Gymnasieopgave : Faldskærmsudspring 

> restart;with(plots):with(DEtools):
 

> assume(a,positive);assume(g,positive);assume(m,positive);
 

> assume(t,real);assume(v(t),real);
 

Warning, the name changecoords has been redefined
 

***************************************************************************** 

1. Den ulineære differentialligning for faldskærmen er 

> lign:=diff(v(t),t)=g-a/m*v(t)^2;
 

lign := diff(v(t), t) = g-a*v(t)^2/m 

Og den generelle løsning er: 

> dsolve(lign,v(t));
 

v(t) = tanh((g*m*a)^(1/2)*(t+_C1)/m)*(g*m*a)^(1/2)/a 

Den partikulære løsning for v(0) = 0 er 

> l0:=dsolve({lign,v(0)=0},v(t));
 

l0 := v(t) = tanh((g*m*a)^(1/2)*t/m)*(g*m*a)^(1/2)/a 

Grænseværdien for t -> 0 

> lg:=limit(rhs(l0),t=infinity);
 

lg := (g*m*a)^(1/2)/a 

2. Find v(t) , når m = 90 , g = 9,81 og a = 18,7 

> lign1:=subs(a=18.7,m=90.0,g=9.81,lign);
 

lign1 := diff(v(t), t) = 9.81-.2077777778*v(t)^2 

Løsningen er 

> s1:=evalf(dsolve({lign1,v(0.0)=0.0},v(t)));
 

s1 := v(t) = 6.871237422*tanh(1.427690443*t) 

Grænseværdien er 

> lg:=evalf(subs(a=18.7,m=90.0,g=9.81,lg));
 

> %*3.6;
 

lg := 6.871237424 

24.73645473 

d.v.s. ca 25 km/h. 

Plot af løsningen 

> plot(rhs(s1),t=0..3);
 

Plot 

3. Hvis v(0)=20 m/s 

> Digits:=20;
 

Digits := 20 

> s2:=dsolve({lign1,v(0)=20},v(t));
 

s2 := v(t) = 15000/1038888889*226477777802^(1/2)*tanh(3*226477777802^(1/2)*t/1000000+1/2*ln((750*226477777802^(1/2)+1038888889)/(750*226477777802^(1/2)-1038888889)))
s2 := v(t) = 15000/1038888889*226477777802^(1/2)*tanh(3*226477777802^(1/2)*t/1000000+1/2*ln((750*226477777802^(1/2)+1038888889)/(750*226477777802^(1/2)-1038888889)))
 

MAPLES løsningen indeholder et imaginært tal og kan ikke plottes umiddelbart, derfor lidt krumspring: 

> s2:=expand(rhs(s2)):
 

> s2:=evalf(simplify(s2));
 

 

s2 := -6.8712374240937048739*(1.06481525722*cosh(1.4276904427143861777*t)+.36582992225*sinh(1.4276904427143861777*t))/(-1.06481525722*sinh(1.4276904427143861777*t)-.36582992225*cosh(1.4276904427143861...
s2 := -6.8712374240937048739*(1.06481525722*cosh(1.4276904427143861777*t)+.36582992225*sinh(1.4276904427143861777*t))/(-1.06481525722*sinh(1.4276904427143861777*t)-.36582992225*cosh(1.4276904427143861...
s2 := -6.8712374240937048739*(1.06481525722*cosh(1.4276904427143861777*t)+.36582992225*sinh(1.4276904427143861777*t))/(-1.06481525722*sinh(1.4276904427143861777*t)-.36582992225*cosh(1.4276904427143861...
s2 := -6.8712374240937048739*(1.06481525722*cosh(1.4276904427143861777*t)+.36582992225*sinh(1.4276904427143861777*t))/(-1.06481525722*sinh(1.4276904427143861777*t)-.36582992225*cosh(1.4276904427143861...
 

Her plottes de 2 begyndelsesbetingelser v(0) = 0 og v(0) = 20 . 

> plot({rhs(s1),lg,s2},t=0..2,0..20,color=black);
 

Plot 

>
 

>