
RAUTO: Running AUTO more efficiently

Frank Schilder

12th April 2007

Copying

This program and its documentation is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

Contents

1 Introduction 2

2 The 4.5 minutes guide to AUTO 3

The philosophy of AUTO . 4

The equations file . 5

The constants file . 8

3 Running rauto 10

Demo cusp: restart labels, branch switching and scans 13

Demo duff: harmonic forcing and starting from numerical data 15

Demo roess: constants inheritance . 16

A Command reference 20

Rauto - execute AUTO continuation runs. 20

Bd2dat - convert and combine branch data. 22

Fam2dat - convert and combine families of solutions. 23

Filterbd - filter branch data. 24

Lsruns - list runs. 25

Plotbd - plot bifurcation diagram. 26

Plotsol - plot solutions. 28

Printac - print AUTO constant. 30

Printbd - print branch data. 31

Printcols - print list of columns in branch data. 32

Printls - print labeled solution entry. 33

Printsp - print special points. 34

Rdm - copy rauto demos. 35

Rfcon - convert numerical data to run ‘dat’. 36

Rmruns - remove runs. 37

Sol2dat - convert and combine solutions. 38

Splabs - print labels of special points. 39

Sppars - print parameter values of special points. 40

B AUTO constants 41

1

2 F. SCHILDER

1 Introduction

Rauto is a command line interface to the software package AUTO and might be of interest to
expert as well as novice users. In fact, if you are new to AUTO you might find it easier to start
straight away with rauto. The intention of this software package is to make life easier for all
users of AUTO. Rauto was tested with AUTO97, but should run with all later versions as well.

Installation

If not already done so set the environment variable AUTO DIR to the location of AUTO. Then
run

make prefix=install dir

make install

where install dir is the directory under which you want to install rauto (default: install dir =
/usr/local). This will install all files of rauto in sub-directories of install dir as follows:

install dir/bin : scripts and binaries
install dir/share/rauto : examples and auxiliary files
install dir/share/doc/rauto : documentation (PDF and HTML)

Make sure that install dir/bin is in the search path on your system. You can remove rauto from
your system by executing the commands

cd install dir/share/rauto

make uninstall

If you are not using a make program that supports GNU make’s -W option, you may need to
use ‘make cmddep=off’ instead of ‘make’.

Internationalization

When running rauto on a localized system, that is, the environment variable LANG is set to
something else than ‘C’, you may encounter an error message like

rauto/cusp> rauto cusp LPf muf -IRS 2 -ISW 2

rauto: *** number of runs=1

rauto: *** starting run LPf: run 1 of 1, IRS=2

printls: numeric format of language ’de_DE.UTF-8’ not supported

printls: set the environment variable LANG to C before running printls

rauto: shell returned with error, offending command was:

printls muf 2 > l.LPf

To avoid subtle errors due to different notational conventions for numerical values in different
languages every AWK script shipped with rauto checks whether the number format under the
current locale is understood by AUTO. If this test fails the script tries to change the locale to
‘C’. Unfortunately, the current standard of AWK does not require an implementation to support
changing the locale at run-time. Hence, most of the time this will fail. For the moment you
have to change the locale of your session manually by typing ‘setenv LANG C’ if you are using
the csh or tcsh, and ‘export LANG=C’ if you are using the sh or bash command interpreter.

The name of the game

Every name has to mean something, so what is the story of rauto? Well, performing computations
with AUTO is not exactly easy. It is, to pick a random example, more complicated than removing
all your files with ‘rm -rf ${HOME}’. For every computation one has to edit or create a so-called

RAUTO: Running AUTO more efficiently 3

constants file and AUTO itself is executed with a number of (rather obscure?) @-commands,
which the author found almost impossible to remember when to use in what form.

The basic idea behind rauto is to hide all this nastiness. It combines a number of tasks
into a single invocation of the command rauto and stores the data of your computations in an
organized manner. It comes with a number of powerful tools for post-processing your data. It
makes using AUTO as easy as removing all your files. But I’m digressing. The name rauto does
make some sense, in particular, if you are familiar with some subtleties of the German language.
It can be read as ‘Run AUTO!’ (as in ‘Run Forest, run!’)

Notation

We use an abbreviated Backus Naur form for describing the syntax of commands. As usual, |
denotes alternative elements, [] encloses optional elements, () groups elements and . . . denotes
zero or more repetitions of the previous element. Metasymbols are typeset in italic font and
literal input in teletype font, except in running text, where we try to avoid excessive changes
of font.

Contact

Frank Schilder, Department of Mathematics, University of Surrey, Guildford, UK
(f.schilder@surrey.ac.uk)

2 The 4.5 minutes guide to AUTO

Experienced users of AUTO most probably know about an interesting phenomenon. It takes
less that five minutes to explain AUTO to novice users, while it seems almost impossible to
start with the manual. The intention of this section is to provide more or less this ‘less than
five minutes’ introduction.

If you are familiar with AUTO you may skip this section and start reading with Section ‘Run-
ning rauto’ on page 10. The following description of AUTO will be on the version AUTO97.
There has been a number of changes in AUTO2000, but we stick to AUTO97 here, because the
basic principle of use did not change and AUTO97 still seems to be a quite popular version.
Rauto should work as well with AUTO2000. A new version AUTO07 is under development and
we will upgrade rauto and this description sometimes after it became the new official version
(more precisely, after the author decides to switch to AUTO07).

AUTO is a software package for computational bifurcation analysis of generic dynamical
systems. The most commonly used features are the computation of families of equilibrium
points and periodic solutions of autonomous ODEs

ẋ = f(x, µ), x ∈ R
n, µ ∈ R

m (1)

and their local bifurcations, and in this tutorial we will focus on problems of this type. AUTO
offers substantially more functionality, but the principal of use remains always the same. Please
see the reference manual [1] for more information.

The first you need to know is that AUTO is neither a stand-alone program nor a library,
it is something in between. AUTO is an almost complete program that comes as a library. It
is incomplete because it naturally lacks the subroutines defining your right-hand-side of ODE
(1) and it has the form of a library because that’s the easiest way to deal with this situation.
However, you don’t need to worry too much about these things, because rauto takes care of the
messy part. It is just a little helpful to know that running rauto involves compiling and linking of
Fortran files and that you might be confronted with error messages from the Fortran compiler.
But we are running ahead, let’s start at the beginning.

4 F. SCHILDER

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

1 14 LP 2 3.84900E-01 5.77351E-01 -5.77351E-01 1.00000E+00

1 20 3 1.68950E-01 9.01430E-01 -9.01430E-01 1.00000E+00

1 39 UZ 4 -9.99998E-01 1.32472E+00 -1.32472E+00 1.00000E+00

1 40 5 -1.09746E+00 1.34710E+00 -1.34710E+00 1.00000E+00

1 50 EP 6 -2.07958E+00 1.53463E+00 -1.53463E+00 1.00000E+00

Figure 1: Screen output of a typical AUTO run.

The philosophy of AUTO

In order to perform computations with AUTO you need to set up an equations file and a
constants file. The equations file is a Fortran source code file where you specify the right-hand
side of your ODE (1) and an initial solution for some parameter values. The equations file offers
further functionality, which is explained in the reference manual [1]. The naming convention
for the equations file is name.f, where name is a short unique identifier for your problem.
The constants file is a plain ASCII text file with name r.name and contains values for certain
parameters of AUTO’s algorithms as well as some constants of your problem, for example, the
dimension of ODE (1). The easiest, most typical, and recommended way to create these two files
is to copy an example from this manual or from [1], and to modify the equations and constants
file of this copy. There are even commands for this: rdm (rauto) and @dm (AUTO [1]).

After setting up all files we can start computations with AUTO. A single computation with
AUTO is called a run. In each run a part of a branch is computed, that is, a part of a parameter
dependent family of equilibrium points or periodic solutions. The computation of a complete
bifurcation diagram normally consists of multiple runs. We will refer to runs starting at the
initial solution specified in the equations file as initial runs. Subsequent runs starting at solutions
computed in a previous run will be called restarted runs. There is no difference in the actual
computations involved, but the command line of rauto differs slightly for both cases.

AUTO can perform a stability analysis during continuation. If this feature is enabled AUTO
will detect and report a number of so-called special points. Most commonly, these are bifurcation
points along a branch at which the solutions change stability. Other special points are points
along a branch at which a user defined condition is satisfied. Figure 1 shows a typical output
of an AUTO run. The first column BR is the number of the branch, which we will ignore here.
Column PT is the number of the solution along the branch, that is, the continuation step in
which the solution was computed. Column TY indicates the type of the point. If this column
is empty the point is called a regular output point. All other points are special points. For
example, LP marks a limit point or saddle-node bifurcation point, and UZ is a point at which
the user defined condition PAR(2) = −1 is satisfied (within numerical accuracy). Table 1 gives
a complete overview over all special point types that AUTO can detect.

Column LAB is a unique label that is assigned to any solution that is written to the permanent
output of AUTO. These labels are used to identify a restart solution for initializing a restarted
run. Often this will be a special point, in which case we perform branch switching to a family
of solutions branching off a bifurcation point. For example, at a Hopf bifurcation point HB of
an equilibrium point we can switch to the continuation of the periodic solutions emerging from
this point.

The first column after LAB is the primary continuation parameter, and the column L2-NORM

is the Euclidian norm (equilibrium points) or L2 norm (periodic solutions) of the solution. The
contents of all other columns depends on the actual continuation and will be indicated by an
appropriate caption. In Figure 1 these two additional columns are the first coordinate and
another free parameter of ODE (1).

RAUTO: Running AUTO more efficiently 5

BP (1) Branch point (algebraic systems)
LP (2) Fold (algebraic systems)
HB (3) Hopf bifurcation

(4) User-specified regular output point
UZ (-4) Output at user-specified parameter value
LP (5) Fold (differential equations)
BP (6) Branch point (differential equations)
PD (7) Period doubling bifurcation
TR (8) Torus bifurcation
EP (9) End point of branch; normal termination
MX (-9) Abnormal termination; no convergence

Table 1: Solution Types; table taken from [1].

The equations file

If you are new to AUTO you might also be new to Fortran. Therefore, this section will equip you
with the necessary basics to get started without having to consult other sources about Fortran
first. We would like to note here again that the more recent version AUTO2000 allows you to
define your ODEs in C. However, it is useful to know about the Fortran version, because all
examples in this package are in Fortran, existing codes of ODEs in Fortran will continue to be
around for some while, and a number of users actually prefers Fortran over C. Our description
will be on the quite old Fortran 77 standard. Newer versions of Fortran are much more flexible,
but these are not yet widely available, in particular, not in open source implementations like the
popular g77. Furthermore, the restrictions imposed by the Fortran 77 standard are negligible
here. At the end of the day all we have to do is to fill in the body of two subroutines.

