been brought to the previous situation.

If p= (0, 0)then the dual line has the equatix= 0, i.e., it's the line at infinity.
If pis a point at infinity corresponding to the directica, a,) in R? then it has

homogeneous coordinatés, as, 0], and the dual line has the equatiatx; +
axxo = 0, i.e., it's a line througl® orthogonal to(a;, ay). O

Theorem 5.2.1n RP3 we have the following relation between a point p and its
dual plane g, see Figurg 5]3.

1. If a point p € R® ¢ RP?3 has distance a% 0to 0 = (0, 0, 0), then the
dual plane § has distanceé to O, the line throughD and p intersects P
orthogonally and) is between p and*p

2. In particular, if p = (a, 0, 0), then ¥ is the plane x = —3.
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3. If p =0, then p is the plane at infinity.

4. If p is a point at infinity, then pis the plane througl® orthogonal to the
direction corresponding to p.

We have the following relation between a line | and its dual line |

1. If aline | in R® ¢ RP® has distance a 0to 0 = (0,0, 0), then the
dual line I* has distanc% to O, the line throughD orthogonal to | is also
orthogonal to I andOQ is between | and*.

2. In patrticular, if I is the line t— (&, 0,0) + t(0, 1, 0), then I is the line
t (—1,0,0)+1(0,0,1).

3. Ifl is aline throughOthen F is the line at infinity consisting of all directions
orthogonal to I.

Proof. The relations between a point and its dual plane is proven just as in the
case of points and lines RP?.

If | can be parametrized as— (a, 0, 0) + t(0, 1, 0) thenl is spanned by points
with homogeneous coordinatés, O, 0, 1] and [0, 1, 0, 0] the dual planes have
equationsax; + 1 = 0 andxy = 0 respectively and their intersection whicH is
can be parametrized as— (—%, 0,0) +1t(0, 0, 1). The general case can always
bee brought to the previous situation by a suitable rotatid®®in

If I is a line througlD, then we assume that it can be parametrized-as(0, O, t)
and hence that it is spanned by points with homogeneous coord{fa®&®, 1]
and[0, 0, 1, 0], the dual planes have equations= 0 andxz = O respectively
and their intersection which i$ is the intersection of th&;, Xxo-plane with the
plane at infinity. It is the line at infinity in th&;, xo-plane, i.e., it consists of all
directions in thex1, x>-plane. O

A regular linear transformation &%t1 maps a subspace to a subspace of the same
dimension, so itinduces in particular a transformation of the projective &igte

such a transformation is calledogojective transformationin other words a pro-
jective transformation is a linear transformation of the homogeneous coordinates.
OnR? c RP? we have

(X, y) =X, Y, 1] = [aq1X + a2y + @13, @21X + @22y + 23, az1X + az2y + azsl
:[mﬂ+mﬂ+m3mm+mw+msq
ag1X + ag2y + azz’ az1X + az2y + ags’
<mm+mw+m3wﬁ+ww+wﬁ
az1X + az2y + azz’ az1X + as2y + a3
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Figure 5.3: A pointp and the dual plang*, and a lind and the dual liné*.

Note that ifag; = ag2 = 0 andagz = 1 then we have an affine transformation

of R2. The case oRP2 or in generalRPY is similar. So just as an affine trans-
formation is given by polynomials of degree one in the Cartesian coordinates, a
projective transformation is given by rational functions of degree one in the Carte-
sian coordinates. Similarly, if we have two different baseR9r?, and hence two
different standard embeddings®&f in RPY, then the transformation between the
two sets of Cartesian coordinates of a poinRiR‘ is given by rational functions

of degree one.

Affine transformations don't preserves length, but they do preserve ratios on aline.
Projective transformations preserve neither lengths nor ratios, see Figure 5.4.

NSNS N

Figure 5.4: Ratios are preserved by a parallel projection, but in generaly a central
projection.
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The ratio of three pointa, p, b on a line is given by

d(, p)
d(p, b)

whered(a, p) denotes théirectedEuclidean distancato p, d(p, b) denotes the
directed Euclidean distangeto b, and we have used tsameEuclidean structure
and thesamedirection on the line in the numerator and the denominator.

In projective geometry the so calleuoss ratiois a well defined concept. The
cross ratio of four pointa, p, g, b on a line is defined as

ratio(a, p, b) = (5.4)

ratio@, p,b) d(a,p) /d(aq d( pyd(q,b)
ratio@, g,b) ~ d(p,b) / d(g,b)  d(p,b)d(a, q)

cr(a,b,c,d) = (5.5)

If c is the centre of a projection and if the area of the triangle with vertices

Figure 5.5: The cross ratio of four points depends only on the anglésy, see [5]6), SO
it is preserved by a central projection.

