Gymnasieopgave : Tømning af beholder. Torricelli's lov
> | restart;with(plots): |
Warning, the name changecoords has been redefined
*****************************************************************************
Differentialligningen er
lign:=diff(h(t),t)+6/10/B*A*sqrt(2*g*h(t))=0;
1. Den generelle løsning er:
> | los:=dsolve(lign,h(t)); |
Find h(t)
> | h:=solve(los,h(t)); |
2. Den partikulære løsning h(0) = h0 .
> | s:=h0=subs(t=0,h); |
> | C0:=solve(s,_C1); |
Den partikulære løsning bliver:
> | h:=expand(subs(_C1=C0[2],h)); |
Det kan skrives pænere
> | (h0^(1/2)-3/5*A/B*sqrt(2*g)*t)^2; |
> | expand(%); |
3. Tømningstiden t0:
> | t0:=solve(h=0,t)[1]; |
4. d1 = 0.4 m , d2 = 0.012 m og h0 = 0.70 m
> | g:=9.81;d1:=0.4;d2:=0.024;h0:=0.8;B:=evalf(Pi*d1^2/4);A:=evalf(Pi*d2^2/4); |
Beholdervolumen V0 er ca 100 liter:
> | V0:=B*h0; |
5. t0 bliver ca 186 sekunder eller ca 3 minutter
> | evalf(t0); |
> | %/60.0; |
Plot af h(t);
> | plot(h,t=0..186); |
> |
> |
> |