The equations file name.f must define all of the Fortran subroutines

Subroutine : Defines

FUNC : right-hand side of ODE (1),
STPNT : an a-priory known initial or seed solution,
BCND : boundary conditions,
ICND : integral conditions,
FOPT : objective function,
PVLS : user-defined output.

Here, we are only concerned with the first two subroutines, for the others we use default imple-
mentations that do nothing. Detailed descriptions of all subroutines, including the empty ones,
can be found in the equation files provided with the examples of rauto. Figure 2 shows a sample
implementation of the two subroutines FUNC and STPNT. FUNC evaluates the right-hand side
of the one-dimensional ODE ẋ = f(x, λ, µ) := µ + λx − x3. The state vector x is in the input
array U, the system parameters (λ, µ) are in the input array PAR, and the vector f(x, λ, µ) is
written to the output array F. All other arguments are (normally) unused. STPNT initializes
the state variables and parameters with the initial equilibrium solution x = 0 at λ = 1 and
µ = 0. The argument NDIM is (normally) unused.

Let us explain step by step the format of the source code in Figure 2. Fortran is not case
sensitive, so fortran, Fortran and fORTRAN are all the same. Fortran source code consists
of statements and comments. A statement has one or more lines, an initial line and optional
continuation lines, which allow splitting of longer statements over several lines. Comments have
one or more comment lines. Each type of line has its own format. Initial and continuation lines
contain the program statements and consist of four fields, each starting and ending at specific
character positions (columns):

6 F. SCHILDER

CLLLLC<-- statements go here -->

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION U(NDIM), PAR(*), F(NDIM), ICP(*)

F(1) = PAR(1) * U(1) - U(1)*U(1)*U(1) + PAR(2)

RETURN

END

SUBROUTINE STPNT(NDIM,U,PAR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION U(NDIM), PAR(*)

PAR(1) = 1.0D0

PAR(2) = 0.0D0

U(1) = 0.0D0

RETURN

END

Figure 2: Sample subroutines FUNC for the ODE ẋ = µ + λx− x3 and STPNT for the starting
point λ = 1, µ = 0 and x = 0.

Columns : Field name

1 through 5 : statement label,
6 : continuation indicator,
7 through 72 : statement,
73 to end of line : comment (optional).

Initial lines have an optional statement label, which is a unique number that can be used to
refer to it. The continuation indicator is blank and the columns 7 through 72 contain program
statements. The statement line can end before column 72, but everything typed from column

73 until the end of line will be treated as a comment, that is, ignored. A continuation line
continues a Fortran statement that needs to be split over more than one line. A continuation
line has a blank statement label. The continuation indicator contains any Fortran character
other than blank or the digit 0. This indicator might be used to count the continuation lines.
At least 6 continuation lines must be supported by any Fortran compiler. The statement and
comment fields are as for initial lines. A comment line serves solely the purpose of commenting
a program and does not affect execution. A comment line is either an entirely blank line or a
line beginning with a C, c or an asterisk *. The first line in the source code of Figure 2 is a
comment line indicating the fields of initial and continuation lines. All examples that come with
rauto contain such comment lines at appropriate locations to make typing easier.

The first statement line ‘SUBROUTINE . . . ’ defines a subroutine with name FUNC and a
list of formal parameters, which are:

RAUTO: Running AUTO more efficiently 7

Input arguments

NDIM : dimension of the ODE (normally unused)
U : state or phase-space variables
ICP : list of active continuation parameters (normally unused)
PAR : system parameters
IJAC : Jacobian computation flag (normally unused)

Output arguments

F : right-hand side of ODE
DFDU : Jacobian (normally unused)
DFDP : parameter derivatives (normally unused)

The data type of the formal parameters is not part of the subroutine definition. The body of a
subroutine consists of a list of statements that is terminated with an END statement.

The second statement line ‘IMPLICIT . . . ’ sets the assumed data type for variables begin-
ning with a certain letter to double precision. By default the data type of variables with a name
beginning with I, J, K, L, M or N is integer, and the type of all other variables is real (single
precision). The data type of variables can also be declared explicitly with a type statement,
for example, ‘DOUBLE PRECISION FOO’ declares a variable FOO of type double precision.
Type statements inside the body of a subroutine affect the assumed data type of its arguments.
Consequently, NDIM, ICP and IJAC are of type integer and U, PAR, F, DFDU and DFDP
of type double precision. All computations in AUTO use double precision, so watch out for
unwanted conversions. Avoid using single precision functions and constants, because this may
lead to poor convergence behavior of AUTO’s algorithms. Literal double precision constants are
of the form <integral-part>.<fractional-part>D[+|-]<exponent>. Either the integral or the
fractional part may be missing. Note the D in the exponential notation, 0.1 and 1.0e-1 are
single precision constants. Fortran provides all mathematical standard functions, like trigono-
metric functions and exponentials. The double precision functions begin with a D, for example,
DSIN(X) computes the sine of x in double precision.

The ‘DIMENSION . . . ’ statement declares a number of arrays. The dimension of an array
can be given explicitly in the form [lb:]ub, where lb is the lower and ub the upper bound. If the
lower bound is omitted, indexing starts with 1. If an asterisk * is given for the upper bound of
the last dimension, the array is a so-called assumed-size array with an unspecified upper bound.
However, since Fortran does not check array bounds all declarations in Figure 2 are equivalent.
Arrays can be multi-dimensional. Array elements are referenced with round brackets as in U(1).

At the next statement line starts the core part of the subroutine FUNC, namely, the evalua-
tion of the right-hand side of the ODE ẋ = f(x, λ, µ) := µ+λx−x3 at some point x. Our ODE
is one-dimensional and depends on two parameters, hence, we identify U(1)=x, PAR(1)=λ and
PAR(2)=µ. The statement line ‘F(1) = . . . ’ evaluates f(x, λ, µ) and assigns the resulting value
to the array element F(1). In general, we have U(1)=x1, . . . , U(NDIM)=xn and PAR(1)=λ1,
. . . , PAR(*)=λm and the components of f(x, λ, µ) are written to F(1),. . . , F(NDIM). The max-
imal dimension of an ODE is NDIM=12 by default. This limit can be changed; see [1] for
more details. The parameters that can be used in FUNC are PAR(1), . . . , PAR(9), parameters
PAR(I) with indices I ≥ 10 are used internally by AUTO. These internal parameters may be
used as continuation parameters or for output purposes. Most commonly, this will be the period
of a periodic solution stored in PAR(11) or the rotation number along a locus of Neimark-Sacker
points in PAR(12).

The arithmetic expressions that can be used to compute the right-hand side are almost
as in other programming languages, just take care of the data types. Fortran provides all
mathematical standard functions, the binary arithmetic operators +, -, * and /, the unary sign
operators + and -, as well as the exponentiation operator **. The assignment operator is =,
multiple assignments as in a=b=c are not allowed.

8 F. SCHILDER

1 1 0 1 NDIM,IPS,IRS,ILP

2 2 1 NICP,(ICP(I),I=1,NICP)

5 4 3 2 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

200 -2. 2. 0 100 NMX,RL0,RL1,A0,A1

20 0 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1.e-6 1.e-6 0.0001 EPSL,EPSU,EPSS

0.01 0.005 0.1 1 DS,DSMIN,DSMAX,IADS

0 NTHL,((I,THL(I)),I=1,NTHL)

0 NTHU,((I,THU(I)),I=1,NTHU)

0 NUZR,((I,UZR(I)),I=1,NUZR)

Figure 3: Sample constants file.

The body of the subroutine FUNC is terminated with the two consecutive statements RE-
TURN and END. The subroutine STPNT (STarting PoiNT) defined below FUNC initializes U
and PAR with an equilibrium point or periodic solution of the ODE at certain parameter values,
here x = 0, λ = 1 and µ = 0. It has only one input argument NDIM (normally unused) and two
output arguments U and PAR. Note that the initial point must not be a bifurcation point.

The constants file

The constants file is a plain text file containing values for some problem constants, for example,
the dimension of the ODE and parameters influencing the performance of AUTO’s algorithms.
Figure 3 shows a sample constants file, which is split optically into two parts. The left-hand
block of numbers are the actual constants and the right-hand block contains commenting text.
The format of these comments reflects the formatted READ statements used to read in the
individual lines. For example, AUTO uses the Fortran statement

READ(2,*,END=5) NDIM,IPS,IRS,ILP

to read in the first line of a constants file. When executed, this example statement reads the full
first line and assigns the first four values to the variables listed after the closing bracket. Any
surplus data, in our case the comments, is ignored. The data type of the constants is integer if
the first letter is I, J, K, L, M, or N, and double precision otherwise. The data in the constants
file is interpreted according to the data type of the constant. Therefore, 1.e-6 in the constants

file is a double precision number, while it would be of single precision in Fortran source code.

In the order they appear in the constants file the AUTO constants are: NDIM is the dimension
of the ODE. IPS sets the solution type you want to compute, 1=equilibrium points of ODEs and
2=periodic solutions of ODEs. IRS is the label of the restart solution, that is, the solution you
want to start your continuation with. If IRS>0 use solution with label IRS of a previous run,
if IRS=0 use solution set by subroutine STPNT. ILP switches limit point detection on (ILP=1)
or off (ILP=0).

NICP is the number of free continuation parameters. The continuation of equilibrium points
requires at least one free parameter (NICP≥1) and the continuation of periodic solutions two
(NICP≥2). ICP is an array of dimension NICP and stores the indices of the free continuation
parameters. The first parameter PAR(ICP(1)) is the primary continuation parameter. For
the continuation of periodic solutions a secondary continuation parameter must be present.
The natural choice is the period stored in PAR(11). It is sometimes useful to include more
free parameters than necessary, which results in additional output. This is called parameter

overspecification and at most seven parameters may be specified; see [1] for more details.