A, B, C is denotedA (A, B, C) then with the notation of Figurie .5 we have eg.
2A(a, p,c) = h-d(a, p), and hence

d(a, p) d(a, q) _ A(a, p, 0 A(a, q,©)
d(p,b) / d(g,b) A(p,b,c) / A(p,q,0)
B lal p Sino lalg sin(a + B) . sina siny
~plpsin8 +y) lglbsiny — sin(B + y) sin(a + )

cr(a, b, c,d) =

(5.6)
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So just as amffine embeddin® — RY is determined by its value on two points,
aprojective embeddinBP! < RPY is determined uniquely by its value on three
points. Suppose we have three poiats|, b on a line inRPY, and seek a rational
function f : R < RPY with f(0) = a, f(3) =g, andf (1) = b, thenp = f(t)

is determined by the invariance of the cross ratio, i.e., we hae prq, b) =
cr(0,t, 3, 1), or

d@@ pd(g,b) t—-0(1—3) 't
dp.bd@ @ @-t(3-0 1-t

We can solve fop and obtain

Ft) = b (1-1t)d(g, bya+td(a, q)b
V=P="1"0d@ b +td@q |

Observe that this is an affine combinationaondb and ift € [0, 1] andq is
betweena andb (with respect to Cartesian coordinates) then we have a convex
combination ofa andb. As a special case we can consider rational functions
f : R — RP with f(0) =0, f(3) = p, and f (1) = 1 then we have

(5.7)

1-)(1—p)0+t(p—01 tp
A1-tHL—p)+te—0  A-A—p)+tp’

For eacho €]0, 1] this gives a rational reparametrization of the intef@all].

fo(t) = (5.8)

Problems
5.1.1 Consider the standard embeddiR§ c RP?, and find the dual lines of the points
(1,0), (2,0, (0,1/2), (1,1), and(1, 2).

5.1.2 Consider the standard embeddR§c RP3, and find the dual planes of the points
(1,0,0),(0,2,0),(0,0,1/2), (1,1, 1), and(1, 2, 0).

5.1.3 Consider the standard embeddiRg ¢ RP3, and find the dual lines of the lines
t > (LOt),t > (tL21),t— (t@d-t)/2t),t— (1+t,11+1), and
t— (1,2 2).

5.1.4 Prove [57). Hint: introduce a coordinate on the line throagimdb.
5.2 Rational Bézier and B-spline curves

Let usfirstlook at the example in Figyre]5.6. The line through the pdnts and
(t, 0) can be parametrized &s, y) = (ut, 1—u), if we insert this in the equation
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$c=(0,1)

AN
7

(t,0) ]
x,y) = (s, &)

Figure 5.6: Stereographic projections from the unit-circle to the real axis.

of the unit circlex? 4+ y? = 1 then we obtain the equatiarf(1 +t%) —2u = 0
the two solutions to this equation is = 0 (the centrec of the projection) and
u= % substituted back into the parametrization of the line we obtain the point

of intersection
2t t2—-1
X =|=——, —. 5.9
o= er1) 59)

This is a rational parametrization of (part of) the circle. If we consider it as a
curve in the projective space then we can specify homogeneous coordinates that
are polynomials in the parameter

[X,Y,2z] = [2t,t° — 1, t2 + 1]. (5.10)

We will now find the three Bézier control points for this quadratic curvi4m?.

Polynomial | Polar form evaluated in
(0,0 (0,1)| (1,2)
x=2t 1+t 0 1 2
y=t> —1 [ titr—1 1] -1 0
z=t?+1 |titp+1 1 1 2

We see that it has control points that in homogeneous coordinat¢8, aré, 1],
[1, —1, 1], and[2, 0, 2]. If we project into the plang = 1 then we obtain the
Cartesian control pointsg = (0, —1), b1 = (1, —1), andbz = (1,0). Thez-
coordinates of the homogeneous control points are calledvéightsso in the
example the weights atep = 1, w1 = 1, andw, = 2.
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Definition 5.3. A rational Bézier curve with control points, ..., b, € RY and
weightswo, ..., wn € R is given by
Yo wibi B(t)
ri) = — , te]O0,1]. 511
> o Bl'(t) (511)

l.e., it is the central projection of the Bézier curveR*! with control points
(I)O(bO, 1)’ RN wn(bna 1)'

In exactly the same manner we have

Definition 5.4. A rational B-spline curve of degreewith knot sequencg control
pointsds, ..., dnsN € RY and weightsv1, ..., wonen € R is given by

Zin;rlN i di N (t]t)
N o Nt

I’('[) - t S [tn, tn+N]. (512)

l.e., it is the central projection of the B-spline curveRifit! of degreen with knot
sequence and control pointg1(ds, 1), ..., wn+N(dnen, 1).

A rational Bézier (or a B-spline) curve can be evaluated by evaluating the numer-
ator and the denominator separately and dividing through. In [8] it is claimed that
it is more stable to find the projection of the intermediate control points. In the
case of de Casteljau’s algorithm we obtain the following generalized de Casteljau
algorithm: Fork =0, ..., ndo

wd(t) = wx,
bP(t) = by,

forl=1,...,nandk=0,...,n—1do

o) = (1 — Do () + w5 O,

ol s ()
k ; bl t(t) +t kT(lt) bL+11(t).

bi(®) = (1 - 1),
wy (t Wy

If all the weights are positive, then we see that we keep taking convex combina-
tions so rational Bézier curves with positive weights have the convex hull property.
By considering the intermediate control points in the de Boor algorithm it is seen
that rational B-spline curves with positive weights have the strong convex hull

property.lt can also be shown that the variation diminishing property holds for

rational Bézier and B-spline curves with positive weights.
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Multiplying all weights with a common factor obviously has no effect at all on
the curve, the common factor becomes a factor in both the numerator and the
denominator and it cancels out. There are other changes of the weights that leaves
the abstract curve unchanged. They stem frational linear parameter changes
(Mobius transformationjs The latter are given by (5.8) and if we substitute this
into (1 —t)"'t' then we obtain

