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Abstract
We discuss surfaces with singularities, both in mathematics and in the real world. For many types of mathematical sur-
face, singularities are natural and can be regarded as part of the surface. The most emblematic example is that of surfaces
of constant negative Gauss curvature, all of which necessarily have singularities. We describe a method for producing
constant negative curvature surfaces with prescribed cusp lines. In particular, given a generic space curve, there is a
unique surface of constant curvature K = −1 that contains this curve as a cuspidal edge. This is an effective means to
easily generate many new and beautiful examples of surfaces with constant negative curvature.

Mathematical surfaces with singularities. The basic mathematical model for a surface is a differentiable map
f : R2 → R3 that satisfies a regularity condition, namely that the partial derivatives fx and fy are linearly
independent vectors at every point. These vectors constitute a basis for the tangent space at each point, and, to
first order, the surface looks like a plane. The regularity condition is equivalent to requiring that the vector field
fx × fy is never zero, and the normal N is the unit vector in this direction. In many situations it makes sense to
allow this cross-product to become zero at some points, and instead ask only that there be a well-defined normal
N , i.e., a unit vector field that is orthogonal to fx and fy at every point. Such a generalized surface is called a
frontal, and the points where fx × fy = 0 are called singularities.

Figure 1 : (a) Tangent developable, (b) cuspidal edge profile, (c) swallowtail and (d) cone singularity.

An instructive example is that of a tangent developable. Take a regular curve γ : R → R3, with non-
vanishing curvature and torsion, e.g., a helix. The map f(x, y) = γ(x)+y γ′(x) is a zero-curvature ruled surface,
wherever it is regular. The cross-product fx × fy = y γ′′(x) × γ′(x) vanishes precisely along C = {y = 0},
the singular curve. The image f(C) is just the curve γ. This singularity is called a cuspidal edge (Figure 1 (a),
(b)). The smooth vector field N = (γ′ × γ′′)/‖γ′ × γ′′‖, actually the unit binormal of the curve, is orthogonal
to both fx and fy, and so the surface is a frontal. This example is important because all zero-curvature surfaces
other than cones and cylinders are locally given as tangent developables.

Another common example is a swallowtail singularity (Figure 1(c)), where the image of the singular curve
itself has a cusp point on it. A less common, but easy to understand singularity is a cone point (Figure 1(d)). This
can be constructed by taking a plane curve γ(t) = (a(t), b(t), 1) and then adding all the lines through (0, 0, 0)
and points on the curve, by the formula f(x, y) = y (a(x), b(x), 1). The entire line y = 0 in the parameter space
maps to a single point (0, 0, 0). The normal is well defined by N = (γ′ × γ)/‖γ′ × γ‖.

Ishikawa and Machida [5] showed that the stable singularities for constant curvature surfaces are cuspidal
edges and swallowtails. Stable, or generic, means that if you deform the surface slightly, keeping the same
constant curvature, the new surface will also have the same type of singularity.



Physical surfaces with singularities. You probably won’t see many swallowtails in the real world. But cone
points appear in many places, and approximate cuspidal edges can arise when a series of surfaces are connected
together (Figure 2, far left). Mathematical singularities can also express themselves indirectly: for example, Ben
Amar et al. [1] study a physical model of the growth of flower petals. Where the mathematical model for the
surface has natural singularities, they find in one case that structural deformation occurs, manifesting itself in
edge curling of petals with negative curvature. In the case of positive curvature, they find that singularities of the
mathematical surface correspond to strong veins in the petals.

Figure 2 : Approximate singularities in nature.

One way to construct physical cuspidal edges is illustrated by an open paperback book, which is essentially
a zero-curvature surface with a cuspidal edge running down the spine.

In Western architecture you are more likely to see squared corners than the sharp ridge of a cuspidal edge.
But in East Asia the roofs of temples and palaces (Figure 3) usually curve up sharply at the top and along corners
to create the effect of a stylized cuspidal edge, often emphasized with decorative features.

Figure 3 : Roofs at temple complexes in China (left) and Japan (right).

Negatively curved surfaces. At a given point on a surface, there is a unique curve in any tangent direction that
bends only as much as it is forced to by the surface itself. The curvature of this geodesic captures the curvature
of the surface in that direction. At a typical point, the maximum and minimum such curvature values, κ1 and κ2,
are the principal curvatures. The Gaussian curvature of the surface is the product K = κ1κ2. If this is negative,
then κ1 and κ2 have opposite sign and the principal curves are bending in opposite ways away from the tangent
plane, so the surface has a saddle shape (Figure 4).