NTST is the number of mesh intervals used for computing periodic solutions. This should
be set to a moderate value (5≤NTST≤20) and only be increased if necessary. NCOL is the
number of collocation points per mesh interval. Default is NCOL=4, which should normally not

RAUTO: Running AUTO more efficiently 9

be changed. IAD controls the mesh adaptation during continuation. The distribution of mesh
points is adapted every IAD continuation steps if IAD>0, or kept fixed if IAD=0 (adaptation
off). ISP controls the detection of special points (bifurcation points). ISP=0 disables detection
of special points. With ISP=1 branch points of equilibria, with ISP=3 branch points of periodic
solutions and with ISP=2 all special points will be detected (equilibria and periodic solutions).
ISW indicates if branch-switching shall be performed. The normal setting is ISW=1. If IRS is
the label of a Hopf bifurcation (HB) branch point (BP) or a period-doubling bifurcation (PD)
then setting ISW=−1 will start to continue the branch of solutions branching off the special
point. If IRS is the label of a fold (LP), Hopf (HB), period doubling (PD) or torus bifurcation
point (TR) then IRS=2 will start a codimension-one continuation of a locus of such points. An
additional free continuation parameter must be present for such continuations. IPLT selects the
principal solution measure shown in column 5 of AUTO’s output; see Figure 1. The normal
setting is IPLT=0 and is rarely changed. NBC is the number of boundary conditions and NINT

the number of integral conditions when AUTO is used for the continuation of solutions of general
two-point boundary value problems, which we are not concerned with here. We use the setting
NBC=NINT=0.

NMX is the maximal number of continuation steps. AUTO will stop with EP after at most
NMX continuation steps have been performed. RL0 and RL1 are the lower and upper limit for the
primary continuation parameter. AUTO will stop with EP whenever the primary continuation
parameter leaves the interval [RL0, RL1]. A0 and A1 are bounds for the principal solution
measure. AUTO will stop with EP whenever the principal solution measure leaves the interval
[A0, A1].

NPR controls the amount of data saved during continuation. AUTO will save the solution
and full restart data every NPR continuation steps in addition to all solutions at special points.
NPR should not be too small to avoid excessive data storage. A value around NMX/10 is usually
a good choice. MXBF controls automatic branch switching for equilibrium point continuation,
which allows to some extend the automatic computation of a bifurcation diagram. The normal
setting is MXBF=0. IID controls the amount of diagnostic output generated by AUTO. This
is useful for debugging purposes. The diagnostic output is written to the file data/d.run,
where run is the name of the run. The normal setting is IID=2. ITMX is the maximum
number of iterations allowed for locating special points. The normal setting is ITMX=8. ITNW

is the maximum number of combined Newton-Chord iterations for the correction step of the
continuation method. The normal setting is ITNW=5, but may need to be increased for difficult
problems. NWTN is the maximum number of full Newton steps of the combined Newton-Chord
iterations. The normal setting is NWTN=3. This may need to be increased for difficult problems.
JAC is a flag indication whether the user provides derivatives in the subroutine FUNC. The
normal setting is JAC=0 (no derivatives provided). If set to JAC=1 the user must provide
derivatives with respect to state variables and parameters.

EPSL Convergence criterion for equation parameters. AUTO will stop with MX if the error
in the parameters becomes larger than EPSL. The normal setting is EPSL=10−7 . . . 10−6. EPSU

Convergence criterion for state variables. AUTO will stop with MX if the error in the state
variables larger than EPSU. The normal setting is EPSU=10−7 . . . 10−6. EPSS Convergence
criterion for locating special points. The normal setting is EPSU=10−4 . . . 10−3. EPSS should
be 100. . . 1000 times greater that EPSL, EPSU. AUTO behaves a bit erratic when this criterion
cannot be satisfied. Sometimes it will stop with MX and sometimes it will resume the contin-
uation without mentioning. Check the diagnostic output file data/d.run for possible special
points that went unnoticed.

DS is the initial continuation step size. This value should not be too large and must satisfy
DSMIN ≤ |DS| ≤ DSMAX. A negative value reverses the direction of continuation. DSMIN

is the minimal allowed continuation step size. AUTO will stop with MX if the correction step
fails with |DS|=DSMIN. DSMAX is the maximal allowed continuation step size. AUTO will not

10 F. SCHILDER

use larger steps. Note that increasing DSMAX also increases the risk of missing special points.
IADS controls adaptation of the continuation step size. The continuation step size is adapted
every IADS continuation steps, or kept fixed if IADS=0 (adaptation off).

The last three entries all have the same syntax and read values into arrays. The first constant
NTHL, NTHU or NUZR appears on a separate line and specifies the number of subsequent array
entries to read in. After this line follow precisely NTHL, NTHU or NUZR lines containing two
values: an index I and a real number X. THL is an array defining weights for individual equation
parameters and THU for individual state variables. I is the index of the parameter or variable
and X is the new weight assigned to it. By default, all weights are 1. These weights are used in
the computation of the distance between two points in combined state and parameter space and
affect the continuation step size. This functionality is sometimes used to exclude the period from
the computation of the continuation step size by setting THL(11)=0. UZR is a list of parameter
values for which the solution shall be saved. A label will be assigned to such solutions and they
can be used as initial solutions of restarted runs. I is the index of the parameter and X is the
value for which the solution shall be saved whenever PAR(I)=X holds during continuation. If
I is negative then AUTO will save the solution and stop with EP if PAR(|I|)=X holds. The
maximum number of user output points is normally limited to 20. This limit can be changed;
see [1] for more details.

A one-page overview of all AUTO constants with typical values is given in Appendix B and
a full description can be found in the manual of AUTO [1].

3 Running rauto

The easiest way to get started with rauto is to look at the examples provided with the package.
We explain rauto’s typical work cycle using the cusp normal form ẋ = µ + λx − x3 as a simple
example. Create a directory where you would like to do your computations, for example, rauto
and change to this directory. Then type ‘rdm cusp’. This will create the sub-directory cusp.
Change to the directory cusp and type ‘ls’. You should now see something like

frank/tmp> mkdir rauto

frank/tmp> cd rauto/

tmp/rauto> rdm cusp

tmp/rauto> ls

cusp

tmp/rauto> cd cusp

rauto/cusp> ls

cusp.f demo r.cusp scandemo

The equations file is cusp.f and the master constants file is r.cusp. Note that the names of
these two files follow the pattern name.f and r.name, which is required by rauto. We ignore
the files demo and scandemo for the moment.

In our initial runs, that is, runs starting at the solution provided in STPNT, we are going to
compute a branch of equilibrium points with respect to the parameter µ. These computations
will start at the point x = 0, λ = 1 and µ = 0. Before you continue:

• Take a look at the equations and master constants file.
• Sketch the µ-x-bifurcation diagram for λ > 0.

In our equations file U(1) = x, PAR(1) = λ and PAR(2) = µ. The constants file is preset for a
continuation in µ ∈ [−2, 2] for µ increasing. The basic call to rauto for performing an initial run
is

rauto [-h] name run

RAUTO: Running AUTO more efficiently 11

where name is the name of the problem (cusp), and run is a unique name we assign to the
computation or branch for later reference. Note that rauto and all its auxiliary programs have a
-h switch, which will print a usage message and exit. Since we are going to perform a continuation
for increasing µ, we call our first run muf for ‘µ forwards’. To run this computation simply type
‘rauto cusp muf’. You should see something like

rauto/cusp> rauto cusp muf

rauto: *** number of runs=1

rauto: *** starting run muf: run 1 of 1, IRS=0

Starting cusp ...

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

1 14 LP 2 3.84900E-01 5.77351E-01 -5.77351E-01 1.00000E+00

1 20 3 1.68950E-01 9.01430E-01 -9.01430E-01 1.00000E+00

1 40 4 -1.19337E+00 1.36827E+00 -1.36827E+00 1.00000E+00

1 49 EP 5 -2.07783E+00 1.53434E+00 -1.53434E+00 1.00000E+00

Total Time 0.240E-01

cusp ... done

This will create the directory data, which stores the results of all rauto computations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2.5 -2 -1.5 -1 -0.5 0 0.5

 stable
 unstable

 LP

Figure 4: plotbd muf

Rauto comes with a number of tools for processing
data obtained through rauto computations. The most
elementary of these are lsruns, printbd and rmruns.
Lsruns will print a list of runs, printbd will re-print rauto’s
output of a run and rmruns will delete all files of all runs
or of the runs given on the command line. Try ‘lsruns’
and ‘printbd muf’. A more sophisticated tool is plotbd.
Plotbd will plot a bifurcation diagram using all runs spec-
ified on the command line. For the moment we have only
muf, so try ‘plotbd muf’. If you are a fan of black-and-
white bifurcation diagrams, try ‘plotbd -bw muf’. You
should see a gnuplot window with a plot similar to Figure 4. The horizontal axis is µ and the
vertical axis is ‖x‖2, which corresponds to columns 5 and 6 of rauto’s output during continua-
tion. You may specify an argument of the form xaxis:yaxis to plot other columns, where xaxis

and yaxis are the numbers of columns to be plotted as the x- and y-axis. Counting starts with
column PAR as number 1. Try to plot x versus µ.

In a subsequent initial run we are now going to compute the missing part of the branch
computed so far by continuation from the same starting point, but in the other direction. Instead
of changing DS in the master constants file, we rather tell rauto on the command line to start a
continuation in the other direction. Rauto allows to set almost any AUTO constant to a value
different from that in the master constants file by using a command of the extended form

rauto name run (-auto constant value) . . .

Auto constant is the name of any AUTO constant that is of type integer or double precision and
value is the new value of appropriate type that shall be assigned to it. However, the constant
DS is special in two aspects. When reading a constants file rauto ignores the sign and initially
sets DS to the absolute value of the number found in the constants file. A negative value for
DS must be given on the command line. To simplify matters DS also accepts the direction flags

+ and - on the command line instead of a floating point number. If you just want to start a
continuation in one or the other direction and are happy with the absolute value of DS in the
constants file then specify a direction flag. In our example, to start a continuation for decreasing

12 F. SCHILDER

µ type ‘rauto cusp mub -DS -’. Note the change of the run name to mub for ‘µ backwards’.
You should see something like

rauto/cusp> rauto cusp mub -DS -

rauto: *** number of runs=1

rauto: *** starting run mub: run 1 of 1, IRS=0

Starting cusp ...

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

1 14 LP 2 -3.84900E-01 5.77351E-01 5.77351E-01 1.00000E+00

1 20 3 -1.68950E-01 9.01430E-01 9.01430E-01 1.00000E+00

1 40 4 1.19337E+00 1.36827E+00 1.36827E+00 1.00000E+00

1 49 EP 5 2.07783E+00 1.53434E+00 1.53434E+00 1.00000E+00

Total Time 0.800E-02

cusp ... done

This will create a second run, type ‘lsruns’ to see a list of all runs. You may plot a combined
bifurcation diagram of both runs by typing ‘plotbd 1:3 muf mub’, or, the more advanced com-
mand ‘plotbd 1:3 ‘lsruns‘’ making use of command substitution by the shell. The latter
technique is very convenient for plotting combinations of many runs.