(A=t2 = p))" (tp)
(-0 - p)+1p)"

1-» n( p )i n—isi
= 1-t t.
((1—t)(1—p)+tp) 1-p ( )

So if we substitute[{5.8) intg (5111) we get

(1 - fp(t))n_i (fp(t))i =

Xl owibi(s2) BYO _ 37 o@ibi B
S owi () Bl Xine@B®)

r(fo(®) =

wherew; = (l%p)ia)i. If wg # O then we can multiply all weights/&o and

obtainwg = 1. We can then reparametrize as above v(/'%f%)n = 1/wn, i.e.,

with p = ﬁw_n and obtainwg = w, = 1. In a similar manner we can always

obtainw; = wnyn = 1 for a rational B-spline curve. When the first and last
weight is one we say that the rational curve isiandard form

Both de Casteljau’s and de Boor’s algorithm repeatedly interpolate between two
points, the end points of the line segment, and the weights on the two points
determine how the interpolation takes place. The weights are necessary because
we use ratios in the interpolation. Alternatively we could specify the image of a
certain parameter value, séy on the line, and then use cross ratios to calculate
the image of any other parameter value, see Fifute 5.7. The mid point (line) is
spanned bywibi + wob2, w1 + w2], i.e., its Cartesian coordinates are given by

_ w1b1 + wobo
w1 + w2 ’

f (5.13)
observe that if the weights are positive then the “mid point” is between the end-
points. These auxiliary points are also calleedight pointsor Farin points and

they can be used as control handles for the weights. Instead of specifying the
weights as numbers the designer can slide the weight points back and forth on the
legs of the control polygon. They can also be used to defin@rbjectively in-
variant de Casteljau algorithmConsider Figuré 5.8, we are given control points

b1, b2, andbsz, and weight point$, andfs. There exist weights1, w2, andws
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Xd+1

[w]b1, @]1R-

[w1b1, @1]1%
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S loiby + @b, w1 + w;]

e

"~ [whba, )]

[w2bz, wo]

Xgt1 =1

0

Figure 5.7: We interpolate between two projective poinitandb,, i.e., lines, by choosing

a point (notd) on each line and then interpolate between these two points. The weight tells
us what point to chose. Alternatively we can specify the weight point (the “mid pdint”)
of the interpolation. The weight point determines the weights up to a common factor.

Figure 5.8:

Leta be the intersection between the lindggf; and b%bg.

As

cr(by, b, f2, by) = cr(by, b, f3, bs) the pointsh,, f3, anda are collinear.



5.2. RATIONAL BEZIER AND B-SPLINE CURVES 129

such thaf; = wi—ibi—itwibi A step in the de Casteljau’s algorithm gives us new

i Wj —1+Wj
control points

(1—-t)wiby + twoby

(1—-tw1 +twy
(1 — t)wobo + twsbs

(1-tw2 +tws

bi(t) =

blt) =

and new weights

ot(t) = (1 — Dy + twy,
ws(t) = (1 — Hwp + tws.

The new weight point is given by

w1 (®bI(t) + wI(t)b3(t)
w1(t) + w3(t)
. (1 —twiby + twrbs + (1 — t)wobs + twsbs
B (1 — w1 + twz + (1 — Hwy + tws
(1 —t)(wib1 + w2b2) + t(w2b2 + w3bg)
Q- (@1 +wp) + (w2 + wg)
(I —t)(w1+ w)f2 + t(w2 + w3)f3
- (A-D(e1+ ) + (w2 +w3)

And we see that it is the intersection between the lines spanned by the old weight
points and the new control points respectively.t l& % then the new control
points are the weight points and we can’t do the intersection. Instead we can find
the new weight point as another intersection, cf. Figure 5.8. We now have a purely
geometric construction. The new control points are found by the invariance of
cross ratios, and the new weight points are found by the intersection of two lines.
So the whole construction is projectively invariant.

f3(t) =

Problems

5.2.1 Find the standard form of the curnfeT5.9).

5.2.2 Leth(t) = Y[ ywibiB"(t) andw(t) = Zi”:o w; B'(t), and consider the rational
Bézier curve (t) = b(t)/w(t). Prove that
, b —ar b" — 2wt — &'t

and r’ =
w w

r

5.2.3 Consider Figur¢ 58. Prove that the poibssf}, anda are collinear.
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Exercises

5.2.1 Write a program that draws a rational Bézier curve.
5.2.2 Write a program that finds the first and second derivative of a rational Bézier curve.
5.2.3 Write a program that draws a rational B-spline curve.

5.2.4 Write a program that finds the first and second derivative of a rational B-spline
curve.

5.3 Dual curves

A curver(t) in RP? can be considered as a normal curve giving points in the
plane, but by duality equally well as a one-parameter family of lines in the plane.
The envelopeof such a family of lines in the plane is a curve such that every
line in the family is a tangent to the curve. The point where thedigtouches

the curve is the intersection between the lin&y andr’(t), i.e., it is given as

c(t) = r(t) x r’(t) in homogeneous coordinates.

As an example we can take the curiye (5.10) (a quarter circle), see Figure 5.9
r(t) =[2t,t* — 1, + 1],
r't) = [2, 2t, 2t],
C(t) =r(t) x r'(t) = [—4t,2—2t2, 2+ 2t2] = 2[—-2t, 1 — t2, 1 + t].

