
FATOU DYNAMICS OF COMPLEX HÉNON MAPS

The following is a loose outline of what we intend to cover. If we don’t finish
the agenda of a given lecture, we might continue the topic in the next one.

Lecture 1: Introduction to Hénon maps. (Han)

What are Hénon maps, and why we should study them.
Basic concepts: Filtration, K+/−, J+/−, K and J . Fatou components. Constant

Jacobian.
Green’s function, equidistribution currents, equilibrium measure, entropy. Basic

question: J = J∗?
Definition of hyperbolicity.

References: [H], [HOV1], [FS], [BS1] , [Us1]

Lecture 2: Fatou components of hyperbolic Hénon maps. (Eric)

Definition of hyperbolicity. Existence of cone fields; Stable Manifold Theorem.
Abundance of hyperbolic maps: (1) Horseshoes (and the associated symbolic

dynamics), (2) perturbations of one-dimensional maps.
Structure of hyperbolic maps: (1) All Fatou components are periodic sinks,

(2) J = J∗.

References: [BS1], [BSh], [HOV2]

Lecture 3: Classification of periodic components, recurrent case. (Eric)

Dichotomy: either all orbits converge to ∂U , or every orbit is contained in com-
pact subset. Definition of recurrent domains.

Conservative case. Existence through local dynamics. Topological observations.
Classification of Fatou components in the dissipative case.
Visualization of Fatou components.

References: [BS2], [Us2]

Lecture 4: Non-recurrent case. (Han)

Snail lemma.
Smooth limit sets.
Substantial dissipativity and consequences.

References: [LP], [Ue]

Lecture 5: Beyond hyperbolicity: quasi-expansion. (Eric)

Quasi-expansion and a new appearance of normal families. Proper, bounded
area condition. Expansion of a (possibly singular) metric.

Real maps of maximal entropy.

References: [BS8], [BSme]

Lecture 6: Beyond hyperbolicity: dominated splitting. (Han)

Results and some proofs. Questions for future research.
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