Typing rauto commands on the command line quickly becomes tiring, in particular, if you
need to set many AUTO constants. The recommended way of using rauto is to step by step
add rauto commands to a shell script. This not only allows you to collect all data about your
computations in a single file, it also facilitates recomputing runs when necessary and massive
computations involving large numbers of runs. Let us illustrate this style of working with the
example cusp at hand. Type ‘rmruns’ and answer ‘yes’ when asked for confirmation:

rauto/cusp> rmruns

Remove the following runs?

mub muf

rmruns: (yes/no) yes

rauto/cusp> lsruns

lsruns: no matching runs

Create the file ‘cuspdemo’ and make it executable:

rauto/cusp> touch cuspdemo

rauto/cusp> chmod +x cuspdemo

rauto/cusp> ls -l cuspdemo

-rwx------ 1 frank users 0 2007-04-06 19:30 cuspdemo

Yes, I was typing this over Easter. Now open the file cuspdemo with your favorite text editor
(or use ‘cat > cuspdemo’), and write

#!/bin/sh

set -e

rauto cusp muf

rauto cusp mub -DS -

This is a simple shell script for the command interpreter sh. The command ‘set -e’ makes sure
that the execution of the script stops whenever rauto encounters an error. Save the script (or
press ^D) and type ‘./cuspdemo’. This will re-compute the runs muf and mub and produce the
same output as before. Now type ‘./cuspdemo’ again. This time you should see something like

RAUTO: Running AUTO more efficiently 13

rauto/cusp> ./cuspdemo

rauto: *** number of runs=1

rauto: *** starting run muf: run 1 of 1, IRS=0

rauto: *** run muf up to date, nothing done

rauto: *** number of runs=1

rauto: *** starting run mub: run 1 of 1, IRS=0

rauto: *** run mub up to date, nothing done

Rauto employs a number of tests to check whether a run is up to date or needs recomputation.
This way you can (and should) add commands for new computations to the end of the list of
rauto commands in a shell script and then simply re-execute the script. If you later change some
constants of earlier computations rauto will recompute only the runs that might be affected by
these changes. Rauto has a ‘-f’ switch for forcing a recomputation in the impossible event that
these tests fail. Play around with this example, change some constants and watch what happens.

The preceeding discussion should have equipped you with enough information to get started
with rauto, in particular, if you are already an experienced user of AUTO. You might want
to jump ahead to the command reference and start working with rauto and its many utility
programs. With the subsequent examples we demonstrate how to execute restarted runs, select
restart solutions, perform branch switching, start from numerical data and we explain rauto’s
constants inheritance mechanism. These examples also illustrate some advanced features, which
include using command substitution, variable expansion and arithmetic expansion together with
rauto as well as rauto’s multiple run mode for so-called scans for creating 3d-bifurcation diagrams.
A section with detailed descriptions of these and even more fancy features is in preparation.

Demo cusp: restart labels, branch switching and scans

To create a working copy of the demo cusp change to a directory where you would like to do
your computations, for example, ${HOME}/rauto. Then type ‘rdm cusp’. This will create the
sub-directory cusp, which contains the files cusp.f, r.cusp, demo and scandemo. Change to
the directory cusp.

The equations file cusp.f defines the right-hand side of the ODE ẋ = µ + λx − x3 with the
identifications U(1) = x, PAR(1) = λ and PAR(2) = µ. The master constants file is r.cusp

and the files demo and scandemo are two executable shell scripts for the command interpreter
bash serving as demonstration programs. The first script demo illustrates branch-switching and
executes the rauto commands

rauto cusp muf

rauto cusp mub -DS -

rrun=muf

rauto cusp LPf $rrun -IRS $(splabs $rrun LP 1 1) -ISW 2

rauto cusp LPb $rrun -IRS $(splabs $rrun LP 1 1) -ISW 2 -DS -

The first two commands perform initial runs in forward (muf) and backward (mub) direction
starting at the initial solution given in STPNT. During both runs a limit point (fold or saddle-
node bifurcation) is detected; see Figures 5 (a) and (b). In the subsequent runs we compute the
locus of limit points in the two parameters λ and µ starting at the limit point found in run muf;
see Figure 5 (c). This is called fold continuation. To perform such a restarted run we use an
rauto command of the form

rauto name run rrun -IRS rlab [(-auto constant value) . . .]

Here, rrun is the name of the restart run during which the limit point was detected and rlab

is the restart label that was assigned to it by AUTO (column LAB). Rrun and rlab together
uniquely specify a restart solution.

14 F. SCHILDER

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 stable
 unstable

 LP

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 stable
 unstable

 LP

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 unstable

(a) plotbd 1:3 "[-2:2]" "[-2:2]" muf mub

(b) plotbd -bw 1:3 "[-2:2]" "[-2:2]" muf mub

(c) plotbd 4:1 "[-2:2]" "[-2:2]" LPf LPb

Figure 5: Bifurcation diagrams of the example cusp. Initial runs in (µ, x) coordinates in (a)
color and (b) black-and-white and (c) the fold curve in (λ, µ) coordinates with a cusp point at
(0, 0).

If you look at the output of run muf you will see that the restart label of the limit point
is 2, so a call like ‘rauto cusp LPf muf -IRS 2 -ISW 2’ would do. However, specifying restart
labels explicitly is not recommended as we normally can’t anticipate what label will be assigned
and the labels assigned may change when changing AUTO constants. We would rather like to
tell rauto to ‘start at the limit point found in run muf’. This functionality is provided by the
utility program splabs (special point labels). An invocation of splabs has the form

splabs run type [begin [end]]

Type is the type of the special point, here LP. The list of labels to be selected can be restricted
to a subset by specifying a range of indices with begin and end . Try to select the labels of all,
the first and the last end point (EP) of run muf with splabs. To substitute the output of splabs
for rlab we use a simple form of command substitution.

Since we want to change the type of continuation from equilibrium point to fold continuation
we have to perform branch switching by setting the AUTO constant ISW to 2. Note that ISW is
a special constant in the sense that rauto always initializes ISW to 1 (normal setting) regardless
of its value in a constants file. Values other than 1 must be specified on the command line.

The second script scandemo demonstrates the so-called multiple run mode of rauto for per-
forming so-called scans. It executes the rauto commands

rauto cusp muf -UZR 2 -1

rauto cusp mub -DS -

rrun=muf

rauto cusp LPf $rrun -IRS $(splabs $rrun LP 1 1) -ISW 2

rauto cusp LPb $rrun -IRS $(splabs $rrun LP 1 1) -ISW 2 -DS -

rrun=muf

rauto cusp laf $rrun -IRS $(splabs $rrun UZ 1 1) -ICP 1 2 \

-UZR 1 -2:0.1:2

rauto cusp lab $rrun -IRS $(splabs $rrun UZ 1 1) -ICP 1 2 \

-UZR 1 -2:0.1:2 -DS -

rrun=laf

rauto cusp mu%02dff $rrun -IRS $(splabs $rrun UZ) -ICP 2 1

rauto cusp mu%02dfb $rrun -IRS $(splabs $rrun UZ) -ICP 2 1 -DS -

rrun=lab

rauto cusp mu%02dbf $rrun -IRS $(splabs $rrun UZ) -ICP 2 1

rauto cusp mu%02dbb $rrun -IRS $(splabs $rrun UZ) -ICP 2 1 -DS -

RAUTO: Running AUTO more efficiently 15

The first four commands are almost as before. However, the first run muf is recomputed, because
a so-called user output point is defined with the option ‘-UZR 2 -1’, which can be read as ‘save
restart data whenever PAR(2) assumes the value -1’. The general form of defining user output
points is

-UZR [(inum drange) . . .]

drange : dnum | begin[:step]:last

Inum is the index of a parameter and drange is either a double precision number or a list of
double precision numbers evenly distributed within the interval [begin, end] with spacing step,

which is 1.0 by default.

-2 -1.5-1 -0.5 0 0.5 1 1.5 2

-2-1.5-1-0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2
 stable

 unstable
 LP
 UZ

Figure 6: plotbd -i 1:4:3 "[-2:2]"

"[-2:2]" ‘lsruns "mu*"‘ LPf LPb

The fifth and sixth run start at this user output point
and perform an equilibrium point continuation in λ for
µ = −1. These runs produce a large number of further
user output points for different values of λ. Note that
you may need to recompile AUTO with NUZRX set to
a sufficiently large value. The user points computed in
these runs serve as starting points for a sequence of con-
tinuations in µ, scanning a two-dimensional manifold of
equilibrium points above the (λ, µ) parameter plane; see
Figure 6. This sequence of continuations is executed with
the last four commands, where we use the multiple run mode of rauto.

In multiple run mode, that is, when a list of more than one restart label for the same restart
run is specified the run name must contain a printf %d format specifier of the general form
%[0[width]]d. The optional 0 forces zero-padding and width sets an optional field width for
printing a zero-padded decimal integer number. Rauto will compute a qualified run name with
the actual restart label substituted according to the format specifier. This creates a unique name
for each run of a scan. Use lsruns as shown in the caption of Figure 6 to pass all qualified run
names matching a certain pattern to plotbd. Note that this example makes use of parameter
overspecification. All runs plotted in Figure 6 used the option ‘-ICP 2 1’ which includes both
parameters in the output data such that these runs can easily be combined in a single plot.

Demo duff: harmonic forcing and starting from numerical data

To create a working copy of the demo duff change to a directory where you would like to do
your computations, for example, ${HOME}/rauto. Then type ‘rdm duff’. This will create the
sub-directory duff, which contains the files duff.f, duff.dat, r.duff and demo. Change to
the directory duff.

The Duffing equation
ẍ + αx + λẋ + εx3 = A cos ωt

considered in this example is not autonomous, but periodically forced with period of T = 2π/ω.
However, the forcing is harmonic with a single frequency, which allows to transform this equation
into an autonomous equation by augmenting it with an asymptotically stable harmonic oscillator.
This procedure leads to the four-dimensional first order system

ẋ = y,

ẏ = Av − αx − λy − εx3,

u̇ = u + ωv − u(u2 + v2),

v̇ = −ωu + v − v(u2 + v2),

which is implemented in the equations file duff.f. The file duff.dat contains a numerical
solution of this system over approximately one period for the parameter values A = 0.4, ω = 1.0,
λ = 0.04, α = −0.2 and ε = 8/15.