Observe that even thougthas degree 2 and has degree 1, the cross product has

f1

bs 1.

by

bo

Figure 5.9: Bottom right we have a rational Bézier curve with its control points and weight
points. Top left we have the dual curve with its control lines and weight lines.

only degree 2. This is not a coincident, cf. Problem %.3.1.
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1

Figure 5.10: A curve ilR® ¢ RP2 and the envelope of its dual curve of planes.

For a curve we know that the two tangent lines at the end points are spanned by the
two pairs of outermost control points. By duality we have that the two end points
of the envelope of a dual curve are the intersection of the two pairs of outermost
control lines.

Observe that if a point has Cartesian coordin&@®) then it has homogeneous
coordinateg0, O, 1] and the orthogonal plane is given ky= 0 which is parallel
to the planexz = 1, i.e., the line dual to the poiri0, 0) is the line at infinity.

Similarly, a curver (t) in RP3 can by duality be considered as a one parameter
family of planes in space. Thenvelopeof such a family is a surface such that
every plane in the family is a tangent plane of the envelope. The pldheas
tangent to the envelope along the intersection line betwérandr’(t). This
implies in particular that the envelope is a ruled surface. As the tangent plane
is constant along the rulings it isdevelopablesurface. This gives us a method

to construct and design developable surfaces, see Higuie 5.10. Above we got the
rulings as the intersection between the planes dualtboandr’(t). Alternatively

we can take the line spanned by) andr’(t) (the tangent line), then the dual line

is precisely one of the rulings. According to Theorgnj 5.2 we can find the line
dual to the tangent line in the following way. First we find the point on the tangent
closest td), which is

r(t - r’(t)r,

H=rit) - ———
W=r-"roe

®)
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We can now determine a point on the dual line by
—c® _ r@®-rere - r'(®)r ()
lcDIZ rOPF 2 = (r@) - r'(1))?

As the ruling is orthogonal to both the tangent line and the line feamthrough
0 we can find the direction of the rulings as the cross product

ci'(t) =

(r(t) - r'@)re) — [r'®)?r)

(t
" roRrOP—r® - ro)?

_ Ir'(t)]2
Ir@12Ir' )12 — (rit) - r'(t))?

Observe that the denominator is the length@f) x r’'(u). So

r) xr'()

_rixr r(t) x r'(t)
S r® <@l Ir®PrmPRE - @) - rm)?

is a unit vector in the direction of the rulings. All in all we get the following
parametrization of the envelope of the dual curve of planes:

q(t)

r*(u, v) = c*(u) + vq(u)
(e ') — r' WA (u) + vr(u) x r'(u)
B Ir (W) 2[r’ (u)]2 — (r(u) - r'(u))2

As an example take the cubic curve with control points

bo= (1,00, by1=(110), b,=(010, bz=(013),
and weightsvg = - - - = w3 = 1, or equivalently with weight points
f1=(130), fo=(310), f3=(0,13).
So we have a polynomial curve given by

r) = (23 -3t + 1,63 - 32 4+ 3t + 3t)
r'(t) = (6t% — 6t, 3t? — 6t + 3, 3t?)

We now find

6t8—36t7/4+-986—1445+1374—-96t34-483— 16t +4
—9t54-42t5—64t4+483 24124 8t

—3t54-24t5 5344 56:3 362+ 161 —4 "‘
* —
cH= L6t8—36t7+98t6—144t5+137t4—96t3+48t3—16t+4J

—6tS+12°—6t4
6t8—36t7+98t6 1445+ 1374 —-96t3+48t3—16t+4
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and
1
) xr'@e = E(—3t4 +6t3, 3t* — 6t% 6t* — 2413 + 24t* — 12t + 6).

Finally we have the following parametrization of the envelope of the dual curve
of planes:

1
6u8 — 36u7 + 98u8 — 144u5 + 137u* — 96u3 + 48u3 — 16u + 4
—3u® + 24u5 — 53u* 4 56u% — 36u% + 16U — 4 + v3(—u* + 2u%)
X —9ub + 425 — 64u* + 48u° — 24u? + 8u + v3 (Ut — 2u?)
—6uB + 12u5 — 6u* + V3(U* —Aud + AU —2u+ 1)

r*(u, v) =

Problems

5.3.1 Show that ifr (t) is a polynomial curve iR® of degreen, then the cross product
r(t) x r’'(t) has at most degreen2- 2.

Exercises

5.3.1 Write a program that determines the envelope of the dual to a Bézier cuRfe in

5.3.2 Write a program that determines the envelope of the dual to a Bézier cuR#e in

5.4 Rational Bézier and B-spline surfaces

The definition of rational surfaces is the same as the definition of rational curves

Definition 5.5. A rational tensor product Bézier surface with control politg €
RY and weightsvj j e R,i =0,...,n, ] =0,..., mis given by

Yo X Lo @i jbi i B(1)BM(v)
>0 2 o i, Bl (WB(v)

r(u,v) = (u, v) € [0, 1% (5.14)

l.e., it is the central projection of the tensor product Bézier surfa@{rt with
control points(wj jbj j, wi ).
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Definition 5.6. A rational tensor product B-spline surface of degreen with
knot sequencea andyv, control pointsd; j € RY and weightswj j € R, i =
1,....,n+N,j=1,...,m+ Mis given by
M e jdi NP (UIU)NI (0] v)

T o, N Ul N (v]v)

(U, v) € [Un, UntN]T X [vm, Vmym]. (5.15)

rqu,v) =

l.e., it is the central projection of the tensor product B-spline surfad®irt of
degreen, m with knot sequences andv and control point§w; jd; j, @i j).

