Gymnasieopgave: Jordskælvssvingninger
> | restart; |
> | with(plots): |
Warning, the name changecoords has been redefined
Beton:
> | rho:=2400.0; |
> | E:=2.40*10^10; |
> | Bt:=30.0*10^6; |
> | Bb:=5.0*10^6; |
Stål:
> | #rho:=7800.0; |
> | #E:=20.0*10^10; |
> | #Bt:=250.0*10^6; |
Højhus:
> | h:=50.0; |
> | a:=25.0; |
> | t:=0.3; |
> | A:=a^2-(a-3*t)^2; |
> | V:=A*h; |
Ser vi bort fra de indvendige vægge, får vi
> | It:=1/12*(a^4-(a-2*t)^4); |
En mere nøjagtig beregning giver
> | It:=1/12*(a^4-(a-2*t)^4)+1/12*0.3*(a-2*t)^3+1/12*(a-3*t)*0.3^3; |
> | ymax:=a/2; |
> | Wt:=It/ymax; |
> | m:=V*rho; |
Frekvens:
> | me:=0.25*m; |
> | k:=3*E*It/h^3; |
> | omega0:=sqrt(k/me); |
> | f0:=omega0/(2.0*evalf(Pi)); |
> | T0:=1/f0; |
> | tau:=0.25; |
> | f:=1/tau; |
> | gain:=x->1/abs(1-(x/f0)^2); |
> | gain(f); |
Udbøjning:
> | delta0:=0.08; |
> | udsving:=delta0*gain(f); |
> | delta:=udsving-delta0; |
> | P:=delta*k; |
> | M:=h*P; |
> | sigma_max:=M/Wt; |
> | sigma_brud:=0.75*Bt; |
> | plot([gain(x),[[0.0,gain(f)],[f,gain(f)]],[[f,0.0],[f,gain(f)]]],x=0.0..2*f0,0.0..5.0,title="absolut udsving af top af højhus",color=black); |
> | plot([(x/f0)^2*gain(x),[[0.0,(f/f0)^2*gain(f)],[f,(f/f0)^2*gain(f)]],[[f,0.0],[f,(f/f0)^2*gain(f)]]],x=0.0..2*f0,0.0..5.0,title="relativ udsving af top af højhus",color=black); |