16 F. SCHILDER

The master constants file is r.duff, which is set up for a continuation in PAR(2) = ω ∈
[0, 3]. The file demo is an executable shell script for the command interpreter bash serving as a
demonstration program, which executes the rauto commands

rfcon duff

rauto duff omf dat -IRS 1

rauto duff omb dat -IRS 1 -DS - -NMX 300

rauto duff po1 omb -IRS ‘splabs omb BP 1 1‘ -ISW -1 -NTST 30 -DSMAX 0.05

rauto duff po2 po1 -IRS ‘splabs po1 PD 1 1‘ -ISW -1 \

-NTST 60 -DS 0.01 -DSMAX 0.02 -NMX 1000

rauto duff po3 po2 -IRS ‘splabs po2 PD 1 1‘ -ISW -1 \

-NTST 100 -DS 0.001 -DSMAX 0.005 -NMX 4000

The first command performs the only initial run using the utility program rfcon. It converts
the numerical data from file duff.dat into the internal data format used by AUTO. In general,
running rfcon requires the three files name.f, name.dat and r.name. The function STPNT
in the equations file name.f must initialize the free parameters. The file name.dat contains
columns with sufficiently dense data points in t, U(1), . . . , U(NDIM). The file r.name provides
values for the dimension NDIM and certain discretization constants. The numerical data is
always converted into a solution with label 1 of the run ‘dat’.

The subsequent commands in the script perform in this order

• continuations forwards and backwards in ω,
• branch switching at a branch point (BP),
• branch switching at period-doubling points (PD),

computing the first two branches of a period-doubling sequence; see Figures 7 (a) and (b). Use
the command ‘plotsol run [lab . . .]’ to plot all or selected solutions of a run as shown in
Figures 7 (c) and (d).

Demo roess: constants inheritance

To create a working copy of the demo roess change to a directory where you would like to
do your computations, for example, ${HOME}/rauto. Then type ‘rdm roess’. This will create
the sub-directory roess, which contains the files roess.f, r.roess and demo. Change to the
directory roess.

The equations file roess.f defines the right hand side of the Rössler equation

ẋ = −y − z,

ẏ = x + αy,

ż = β + z(x − γ).

and provides an initial equilibrium point in STPNT for α = 0.005, β = 0.25, γ = 6.2. The master
constants file r.roess is set up for a continuation in PAR(1) = α ∈ [0, 0.4]. The file demo is
a script for the command interpreter bash and demonstrates rauto’s mechanism of constants

inheritance.
Constants inheritance creates a dependency of a restarted or child run on its restart or parent

run. The objective is to trigger a recomputation of a child run whenever its restart solution
in the parent run might have changed, including changes in the discretization. This feature is
essential, for example, for

• adding commands to a script (avoid unnecessary recomputations),

RAUTO: Running AUTO more efficiently 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5 1 1.5 2 2.5 3 3.5

 stable
 unstable

 LP
 BP
 PD

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

 stable
 unstable

 LP
 BP
 PD

(a) plotbd 1:3 ‘lsruns "om*" "po*"‘

plotbd 1:3 "[0.8:1.5]" "[0.4:1.1]" ‘lsruns "om*" "po*"‘ (b)

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c) plotsol po2 17 plotsol po3 31 (d)

Figure 7: Bifurcation diagram (a) of the Duffing equation and an enlargement (b) around a
period-doubling sequence. The period-doubled (c) and quadrupled (d) solution around ω ≈ 1.02.

• scans (number and location of UZR restart solutions may change) and
• switching between coarse and fine grids (changing master constants file only).

It is also useful in situations where you want to change a certain AUTO constant depending
on its value for the parent run as the demonstration program illustrates. Use the command
‘printac run ac name’ to print the value that was assigned to AUTO constant ac name during
run run. For the experts: note that it is indeed more natural to use shell scripts rather than the
command make as we have a top-down dependency and make is designed to resolve bottom-up
dependencies. Furthermore, the dependency check employed by rauto is more accurate, because
it is based on the contents of certain files as opposed to using just the modification date. The
only rule imposed on shell scripts is that the command for a child run must be executed after
the command of its parent run.

The demonstration program computes a variable number of steps of a period-doubling cas-
cade occurring in Rössler’s equation. It uses a loop over the index of the step and makes full
use of constants inheritance for doubling the number of mesh points and reducing the initial,
minimal and maximal step size by a factor of 4.67 every iteration. The full command for calling
the demonstration program is ‘demo [steps]’, where the optional argument steps specifies how
many steps of the period-doubling sequence shall be computed, default is 3. The author was
able to go up to step = 7, which seems to be the accuracy limit of AUTO. Note that you might
need to recompile AUTO with NTSTX and NCOLX set to sufficiently high values; see [1] for
details. The demonstration program executes the rauto commands

rauto roess alf

rrun=alf

18 F. SCHILDER

rauto roess po1 $rrun -ICP 1 11 -IRS ‘splabs $rrun HB‘ \

-DS 0.1 -DSMAX 0.5 -ISW -1 -IPS 2 -NPR 1

for ((i=2 ; $i <= ${1:-3} ; ++i)) do

names of run and restart run

run=po$i

rrun=po$(($i - 1))

read step sizes from restart run

h0=$(printac $rrun DS)

hmin=$(printac $rrun DSMIN)

hmax=$(printac $rrun DSMAX)

reduce step sizes and double NTST

h0=$(dc -e "8 k $h0 4.67 / p")

hmin=$(dc -e "8 k $hmin 4.67 / p")

hmax=$(dc -e "8 k $hmax 4.67 / p")

NTST=$((2*$(printac $rrun NTST)))

print current settings and perform run

echo "NTST=$NTST, DS=$h0, DSMIN=$hmin, DSMAX=$hmax"

rauto roess $run $rrun -ICP 1 11 -IRS ‘splabs $rrun PD‘ \

-DS $h0 -DSMIN $hmin -DSMAX $hmax -NTST $NTST \

-ISW -1 -IPS 2 -NPR 5

done

Note the use of default value substitution ${1:-3}, command substitution $(...) and arithmetic

expansion $((...)). Use the commands plotbd and plotsol as shown in Figure 8 to plot the
bifurcation diagram and families of solutions.

RAUTO: Running AUTO more efficiently 19

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.05 0.1 0.15 0.2 0.25

 stable
 unstable

 LP
 HB
 PD

 9

 9.5

 10

 10.5

 11

 11.5

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

 stable
 unstable

 LP
 HB
 PD

(a) plotbd 1:3 "[0:0.25]" "[-1:16]" ‘lsruns "*"‘

plotbd 1:3 "[0.1:0.16]" "[9:11.5]" ‘lsruns "*"‘ (b)

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-8
-6-4-2 0 2 4 6 8 10 12

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 stable
 unstable

 PD

 stable
 unstable

 PD

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-8
-6-4-2 0 2 4 6 8 10 12

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

(c) plotsol -bl 2 0:2:3 po1 plotsol 0:2:3 po1 (d)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8 10 12

 stable
 unstable

 PD

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-10 -5 0 5 10 15

 stable
 unstable

 PD

(e) plotsol po1 plotsol po2 (f)

Figure 8: Bifurcation diagram (a) of the Rössler system and an enlargement (b). The family
of period-one solutions emerging in a Hopf-bifurcation shown as individual solutions (c) and
as a two-dimensional manifold (d) in (α, x, y) space. Projection of the period-one (e) and the
period-doubled (f) solutions onto the (x, y) plane.

20 F. SCHILDER

A Command reference

All utility programs that are part of the package rauto, except rfcon, accept filenames and
standard input as well as run names. Hence, they can be used independent of rauto, for example,
to process computational results from the pre-rauto era. If you are not interested in rauto you
might still want to have a look at the tools provided.

Rauto - execute AUTO continuation runs.

Rauto is a command line interface to AUTO.

Usage

rauto [-h|-f] name run [restart run -IRS irange . . .] [options . . .]

options : (-iopt inum) | (-dopt dnum) | spopt | lopt

iopt : NDIM | IPS | ILP | NTST | NCOL | IAD | ISP | ISW
| IPLT | NBC | NINT | NMX | NPR | MXBF | IID | ITMX
| ITNW | NWTN | JAC | IADS

dopt : RL0 | RL1 | A0 | A1 | EPSL | EPSU | EPSS | DSMIN | DSMAX
spopt : (-ICP inum . . .) | (-DS (dnum|+|-))
lopt : ((-THL|-THU) (inum dnum) . . .) | (-UZR (inum drange) . . .)
irange : inum | inum:[inum:]inum

drange : dnum | dnum:[dnum:]dnum

Switches

-h : Display a usage message and exit with nonzero return value.
-f : Force execution of computation even if the data seems up-to-date.

Arguments

name : Base name of the equation file name.f.
run : Unique name (identifier) of the run to be performed.
restart run : Name of the run that contains the restart solutions.

In single-run mode (one restart label) run may contain, and in multiple-run mode (two or more
restart labels) run must contain a %d format specifier f : %[0[width]]d. This specifier is replaced
with the restart label of the current run. Width sets the minimum field width and the initial ‘0’
forces zero-padding. For example, ‘%03d’ will result in ‘007’ for restart label 7. The run name
resulting from this substitution is called the qualified run name, for example, ‘agent007’ is the
qualified run name of the run name ‘agent%03d’ with restart label 7.

Options

Options is a list of AUTO constants preceeded with a ‘-’. The meaning of these constants is
briefly explained in Section 2 and Appendix B and in detail in the AUTO manual [1]. Upper-
and lower case are equivalent and can be mixed. The majority of options requires an integer
argument inum, or, a floating point argument dnum, which will be assigned to the corresponding
AUTO constant. Exceptions to this rule are -IRS, the special options -ICP and -DS, and the
list options -THL, -THU and -UZR.

IRS expects a list of restart labels and accepts integer numbers and/or integer ranges. The
notation of ranges follows the matlab syntax irange : begin:[step:]end , that is, ‘1:5’ expands to
‘1 2 3 4 5’ and ‘1:2:5’ to ‘1 3 5’. ICP expects a list of indices of continuation parameters.
Note that you must not give the number of parameters. The initial continuation step size DS

RAUTO: Running AUTO more efficiently 21

accepts the two direction flags ‘+’ and ‘-’ besides an explicit floating point value. Specifying a
direction flag will set the direction of continuation to forward or backward, respectively, without
changing the absolute value of the initial step size.

THL and THU follows a list of pairs consisting of an integer index and a floating-point value
weight . Index is the index of a parameter or of a state variable and weight is the scaling factor
that will be applied to this variable in the arc-length computation. UZR expects pairs consisting
of an integer index and a floating-point value uzr value similarly to THL and THU. However,
ranges of floating-point values may be given for uzr value. The syntax is identical to integer
ranges. For example, the pair ‘1 1:0.5:2’ expands to the three-element list of pairs ‘1 1.0 1

1.5 1 2.0’.

Detailed description

Rauto combines into a single invocation a number of basic steps that are necessary to perform
a run with AUTO, which makes it easier to execute and organize large numbers of runs. Before
using rauto you need to prepare an equations file name.f, defining the right-hand side of your
system and an initial solution, and the master constants file r.name with initial values for all
AUTO constants; see Section 2 for details. If you want to start from numerical data you also
have to provide the file name.dat that contains points along a solution; see the description of
rfcon for details.