Definition 5.7. A rational triangular Bézier surface of degmewith control points
bijk € RY and weightsvijx € R,i + j +k = nis given by
Z|i|:n wibj Bin(u)

2 jij=n @i B'(W)

l.e., it is the central projection of the triangular Bézier surfacR{r! of degree
n with control points(w;ibj, wj).

ru = (5.16)

The easiest way of treating these surfaces is to evaluate th&fthand then
project them toRY. As in the case of rational curves, it is possible to have a
projectively invariant construction, using weight points. But from the practical
point of view the importance of weight points is that they can provide a more
intuitive access to the weights. In case of the tensor product surfaces we can place
a weight point on each edge of the control net, see Figure 5.11. But the weight

intersection

Figure 5.11: The weight points of a tensor product surface satisfies a compatibility condi-
tion: The lines between opposite weight points intersect.

points are not independent. With the notation in Figure]5.11 we have
wibj + i bj

fij = : :
wj ‘I‘CI)J
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and hence

(14 02)f12+ (03 + wa)fas Y oibi (01 + wa)fia+ (02 + w3)fas
w1+ w2 + w3 + w4 Zi4=1")i w1+ w2 + w3+ w4

b

so the lines between opposite weight points intersect. The case of the rational
triangular Bézier surfaces is more satisfying. To each triabglg bie,Dite; in
the control net we have an independent weight point

o WitePive, + WireDite, + vitebive
I — ’

Wite, T Wite, T Dite

see Figur¢ 5.12. These weight points determines the ratio between neighbouring
weight points, and hence determines all the weight points up to a common factor.

Dozo D120

1+e3 Wite : Wi yeg 1+e1

Doo3

Figure 5.12: Weight points for a triangular Bézier surface.

Exercises

5.4.1 Write a program that draws a rational tensor product Bézier surface.
5.4.2 Write a program that draws a rational tensor product B-spline surface.

5.4.3 Write a program that draws a rational triangular Bézier surface.






Chapter 6

Motion Design

6.1 Introduction

In this chapter we will describe the motion of rigid bodies through space. It can

be the motion of a real physical object like (part of) a robot, but it can also be the

motion of a virtual object like a character in a computer game, or the camera in a
virtual world.

A Euclidean motion is composed of a translation and a rotation, i.e., it's a map
X — Ux + v whereU is a special orthogonal matrix. Using homogeneous coor-

dinates it can be written
X g v|[x
117 (o 1||1]

and then the composition of Euclidean motions corresponds to matrix multiplica-
tion. When we want to design, or just describe, a smooth motion, i.e., to specify a
curve in the space of Euclidean motions, then we have to specify the rathtipn

and the translatiom(t) as a function of timé¢. The latter poses no problem it is
just a parametrized curve R3, but we need to deal with the space of rotations or
equivalently: with the space of special orthogonal 3 matrices.

It turns out that thejuaterniongprovide a convenient way of dealing with exactly
the space of rotations.

137
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6.2 Quaternions and rotations

Just as we get the complex numbé&ras numbers + iy wherex, y € R andi is
a new number with? = —1, we get the quaterniof&l as numbers

Jo +1id1+ jgz2 + Ko,
whereqp, g1, 02, g3 € R, andi, j, k are three new numbers such that
i2= j2:k2:—1,

ij=—ji=k jk=-kj=i, ki=—ik=]j.

For a quaternio = qo+iq1+ jq2 +kag, thereal partof g is % (q) = go and the
imaginary partof q is J(q) = iq:1 + jgz2 + kgg. Just as for the complex numbers,
conjugationis defined by changing the sign of the imaginary part:

0=0o+iq1+ jo2 + K =0qo—ig1 — jg2 — ko, (6.1)

and themodulusor thelengthof a quaternion is defined as

al=vag = /a2 + a2+ a2 +a2. (6.2)
Itis not hard to see that we have the following rules for quaternmrs andr:
p+g=q+Dp, the commutative law for addition (6.3)
(p+q)+r=p+(Qq+r), the associative law for addition (6.4)
(papr = p(qr), the associative law for multiplication  (6.5)
p@+r)=pg+pr, the left distributive law (6.6)
(p+q)r=pr+qr, the right distributive law (6.7)
qr =raq, (6.8)
lgr{=1rllal, (6.9)
1 Q
—, 6.10
AT (619
) =124, (6.11)
@ =1, (6.12)

The commutative law does not hold for multiplicationgeneralqr # rq! But a
real number commutes with any other quaternion.

1Hamilton 1843
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The rules [6]3)4(618) can be shown by direct calculation, but it's also a conse-
guence of Problemi 6.2.5 and the corresponding rules for matrices. The rules
(6:10)—(6-1R) is shown by direct calculation, cf. Problem 6.2.4.

If we forget about the multiplication theH is a real 4-dimensional vector space
with basis 1i, j, k and the purely imaginary quaterniofgH) form a real 3-
dimensional vector space with basig, k. Furthermore[(6]2) defines a norm with
the corresponding inner product givenfay r) = fi(qr), cf. Probleni6.2]2. This
makesH into a Euclidean vector space and the abovementioned bagik)
becomes orthonormal.