If you imagine a surface that has negative curvature everywhere, with these (necessarily orthogonal) curves
bending away from each other at every point, you might feel that you will run into trouble after a while. And
you would be right: a surface is called complete if you can follow a geodesic in any direction forever. A strong
theorem of Efimov [3] states that there does not exist a complete, regular, surface in R3 of Gaussian curvature
K(x, y) < −c2 < 0, where c is any non-zero number— even if we allow self-intersections! We might be able
to follow some geodesics forever in some direction, but what happens in general is that we come to a singularity
of some kind, like the cuspidal edges and cone points in Figure 4.
Pseudospherical surfaces. A surface with constant Gaussian curvature K = −1 is called a pseudospherical
surface. (The theory is the same for any choice of negative constant K). After hyperbolic geometry was dis-



Figure 4 : A plant with negatively curved leaves, and the three types of constant negative curvature
surfaces of revolution, with asymptotic curves shown. The middle one is the pseudosphere.

covered in the 19th Century, a natural question arose whether is was possible to realize the complete hyperbolic
plane as a geometric submanifold of Euclidean 3-space. Hilbert [4] proved in 1901 that this is impossible, and
this was later generalized by Efimov to the result mentioned above.

It was also known since the 19th Century that pseudospherical surfaces are naturally associated with the
sine-Gordon equation ∂2

∂x∂yφ = sinφ, where φ is the angle between certain asymptotic coordinate lines. An
asymptotic curve is one which has no curvature in the direction normal to the surface. Solutions of the sine-
Gordon equation correspond to pseudospherical “surfaces”, but along the curves where φ = nπ, for integers
n, the angle between the coordinates is zero and the surface is not regular. Methods are available for solving
the sine-Gordon equation, and it is natural to use them, and to call the associated “surfaces” generalized pseudo-
spherical surfaces. These are frontals, and this is one of the ways that frontals arise naturally from a mathematical
point of view.

Figure 5 : Pseudospherical surfaces containing closed curves and (right) helices as cuspidal edges.

Generating pseudospherical surfaces from space curves. An interesting phenomenon appears when we in-
clude singularities within pseudospherical surfaces. Just as with zero-curvature surfaces, which are mostly lo-
cally represented by tangent developables, we can use space curves to generate pseudospherical surfaces. Given
a space curve with non-vanishing curvature κ 6= 0, and torsion τ that satisfies |τ | 6= 1 (compare with τ 6= 0 for
zero-curvature surfaces), there is a unique pseudospherical surface that contains this curve as a cuspidal edge!
This is pointed out by Popov [6]. Lack of space restricts us to saying here only that it follows from uniqueness
of solutions to a Cauchy problem for the sine-Gordon equation, but see [6, 2].

Recently one of the authors investigated the general problem of constructing pseudospherical frontals with
prescribed singularities [2]. Put briefly, methods are found to construct all stable singularities, all singularities
where the singular set is a regular curve in the coordinate domain, and various “degenerate” singularities, which
exhibit features such as two singular curves crossing (Figure 7). For example, the statement above extends to
curves where κ = 0 or |τ | = 1 at a point. The solution still exists, but the singular curve is degenerate at
such a point (Figure 7). The solutions can be computed numerically, using methods that grew out of soliton
theory.1 Some examples constructed using this technique are shown in Figures 5, 6 and 7. The curves shown

1Code, ksurf, currently available at http://davidbrander.org/software.html

http://davidbrander.org/software.html


Figure 6 : A cone singularity and the three pseudospherical surfaces generated by the planar curves
with, in order, κ(s) = exp(s2), κ(s) = 1.6 + cos(s) and κ(s) = 2− s2.

in Figure 6 are asymptotic coordinate lines. In Figure 7, the last surface is generated by the Viviani curve
γ(t) = 0.1(1 + cos(t), sin(t), 2 sin(t/2)), which has torsion τ(t) = ±1 at four points; singularities on this
surface are highlighted by a truncated mean-curvature colouring.

We have computed many more examples, and clearly this singular curve method is a fruitful way to generate
in a controlled manner many interesting new examples of pseudospherical surfaces. More generally, we argue
that the presence of singularities is obviously natural in many situations, and the sharp definition added gives the
surfaces an interesting structure and appearance.

Figure 7 : Top: surfaces generated by plane curves with κ(s) = cos3(s) (left), κ(s) = cos(as) for
special values of a (middle two), and κ(s) = s. Bottom: Viviani figure-8 space curve.
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