AUTO computations are divided into two phases: a few initial runs of rauto with restart
label IRS and restart run omitted, and subsequent restarted runs where restart run and restart
labels are specified. When starting from numerical data only a single initial run is performed
with rfcon. At this point we describe initial runs when using rauto, an initial run using rfcon

is explained in the command description of rfcon. On startup of an initial run all AUTO
constants are initialized from the master constants file data/r.name and from the constants file
data/r.restart run for a restarted run, which means that a restarted run inherits all constants
from its restart run. There are three exceptions to this rule: ISW is always set to 1, DS is always
initialized with a positive value and the user list UZR is always set to an empty list, only UZR
points given on the command line will have the desired effect. After initialization rauto checks
for which AUTO constants new values were given on the command line and substitutes all of
these. Rauto then enters a loop over all restart labels that were specified on the command line,
or IRS=0 for an initial run.

For each restart label rauto checks if the files data/r.qrun and data/l.qrun already exist,
where qrun is the qualified run name; see Section Arguments above. Existence of these files
indicates that this particular run has been computed before. Three tests are performed to
decide whether or not it is necessary to rerun the computation. The computation is assumed to
be up-to-date if the equations file is older than data/r.qrun, if all AUTO constants are identical
to the ones in data/r.qrun and if the output of ‘printls restart run restart lab’ is identical to
data/l.qrun. If one of these tests fails or if data/r.qrun does not exist, then the computation
is executed. Otherwise, a message indicating that the run is up-to-date is printed on the screen.
Since AUTO shows a certain lack of communication skills rauto employs a heuristic test to verify
hat the computation was successful. If this test fails an error message is printed. On success
rauto saves all computed data and creates or updates the files data/r.qrun and data/l.qrun.

Return values

Rauto returns 0 on success and 1 if an error occurred or the -h switch was given. In the case
that an error occurs during a run of AUTO, or if the run of AUTO is interrupted, the file
data/r.qrun will be deleted, which schedules the interrupted run for recomputation.

Use ‘set -e’ in sh or bash scripts to stop a sequence of computations as soon as an error
occurs.

22 F. SCHILDER

Bd2dat - convert and combine branch data.

Bd2dat converts branch data data into a plain text format and supports splitting the data into
stable and unstable parts as well as extraction of special points. The output format follows
gnuplot’s ‘plot data-file’ convention and the splitting of files allows stability plots as well as
marking special points.

Usage

bd2dat [-h|-a] [-bl n] (run|pfile|-) [ofile1 [ofile2]] [(-sptype spfile) . . .]

Switches

-h : Display a usage message and exit with nonzero return value.
-a : Append data to output files, do not overwrite.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.
ofile1 : Write or append stable part or all to file ofile1 .
ofile2 : Write or append unstable part to file ofile2 .
sptype : LP | BP | HB | PD | TR | UZ | RO | MX
spfile : Write or append special points of selected type to file spfile.

Options

-bl n : # of Blank lines to separate branches, 1=mesh data, 2=individual.

Detailed description

Bd2dat converts, combines and splits branch data from AUTO output format into a plain ASCII
format that can be used as input to gnuplot’s ‘plot data-file’ commands. It either reads the data
from the run with qualified run name run, from an explicitly specified file pfile, or, from standard
input if ‘-’ was given. The last variant is used when filtering branch data with filterbd; see the
description of filterbd below. The data of the branch is written or appended to file ofile1 ,
depending on whether bd2dat was invoked with the switch -a or not. If both, ofile1 and ofile2

are present, then bd2dat performs a stability splitting, that is, the stable parts of a branch are
written or appended to ofile1 and the unstable parts to ofile2 . If no output file is given, then no
output of branch data is produced. If an option of the type -sptype spfile was specified, bd2dat
extracts a list of special points of type sptype to file spfile.

Bd2dat splits the branch data of a single run into records. A record represents a connected
component of a single branch, in the simplest case it is the entire branch (stability splitting off).
These records can be combined in files (switch -a) to make plotting easier and will be separated
by a number of blank lines as specified with the option -bl, default is 2, that is, gnuplot will
interpret each record as an individual curve. The same applies to the special points files, where
a record is a complete list of special points of a particular type along the branch, however,
stability splitting is never performed for records of special points.

In the case that you want to plot a surface made up from several branches, make sure
that each record has the same number of points and use -bl 1, gnuplot will then interpret the
resulting output as mesh data. For example, if you switch detection of special points off, then
the branch data will contain exactly NMX points, if the run did not terminate prematurely with
MX. Several runs with the same value for NMX might then be combined for a surface plot.

Return values

Bd2dat returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 23

Fam2dat - convert and combine families of solutions.

Fam2dat converts the data of families of solutions into a plain text format. The output format
follows gnuplot’s ‘plot data-file’ convention.

Usage

fam2dat [-h|-a] [options . . .] source [ofile1 [ofile2]] [(-sptype spfile) . . .]

options : (-bl n) | (-p col)
source : run | (pfile|- qrun|qfile)

Switches

-h : Display a usage message and exit with nonzero return value.
-a : Append data to output files, do not overwrite.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.
qrun : Read solutions from run with qualified run name qrun.
qfile : Read solutions from q.*-file qfile.
ofile1 : Write or append stable solutions or all to file ofile1 .
ofile2 : Write or append unstable solutions to file ofile2 .
sptype : LP | BP | HB | PD | TR | UZ | RO | MX
spfile : Write or append solutions at special points to file spfile.

Options

-bl n : # of Blank lines to separate solutions, 1=mesh data, 2=individual.
-p col : Prepend solution data with values from column col of the branch

data, column PAR is col=1.

Detailed description

Fam2dat is the counterpart of bd2dat for solutions and we focus here on the differences between
these two tools; see also the description of bd2dat. Fam2dat converts, combines and splits
families of solutions from AUTO output format into a plain ASCII format that can be used as
input to gnuplot’s ‘plot data-file’ commands. In order to do so fam2dat requires two input files,
one file with the branch data and one with the solutions of the same run. In the simplest case
only the qualified run name run is specified and fam2dat uses the files of that run. If you want
to use a different source of branch data, for example, the output of filterbd, then you must also
specify a source of the solution data, either a qualified run name qrun, or, a q.*-file name qfile.

Fam2dat allows to include an arbitrary number of values of selected columns from the branch
data into the solution data. This enables the plotting of families of solutions versus the contin-
uation parameter. For example, a call like

fam2dat -p 1 ...

will include the continuation parameter in the solutions, that is, the output will have the columns
PAR T U(1) . . . U(NDIM).

Return values

Fam2dat returns 0 on success and 1 if an error occurred or the -h switch was given.

24 F. SCHILDER

Filterbd - filter branch data.

Filterbd removes rows from branch data, for which either a column becomes a constant multiple
of π, or, the points have solution labels outside a specified range.

Usage

filterbd [-h] (run|pfile|-) (-tr col) | (-l begin [end])

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.

Options

-tr col : Filter TR curve with respect to values in column col ,
PAR is column 1.

-l begin [end] : Print all points between labels in the range [begin,end].

Detailed description

Filterbd has two principal operation modes: filtering curves of Neimark-Sacker bifurcations
and cutting branch data. The computation of a locus of Neimark-Sacker bifurcations (torus
bifurcations) sometimes jumps onto a period-doubling or a fold curve. This can be detected by
including PAR(12) into ICP, because [PAR(12) mod π] = 2π̺, where ̺ is the rotation number
of the emerging invariant circle. If PAR(12) becomes a constant multiple of π, then we approach
a 1/1 or 1/2 resonance where the Neimark-Sacker curve generically ends, but not necessarily
the continuation. Filterbd replaces those rows of a bifurcation diagram with a single empty line
for which this condition is satisfied, eliminating the segments of a Neimark-Sacker continuation
that are not part of the actual Neimark-Sacker curve. Use a call like

filterbd run -tr col | bd2dat - ...

for correct conversion of Neimark-Sacker curve data.
In its second form filterbd can be used for cutting branch data. Filterbd will print all points

that have or follow a solution point with label begin up to and including a point with solution
label end . If end is omitted, then all points until the end of the branch data, starting with
the point with label begin will be printed. This function can be used to print only a section of
branch data:

filterbd run -l begin [end] | printbd -

or to preprocess branch data for fam2dat. For example, to extract all labeled solutions up to,
and including the first period-doubling point use (in bash syntax):

filterbd run -l 1 $(splabs run PD 1 1) | fam2dat - run ...

All utilities that come with rauto, including filterbd, are able to handle output generated by
filterbd. Hence, it is possible to filter multiple times in one pipeline.

Return values

Filterbd returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 25

Lsruns - list runs.

Lsruns prints on screen a list of all runs that have been computed.

Usage

lsruns [-h] ["pattern" . . .]

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

pattern : List all runs that match the shell pattern pattern.

Environment

Lsruns honors the environment variables LSRUNS COLS and LSRUNS FW, which influence
the formatting of lsruns’ output. LSRUNS COLS sets the maximal number of columns per line
(default is 6) and LSRUNS FW sets the field width per run name (default is 10).

Detailed description

Lsruns prints a list of runs that match a shell pattern, that is, a pattern containing the wildcard
characters ‘*’ and ‘?’; see the manual of [t]csh for what else might be used. Note that a pattern
must be enclosed in double-quotes to prevent premature expansion by the shell. If no pattern
is given, then all runs will be printed.

Return values

Lsruns returns 0 on success and 1 if an error occurred or the -h switch was given.

26 F. SCHILDER

Plotbd - plot bifurcation diagram.

Plotbd plots bifurcation diagrams with gnuplot.

Usage

plotbd [-h|-i] [options ...] [cols] [ranges] (run|pfile|-) . . .

options : -bw | (-k name) | (-eps eps-name)
cols : x:y [:z]
ranges : "xrange" ["yrange" ["zrange"]]
(x|y|z)range : [a:b]

Switches

-h : Display a usage message and exit with nonzero return value.
-i : Interactive, do not exit from gnuplot, but prompt for input.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.

Options

-bw : Plot black and white.
-k name : Keep, save gnuplot file as name.gp and data files

as name*.dat, * = s, u, LP, BP, HB, PD, TR, UZ, RO.
-eps eps-name : Plot to eps-file eps-name.eps instead of screen.