Consider for a fixed quaterniane H \ {0} the so callegdjoint map
1_ qrqg
g/2

If we considerH as a real vector space then @l is linear, cf. Probleni 6.2.7.
We have

Ad(@):H— H:r—qrq- (6.13)

qrg

S qrq qrg }

Ad r = = = = Ad r,

@F="97 =q2 = g7 = 9@

SO
2 . qrgqrg  qrgqrg
Ad(@)r|* = (Ad@) r)Ad@)T) = -
[Ad@r] a a 912 [aP2 g/
_darlaPra _arrq_airfq_ riqq _
lql* 1912 192 1912

and we see that Ad) acts as ansometryon H. As a consequence of Prob-
lemBZY we have

RAd(g)r) = Ad(q) R(r) (6.14)
S(Ad(Q)r) = Ad(q) 3(r) (6.15)

In particular, Adq) maps3(H) into itself and Problerfi 6.4.7 shows that @l 3 m)
has the matrix

1
a5 + 95 +af + a5
0o +0d2—02—g3  2(Chd2 — GoGa) 2(q103 + Gog)
X (6.16)

2(h02 + Gods) 93— 02 +05—05  2(0a0s — oCh)
2(103 — GoGo) 2(003 + God1) 93 — 02 — 05 + 03

with respect to the basis j, k. As Ad(Q) is an isometry and the basisj, k
is orthonormal, the matrix is orthogonal. The determinant of any orthonormal
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basis ist1 and as the Ad) is the identity, which has determinant 1, a continuity
argument shows thaf (6]16) has determinant 1. All this can of course also be
checked directly.

We now want a geometrical description of the rotatiorsii) = RR3 given by
Ad(q). We know that the eigenvalues are 1 afd? where? is the angle of
rotation, and that an eigenvector for the eigenvalue 1 lies on the axis of rotation.

We immediately have

Ad(@)3J(q) = J(adq)q) = 3(@q~1q g = J(Q),

S0 J(q) is an eigenvector with eigenvalue 1. Furthermore, the tracgof| (6.16) is
the sum of the eigenvalues which ist12 cosd = 1 + 2(cos § — sin? §), on the
other hand the trace is also the sum of the diagonal

Se5-af - -5 _ ., %% -

W+ +gi s 92+ 2+ g2+ g3
So we have ) ) ) X
_ o .0
B WXBTR) _ oz il
a5 + a; + a5 + a3 2 2
AS

93 + (@2 + 92 + g2
a5 +af + a5 + 93
we can conclude that

0 %
=1=coS = +Sir* =
2+ 2’

2 2 1 421 2
2 zqo 5 = co2? and qu +2q2 +2q3 S = sir? 2.
o + i +d; + 03 2 92 + 02 + g2 + 2 2
Thus
0 (0
N(q) =1q| COS(z) and 3(q) = |g|sin (E) r,
or

0 e
NQ) =1q| cos(z + zr) and () = |q|sin (5 + n) r,
wherer is a unit vector in the direction of the axis of rotation. This shows in
particular that any rotation can be obtained in this manner, and that)Ag
Ad(q’) if and only if @ = Aq’ for somei € R\ {0}. In other words, the group of
special orthogonal matriceS80O(3) is homeomorphic to the real projective space
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RP3 and (6.1B) gives us a rational parametrization (of degree @). This

was found by L. Euler in 1770 and the numbegs g1, gz, andqgs are therefore
called Euler parameters Euler made his discovery 70 years before Hamilton
introduced the quaternions so it is of course possible to {find](6.16) without the
quaternions, see ed. 123, Chapter 6].

If we have a curve — q(t) in H then differentiation of the equatiapng=! = 1,
yields

(@) =-ataq (6.17)

If we haver (t) = Ad(q(t))r, then

r®)=artqg ™t —qriqgtgg?
=(aa™) (arta™?) ~ (ara™) (aq™)
=adqq ) Ada)rt=addaq ) rt) =23(GgY) x 3(r)) (6.18)
where we for ara € H have introduced thadjoint map

ada) : H— H:r — ar —ra = 23(a) x J(r). (6.19)

The last equality is a consequence of Probjem 6.2.8 and shows thatgéar
velocityis 23(q q~1), this gives in particular thinstantaneous axis of rotation
We can now use this to analyse the motion of a freely rotating rigid body.

Example 6.1 Suppose we have a robot or some other body rotating in space. We will
consider two coordinate systems. Therld systenwhich is fixed in space and thmdy
systemwhich is fixed in the body. A vector can now be given by world coordinates
(x%, y°, 2% or by body coordinates<t, y*, z%), or equivalent by a world quaterniof or

a body quaternion. We now assume that the transformation from body coordinates to
world coordinates is given bg? = Ad(q(t))r!. Equation [6.18) shows that the angular
velocity are given by»? = 23(¢g ) in world coordinates. In body coordinates we have

o' =Ad(q)e’ = Ad(a7)23(497") = 23(g71q).