Detailed description

Plotbd uses gnuplot to plot a bifurcation diagram using the branch data from the runs or files
specified on the command line. Exactly one ‘-’ may be given to indicate standard input. A two
or three dimensional bifurcation diagram is plotted depending on how many columns have been
specified, default are the two columns 1 (PAR) and 2 (L2-NORM). The definition of columns
and plotting ranges follows gnuplot’s syntax, that is,

plotbd 1:8:2 "[-1:1]" "[]" "[1:10]" . . .

uses columns 1, 8 and 2 as x, y and z axis and defines a plotting range for each coordinate,
where "[]" stands for ‘automatic.’ If you call plotbd with the -i switch gnuplot will prompt for
input. You can then enter any gnuplot commands, for example, to change the plotting ranges or
the view. Refresh the graphics with the gnuplot command replot. If mouse support is enabled
you can zoom in or rotate the graphics interactively.

Plotbd uses green lines for stable and red lines for unstable parts of a branch. If you prefer
a more traditional form of stability plot, then the option -bw will create a black-and-white plot
with solid lines for stable and dashed lines for unstable parts.

The option -eps eps-name will direct the output to the encapsulated postscript file eps-

name.eps. Note that eps-name may contain sub-directories, but should not contain the ex-
tension .eps. The figures created by plotbd are intended for quick inspection of computation
results and for supporting the selection of restart points, but not for publication (except this
one). However, the intermediate files created by plotbd may serve as a starting point for produc-
ing publishable pictures. If you specify the option -k name, then all intermediate files will be

RAUTO: Running AUTO more efficiently 27

saved as files with a name matching name.*. Therefore, name should point to a sub-directory
and should not contain any extension. For example,

plotbd -k bddata/bd -eps pics/bd . . .

will save all intermediate files to the sub-directory bddata, which must be created before calling
plotbd. The most important file in this set is bddata/bd.gp, which is the gnuplot file containing
instructions for creating the data-files and, more importantly, the eps-file pics/bd.eps. You
should move this gnuplot file to a different location to prevent accidental overwriting, and edit
it to accommodate your ideas. Simply call ‘gnuplot gnuplot-file’ to update pics/bd.eps.

Note that plotbd is quite powerful when used together with lsruns. A command like

plotbd 1:8:2 ‘lsruns "mu*"‘ . . .

will create a three-dimensional bifurcation diagram using the data from all runs with qualified
run names that match the pattern mu*.

Return values

Plotbd returns 0 on success and 1 if an error occurred or the -h switch was given. Error checking
is quite sloppy. Plotbd will fail if called with incorrect options/arguments, but the issued error
message might not be terribly helpful.

28 F. SCHILDER

Plotsol - plot solutions.

Plotsol plots solutions with gnuplot.

Usage

plotsol [-h|-i] [options . . .] [cols] [ranges] FPM |SPM

options : -bw | (-k name) | (-eps eps-name) | (-bl n)
cols : x:y [:z]
ranges : "xrange" ["yrange" ["zrange"]]
(x|y|z)range : [a:b]

FPM : run | (pfile|- qrun|qfile)
SPM : (qrun|qfile|-) lab . . .

Switches

-h : Display a usage message and exit with nonzero return value.
-i : Interactive, do not exit from gnuplot, but prompt for input.

Arguments

run : Read branch data and solutions of run with qualified run name run.
qrun : Read solutions of run with qualified run name qrun.
pfile : Read branch data from p.*-file file.
qfile : Read solutions from q.*-file file.
- : Read branch data (FPM) or solutions (SPM) from standard input.
lab : Plot solutions with labels lab . . .

Options

-bw : Plot black and white.
-k name : Keep, save gnuplot file as name.gp and data files

as name*.dat, * = s, u, LP, BP, HB, PD, TR, UZ, RO.
-eps eps-name : Plot to eps-file eps-name.eps instead of screen.
-bl n : # of Blank lines to separate solutions,

1=mesh data, 2=individual.

Detailed description

Plotsol has two principal operation modes: a family plotting mode that is used if no solution
labels are specified, and a solutions plotting mode that is used if solution labels are present on
the command line.

In family plotting mode plotsol is similar to MatCont’s function plotcycle. It uses gnuplot
to plot a family of solutions from the run with qualified run name run. Input data may also be
specified by providing either two filenames or a file name and a run name. The first file must
be a p.*-file containing branch data and may be set to standard input using ‘-’ as file name.
The second file must be a q.*-file containing solution data. A stability splitting using fam2dat
is performed and the continuation parameter is included in the data as column 0. By default a
plot of column 3 versus column 2, that is, U(2) versus U(1) is shown. The selection of columns
and plotting ranges follows gnuplot’s syntax, that is,

plotsol 0:2:3 . . .

RAUTO: Running AUTO more efficiently 29

will plot the projection of a solution to its first two components (U(1),U(2)) versus the contin-
uation parameter. Use filterbd to plot only part of a family, for example, in bash notation

filterbd run -l 1 $(splabs run PD 1 1) | plotsol 0:2:3 - run . . .

will plot a family of periodic solutions from the first labeled solution up to and including a
solution at the first period-doubling bifurcation. If the parameter (column 0) is given for the
x, y, or z axis, then the family of solutions is plotted as a surface, otherwise, the solutions are
plotted as individual curves. This behavior can be changed with the option -bl n; see section
‘Common switches/options’ below.

Plotsol uses green lines for stable, red lines for unstable and various other colors for special
solutions. If you prefer a more traditional form of stability plot, then the option -bw will create
a black-and-white plot with solid lines for stable, dashed lines for unstable and different markers
for special solutions.

In solutions plotting mode plotsol is similar to PLAUT’s 2d and 3d plotting modes. It
uses gnuplot to plot solutions from the run with qualified run name qrun, from q.*-file qfile,
or from standard input if ‘-’ was given. The input must be solution data. In bash notation a
command like

plotsol run $(splabs run UZ)

will plot all solutions at UZR output points from run with qualified run name run. By default a
plot of column 3 versus column 2, that is, U(2) versus U(1) is shown. The selection of columns
and plotting ranges follows gnuplot’s syntax, that is,

plotsol 1:2 "[0:0.5]" . . .

will plot U(1) versus time over half a period.

Common switches/options. If you call plotsol with the -i switch gnuplot will prompt for
input. You can then enter any gnuplot commands, for example, to change the plotting ranges or
the view. Refresh the graphics with the gnuplot command replot. If mouse support is enabled
you can zoom in and rotate the graphics interactively.

The option -bl n will override any default interpretation of the plotting data to: mesh data
if n = 1, or, individual curve data if n ≥ 2. Default is n = 2 except if the parameter (column 0)
is given for one of the x, y or z axis in family plotting mode, in which case the default is n = 1.

The option -eps eps-name will direct the output to the encapsulated postscript file eps-

name.eps. Note that eps-name may contain sub-directories, but should not contain the exten-
sion .eps. The figures created by plotsol are intended for a quick overview over the solutions,
but not for publication (except this one). However, the intermediate files created by plotsol may
serve as a starting point for producing publishable pictures. If you specify the option -k name,
then all intermediate files will be saved as files with a name matching name.*. Therefore, name

should point to a sub-directory and should not contain any extension. For example,

plotsol -k bddata/pos -eps pics/pos . . .

will save all intermediate files to the sub-directory bddata, which must be created before calling
plotsol. The most important file in this set is bddata/pos.gp, which is the gnuplot file containing
instructions for creating the data-files and, more importantly, the eps-file pics/pos.eps. You
should move this gnuplot file to a different location to prevent accidental overwriting, and edit
it to accommodate your ideas. Simply call ‘gnuplot gnuplot-file’ to update pics/pos.eps.

Return values

Plotsol returns 0 on success and 1 if an error occurred or the -h switch was given. Error checking
is quite sloppy. Plotsol will fail if called with incorrect options/arguments, but the issued error
message might not be terribly helpful.

30 F. SCHILDER

Printac - print AUTO constant.

Printac prints the value of the specified AUTO constant on screen.

Usage

printac [-h] (run|rfile|-) ac name

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

run : Read constants of run with qualified run name run.
rfile : Read constants from r.*-file rfile.
- : Read constants from standard input.
ac name : NDIM | NTST | NCOL | NMX | NPR | RL0 | RL1 | A0 | A1

| EPSL | EPSU | EPSS | DS | DSMIN | DSMAX

Detailed description

Printac prints on screen the value that was assigned to an AUTO constant during the run with
qualified run name run. This might be useful for initializing certain computations, for example,
if you want to compute a cascade of period-doubling bifurcations. If you use the bash, then a
command like

rauto name run rrun -IRS $(splabs rrun PD 1 1) \
-NTST $(($(printac rrun NTST)*2)) -ISW -1 ...

will initialize the computation of a doubled solution with twice the number of mesh points of
the single solution. Note that you might also want to decrease the initial step size. You need to
use the desktop calculator dc for that (again bash notation):

h0=$(printac rrun DS)

h0=$(dc -e "8 k 0 1 $h0 * 4.67 / p")

rauto ... -DS $h0 ...

Set DSMIN to a sufficiently small value. Note that we have to go to some length here to deal
with negative values of DS.

Return values

Printac returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 31

Printbd - print branch data.

Printbd prints the branch data of the specified run on screen.

Usage

printbd [-h] (run|pfile|-)

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.

Detailed description

Printbd prints on screen the branch data of the run with qualified run name run in a format
similar to the output generated by AUTO during a computation. The listing includes all labeled
solutions.

Return values

Printbd returns 0 on success and 1 if an error occurred or the -h switch was given.

32 F. SCHILDER

Printcols - print list of columns in branch data.

Printcols prints a list of columns of the branch data of the specified run on screen.

Usage

printcols [-h] (run|pfile|-)

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.

Detailed description

Printcols prints on screen a list of columns of the branch data of the run with qualified run
name run in the format ‘number : heading ’. Number can be used to refer to the column with
heading heading wherever a column can be passed to an rauto command on the command line,
for example, to the plotting utilities plotbd and plotsol.

Return values

Printcols returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 33

Printls - print labeled solution entry.

Printls prints the branch data entry of a labeled solution.

Usage

printls [-h] (run|pfile|-) lab

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.
lab : Print entry of solution with label lab.

Detailed description

Printls prints on screen the entry that was created for a labeled solution in the branch data of
the run with qualified run name run. This function is used internally by rauto.

Return values

Printls returns 0 on success and 1 if an error occurred or the -h switch was given.

34 F. SCHILDER

Printsp - print special points.

Printsp prints a list of special points of specified type on screen.

Usage

printsp [-h] (run|pfile|-) [type]

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.
type : LP | BP | HB | PD | TR | UZ | RO | MX

Detailed description

Printsp prints on screen a list of special points of the run with qualified run name run in a
format similar to the output generated by AUTO during a computation. If type is omitted, then
printsp behaves exactly like printbd – it is just about a microsecond slower.

Return values

Printsp returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 35

Rdm - copy rauto demos.

Rdm creates a copy of an rauto demo in the local directory.

Usage

rdm [-h] name

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

name : Name of the demo.

Detailed description

Rdm creates a copy of the demo name in the local directory. A sub-directory with name name

is created and all files of the demo are copied to this sub-directory. The demos that come with
rauto are discussed in Section 3. Use the AUTO command @dm to copy demos that come with
AUTO.

Return values

Rdm returns 0 on success and 1 if an error occurred or the -h switch was given.

36 F. SCHILDER

Rfcon - convert numerical data to run ‘dat’.

Rfcon performs an initial run with numerical data.

Usage

rfcon [-h] name

Switches

-h : Display a usage message and exit with nonzero return value.

Arguments

name : Base name of the equations file name.f.

Detailed description

Rfcon performs an initial run with a numerically given start solution for your problem. In
order to use rfcon you need to prepare an equations file name.f and a constants file r.name as
explained in Section 2, as well as the data file name.dat. The first column of the data file is time
and the subsequent columns are the values of the state variables in the order U(1),. . . ,U(NDIM).
The data must be given for a full period of a periodic solution, or over a full time interval for
boundary value problems. In either case, PAR(11) will be initialized with PAR(11) = tend−tbegin,
where tbegin and tend are the time values in the first and last row of your data file. Hence, it
can be used for explicit rescaling of time. The initial parameters for your problem are defined
as usual in the subroutine STPNT in the equations file.

Rfcon produces a run with name ‘dat’ containing one solution with label 1 that can be
used to initialize subsequent restarted runs. The constants file of this run will be a copy of the
master constants file r.name. It is not possible to specify new values for AUTO constants on
the command line.

Return values

Rfcon returns 0 on success and 1 if an error occurred or the -h switch was given. Note that
a return with success does not mean that the conversion was successful. Rfcon does not verify
that the numerical data is indeed a suitable start solution for your problem.

RAUTO: Running AUTO more efficiently 37

Rmruns - remove runs.

Rmruns removes runs from your data.

Usage

rmruns [-h|-i|-f] ["pattern" . . .] | (-ra run [lab . . .])

Switches

-h : Display a usage message and exit with nonzero return value.
-i : Interactive, prompt before removal of any matching run.
-f : Force, do not list or prompt.
-ra : Make rmruns behave symmetric to a call of rauto.

Arguments

pattern : Remove all runs that match the shell pattern pattern.
run : Name of run to remove, may contain one %d format specifier.
lab : Remove runs with restart labels lab . . .

Environment

Rmruns honors the same environment variables as lsruns, namely LSRUNS COLS and
LSRUNS FW, which influence the formatting of rmruns’ intermediate output. LSRUNS COLS
sets the maximal number of columns per line (default is 6) and LSRUNS FW sets the field width
per run name (default is 10).

Detailed description

Rmruns has two calling forms, one symmetric to lsruns and the other symmetric to rauto (switch
-ra). In the first form a list of shell patterns is specified, that is, patterns containing the wildcard
characters ‘*’ and ‘?’; see the manual of [t]csh for what else might be used. Note that a pattern
must be enclosed in double-quotes to prevent premature expansion by the shell. Rmrun will
delete any run with a qualified run name that matches one of these patterns. If no pattern is
given, then rmruns will delete all runs.

In the second form a run name run and a list of restart labels is given. Rmruns will expand
run to a list of qualified run names and delete all these runs. That is, if you want to delete all
runs created with a command like

rauto name run ... -IRS 1 2 3 ...

then

rmruns run 1 2 3 ...

will do so.
Rmruns knows that loosing precious data might be a painful experience and will kindly ask

for your permission before sending any run to the digital Hell. Anything except a ‘yes’, including
‘Yes’ and ‘YES’ will be interpreted as no. If you specify the -i switch rmruns will ask for each
matching run separately, but here a ‘y’ is also accepted as a yes and you can exit rmruns with
answering ‘a’ or ‘abort’. This way you don’t need to worry about too complicated patterns.
However, if you are one of those guys who never make mistakes, then the -f switch is for you.

Return values

Rmruns returns 0 on success and 1 if an error occurred or the -h switch was given.

38 F. SCHILDER

Sol2dat - convert and combine solutions.

Sol2dat converts solution data into a plain text format. The output format follows gnuplot’s
‘plot data-file’ convention.

Usage

sol2dat [-h|-a] [-bl n] (run|qfile|-) ofile lab . . .

Switches

-h : Display a usage message and exit with nonzero return value.
-a : Append data to output files, do not overwrite.

Arguments

run : Convert data of run run, may contain one %d format specifier.
qfile : Convert data from q.*-file qfile.
- : Convert data from standard input.
ofile : Write or append solutions to file ofile.
lab : Convert solutions with restart labels lab . . .

Options

-bl n : # of Blank lines to separate solutions, 1=mesh data, 2=individual.

Detailed description

Sol2dat converts and combines solutions from AUTO output format into a plain ASCII format
text file that can be used as input to gnuplot’s ‘plot data-file’ commands. It either reads the
data from the run with qualified run name run, from an explicitly specified file qfile, or, from
standard input if ‘-’ was given. The solutions with the specified labels are written or appended
to file ofile, depending on whether sol2dat was invoked with the switch -a or not. The individual
solutions will be separated by a number of blank lines as specified with the option -bl, default
is 2, that is, gnuplot will interpret each solution as a separate curve. This is similar to the 2d
and 3d plotting modes of AUTO’s plotting utility plaut.

Return values

Sol2dat returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 39

Splabs - print labels of special points.

Splabs prints a list of labels of special points of a selected type of a run. It is most useful for
stable selection of restart labels of restarted runs.

Usage

splabs [-h|-l] (run|pfile|-) type [begin [end]]

Switches

-h : Display a usage message and exit with nonzero return value.
-l : Interpret begin and end as labels, not as indices.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.
type : Print labels of special points of type type.
begin : Index of first label to print.
end : Index of last label to print.

Detailed description

Stable selection of restart labels really is an issue with AUTO and splabs is here to help. The
author made the experience of changing labels the first time when repeating on an INTEL CPU
a lengthy computation that involved many runs and was initially performed on a SUN SPARC
workstation. The small differences in the floating point units were enough for a quite frustrating
surprise. The usual “solution” is to set NPR=NMX, but this is not always desirable.

A more elegant and very robust solution is to select labels of a specific type and this is
exactly what splabs does. In many cases this will even work if the equations or some parameters
are changed slightly. A simple use of splabs selects all solution labels of type type of a run with
qualified run name run. A subset of labels can be selected by giving values for begin and end ,
which will select all labels at positions begin ≤ i ≤ end from the list of all labels. If end is
omitted, then all labels at positions greater than or equal to begin will be selected. It is possible,
but rarely helpful to select empty sets.

A more advanced application is to select all solution labels of a certain type between two
labels of solutions of some different type. A natural candidate for the latter are limit points
(LP) and end points (EP). For example, to select all UZR points between the first and second
limit point use (in bash syntax)

-IRS $(splabs -l rrun UZ $(splabs rrun LP 1 2))

Note the use of the -l switch in the outer call to splabs. This is needed for correct interpretation
of the values returned by the inner call to splabs, which returns labels, not indices.

It is possible to do more complicated things using the abilities of arithmetic expansion pro-
vided by the bash. However, this might be unstable, that is, may lead to different or unexpected
results when changing parameters or AUTO constants etc. The usage shown in the example
above is probably the best way for robust and portable selection of restart labels.

Return values

Splabs returns 0 on success and 1 if an error occurred or the -h switch was given.

40 F. SCHILDER

Sppars - print parameter values of special points.

Sppars prints a list of values from a specified column of branch data of a run for special points
of a selected type.

Usage

sppars [-h|-l] (run|pfile|-) type [col [begin [end]]]

Switches

-h : Display a usage message and exit with nonzero return value.
-l : Interpret begin and end as labels, not as indices.

Arguments

run : Read branch data of run with qualified run name run.
pfile : Read branch data from p.*-file pfile.
- : Read branch data from standard input.
type : Print labels of special points of type type.
col : Select value from column col , PAR is column 1 (default).
begin : Index of first label to print.
end : Index of last label to print.

Detailed description

Sppars behaves in exactly the same way as splabs, except that it prints the values of column col

of the branch data instead of the solution labels of special points. The column PAR is col=1
and column LAB is col=0.

Bugs

Is there any application?

Return values

Sppars returns 0 on success and 1 if an error occurred or the -h switch was given.

RAUTO: Running AUTO more efficiently 41

B AUTO constants

NDIM : Problem dimension
IPS : Problem type; 0=AE, 1=FP(ODEs), -1=FP(maps), 2=PO, -2=IVP,

4=BVP, 7=BVP with Floquet multipliers, 5=algebraic optimization
problem, 15=optimization of periodic solutions

IRS : Start solution label
ILP : Fold detection; 1=on, 0=off

NICP : Continuation parameters

NTST : # mesh intervals
NCOL : # collocation points
IAD : Mesh adaption every IAD steps; 0=off
ISP : Bifurcation detection; 0=off, 1=BP(FP), 3=BP(PO,BVP), 2=all
ISW : Branch switching; 1=normal, -1=switch branch (BP, HB, PD),

2=switch to two-parameter continuation (LP, HB, TR)
IPLT : Select principal solution measure
NBC : # boundary conditions
NINT : # integral conditions

NMX : Maximum number of steps
RL0, RL1 : Parameter interval RL0 ≤ λ ≤ RL1
A0, A1 : Interval of principal solution measure A0 ≤ ‖ · ‖ ≤ A1

NPR : Print and save restart data every NPR steps
MXBF : Automatic branch switching for the first MXBF bifurcation

points if IPS=0, 1
IID : Control diagnostic output; 1=little, 2=normal, 4=extensive
ITMX : Maximum # of iterations for locating special solutions/points
ITNW : Maximum # of correction steps
NWTN : Corrector uses full newton for NWTN steps
JAC : User defines derivatives; 0=no, 1=yes

EPSL : Convergence criterion for equation parameters
EPSU : Convergence criterion for solution components
EPSS : Convergence criterion for special solutions/points

DS : Start step size
DSMIN, DSMAX : Step size interval DSMIN ≤ h ≤ DSMAX
IADS : Step size adaption every IADS steps; 0=off

NTHL, NTHU : list of parameter and solution weights

NUZR : list of values for user defined output

See the documentation of AUTO [1] for a detailed description.

References

[1] E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, and X. Wang. Auto97:
Continuation and bifurcation software for ordinary differential equations (with HomCont).
Technical report, Concordia University, 1997. URL: http://cmvl.cs.concordia.ca/auto/.