On the other hand, if! is the tensor of inertia and® and L are the angular moments in
the world and body system respectively, theh= 1t»?!, and hence

ol =1L =11 Ad(q YL
Furthermore, ifiq(t)| = 1 for allt, then

4= %qa)l = %qll_lAd(q’l)LO.
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Conversely assunegt) is a solution to this differential equation, then

d d__ L _ N
S1AMF = —R@a) = N@Gq+Ta) = 20@A) = (la1* " Ad(q L) =o.

l.e., |q(t)| is constant. If we choose the axis of the body system in the principle direc-
tions, thenl® is diagonal, with elementk, I», |5 say. If the angular momentuiln® has

components, 8, y then
It 0 o0
o 1LY o
o o I3t

[QO—‘ |V—Ch —02 —Q3—|
G| _ 1] a -0 o
L%J -2 L g Qo —Q1J
s -2 0 o
W%+ —a;—05 20+ 20— Qo) | [«
x { 2(0h02 — Gods) O —OF +05 — 0 2(02Gs + Golla) } {ﬁ} (6.20)
2(u03 +God2)  2(003 —Cod) G5 — G — 95 + 03] Ly
In the absence of exterior moments the angular momeritfiis constant and we can
choose the world system with tlzeaxis in the direction of.°. I.e., we may assume that
a =B =0,andy = L =|LP|. In this case we obtain

o -1 —G2 —0Os 10—

Gl_p ]| % -9 @ QZQSI‘iQOQl —‘ ' 6.21)
g Gz Go —Qu Lqéqufqg +q32J

Qs —0 Gt Qo LT s

Alternatively, the components;, w,, w3 of the angular velocity in the body system, are
determined by th&uler equations

101 = (l2 — l3)wows,
|2d)2 = (|3 — |1)a)3w1, (622)
lz3w3 = (11 — l2)wiws,

see [1]. Nowg(t) is the solution to the differental equatign= %qwl, ie.,

|VQO-‘ [-‘h —02 —Q3-‘ o1
Wi{_1lad -®
= * |:a)2i| (6.23)

A2 0 o
. w3
Us @ 0 Qo
If I, > I, > I3, then the angular velocity can be expressed in terms of elliptic functions,
L2—2E]I3
= ./————=cn(t — 10, K),
= 1y TN
L2—2EI3
= - T 1 1~ S - b k b}
=1y T
2E1; — E?
w3 = : dn(z — 70, K),

\ Is(l— 13)
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whererg is determined by the initial conditions, and

_ 02— 19@EL-1?) (I3 — 12)(L2 — 2E 3)
i 111215 (I,— I9(2El, — L?)’

’

and E = \/Ilwf + w2 + 1303 is twice the (constant) kinetic energy, see [21]. Alterna-
tively, we can take the equationsds* = Ad(q1)L° and|g| = 1 where we as before can

assume thait® = (0, 0, L) and obtain

l11 l3ws3
Q1Q3—QOQ2=I, qS—qf—q§+q§=T,
lowy
G + ol = — 96 +a5+95 +05 =1
The equations to the right yields
L+ |3w3 L— |3a)3
2 2 _ LT l3ws 2 2 _ L7 I3
0o + 03 = oL g; + 0 oL
and the equations to the left yields
liw1 + Qo low lowos — Ol
q3(q%+q§)=%1 1+ Q212 2’ qo(qf+q§)=q12 2 — Ol1 y
2L 2L
Thus
O = Q1|1w1+Q2|2w2’ o = Qilowz — Q2li1 (6.24)
L — lsws L — lzws
Inserting this in [6-23) yields
. o — I)Dwiw 2E2 - Lw
C11=(2 1)12(11— 3Q2,
2(L — lzwa) 2(L — lzwa)
. 2E2 — La)3 (|2 — |1)a)1a)2
2 A= Towe) T 2L~ Ty ©
We have in particular that
. . (—loww , 5, 2 2 Lws
Gz = Qo = — 77—~ O — %)+ — oy -
We can write
L — I3a)3 .
(ql, qz) = T(COS@, S|n9), (625)
and hence
: . L- I3w39.
010z — Q201 = oL .
All in all we have
. lo—1 2E%— L
g5 = Uzmlmwwz oy G2g ?35 cos sing
L — lsws L — lzws
I, —1 2E2 —
_ ez lowwe oo | “3 sinm. (6.26)
L — |3a)3 L — |3a)3
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Problems

6.2.1 Show that if we consider the real part of a quaternion as a s@@tpre R, and the
imaginary part as a vectar(q) € R3, then multiplication of quaternions is given
by

R@r) =RQ)Rr) —=3(@) - 3(r) (6.27)
@) =9RN(Q) I() +NR()I@Q) +33(Q) x 3I(r) (6.28)

Where we use the basdisj, k to identify J(H) with R® so "’ and ‘x’ makes sense.

6.2.2 Show that
(Q,r) =N(@Qr) (6.29)

defines an inner product dfi. Show that 1i, j, k are orthonormal with respect to
this inner product and that the modulus is givendly = (q, ).

6.2.3 Letz4, 2o, w1, wo € C, thenzg + kz;, wg + kwy € H. Show that

(@) (w1+kw2)(zs+kz) =w1z1 —wr 2o + k(w21 + w1 22)

(b) 7+ k=7 —kz

6.2.4 Prove [6:10)f6-12).

6.2.5 Consider the four % 2 complex matrices

S R I L R

The matricesr, o, o3 are called théauli spin matricesShow that

0 =02 =0%=—0p
0102 = —0201 = 03, 0203 = —0302 = 01, 0301 = —0103 = 02.
Consider the map : H — span{oo, 01, 02, 03} C C2*? given by

o :0o+1i01+ jO2 + K = Qooo + Q101 + G202 + Q3 03.
Show that

o(d+p) =0(q)+o(p)
o(qp) =o(d)a(p)
o@ =o@)
qI* = deto'(q))

WhereéT denotes the transpose of the maix
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6.26 LetLg : r — grandRy : r — rq be left and right multiplication respectively.
Show that the maps are linear over the reals and that their matrices with respect to
the basis 1i, j, k are

o -1 —C2 —0s o —01 —C2 —0Qs
L. — g Jo —03 O 1% Qo 03 —02
e T . I A

0z —02 Q1 Jo 03 02 —O1 Yo

6.2.7 Let o, g1, 02, 0z € R and putq = go + iq1 + jgz + kg € H. Determineqiq,
g jq, andg kqg. Prove thatthe mafil — H : r — qrq is linear over the reals
and has the matrix

1 0 0 0
0 g2+02—02—02  2(u0z— Gots)  2(Chls + Gol)
0  2(h0+0o%s) G2—0a7+05—0d5  2(003 — Golh)
0 20h0s — Go%) 200205 + 0oty)  GF — OF — 0% + 03

with respect to the basis 1, j, k.

6.2.8 Letqp, 01, 02, g3 € R and putg = qp+iq1 + jg2 + ko € H. Determinegi —iq,
gj—jqg,andgk—kg. Provethatthemafl — H:r — qr —r g is linear over
the reals and has the matrix

0 O 0 0
2 O 0 _q3 q2

0 gz 0 -
0 - o OJ

with respect to the basis 1, j, k.

6.3 Rational curves in the rotation group

If we want to specify a continuous motion throuBif then the translation is spec-

ified by a parametrized curve R® and the rotation by a parametrized curve in
SO(3). As we have just seen the latter can be given by homogeneous coordinates,
i.e., we just need a parametrized curvékih\ {0}. Recall that a rational curve in

RR3 is given by a polynomial curve ilR* \ {0}, and that we normally avoifl by
havingpositiveweightsw; > 0.

A (piecewise) polynomial curve of degreein R* \ {0} gives us a (piecewise)
rational curve of degreen2in SO(3). Conversely, in[[18] it is shown that an
(piecewise) irreducible rational curve of degraei@ S(O(3) can be obtained as
the image of a (piecewise) polynomial curve of degnda R4\ {0}. We don't
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want to restrict ourselves to curves where all the control points have a positive
fourth coordinate, so we have to exercise some care in order to @vdising

the convex hull property it is sufficient to demand tBas outside the convex hull

of the control points, and in the case of a B-spline curve of degréwe strong
convex hull property shows that it is sufficient tlfas outside the convex hull of
anyn + 1 consecutive control points.

A continuous rotation is often obtained by interpolation between certain fixed ro-
tations (like ‘key frames’ in a computer animation or ‘taught positions’ in robotics).
First we findunit quaternions given these rotations. They are determined up to a
sign and we choose the signs such that neighbouring quaternions are as close to
each other as possible. We can perform a normal interpolati®? Bo as to ob-

tain a B-spline curve. Normally the interpolation points are so close together that
the resulting curve stays close to the unit spherR4ni.e., it avoids0 and thus

can be used to define a curve of rotations that interpolates the given rotations.

The image of dinear Bézier curve(l —t)q +tr,t € [0, 1] in H \ {0} = R*\ {0}
is essentially aotationaround a fixed axis. More precisely

(I-tg+tr =q((X—t) +tq'r),

and we see that the continuous motion is composed fixed rotation given by
q € H and a continuous rotatiofl — t) + tq~'r around a fixed axi§(q~r).
The trajectories are of course circles around the axi(sqkd(q‘lr) =g~ 1.

Problems

6.3.1 Let q(t) be a rational Bézier curve iH \ {0} with control pointsg’, ..., q" and
weightsw?, ..., ", and letix; + jx, + kxs € J(H) = R3. Find the control
points and the weights for the Bézier curve(,qct))x in I(H) in the case where
the degree of] is 1 and in the case where the degree is 2.
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regular[9p

regular curveB3, B3

tangent plang, 94

tangent spacé¢, P3

unit normal vectori 94
surface of revolutio_I00

tensor producf, 71

tensor product B-spline surfade] 74]

affine invariancel_{8
boundary curves, ¥8

control net[7]7

control point[7]7

cross boundary derivativg,]79
figind, [77

partial derivatives 79

strong convex hull property; 178

tensor product Bézier surface
control net[ 712

tensor product Bézier surfade] T2} 73

affine invariancel_13
boundary curveg, 73

control point[7R

convex hull property; 13
cross boundary derivativg,]75
degree elevation, V4

mixed derivative[ 15

partial derivative[ 44

INDEX

subdivision[ 74
twist, [7%

torus,[TON[TT2

translation[L37

triangular Bézier surfacg; 180
affine invariancel_ 82
boundary curveg, 82
control net[ 80
convex hull property; 82
corner point interpolatiori, 82
cross boundary derivativg,]86
directional derivativel_ 85
subdivision[83E86

umbilical point,[TT]L
unit sphere[ 90

Weierstrass’' approximation theorefh[1], 10
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