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In order to improve the performance of helical springs, such as increasing the
Jatigue life and suppressing resonance, variable pitch angle and variable helix radius

may be incorporated into the helical spring geometry. Employing the fool of dif-
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Sferential geometry, new and complete formulae of curvature, torsion, and
spring force are derived. It is shown thal these formulae are more general and ac-
curate than Kelvin’s curvature and forsion formulae, than commonly used force for-

mulae (Wahl, 1963). Possible simplifications to the complete formulae and the cor-
responding errors introduced are both discussed and compared with experimental

daia.

Introduction

Modern study and research concerning helical springs dates
back at least a century (Thomson and Tait, 1883) and some
dated assumptions about helical spring geometry, no matter
how impractical, are still being applied in modern day
analyses. For example, helical springs usually are assumed to
have constant pitch angle throughout the spring. However, for
stably seating the spring between two parallel end surfaces in
practical applications, the pitch angle at the two ends of spring
is usually made smaller in order to “‘close’’ the coils. Hence, to
assume constant pitch angle is to assume an infinite helix
length, or a spring without stable and parallel seating ends,
and to ignore all end effects. Similarly, some fundamental for-
mulae concerning the geometry of the helix, based on
historically made assumptions, are still applied without
awareness of the error introduced. For instance, the formulae
dating from early work (Thomson and Tait, 1883) expressing
curvature, «, and torsion, 7, in terms of pitch angle, p, and
helix radius, r,
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are still widely used (Love, 1927; Wahl, 1963; Wittrick, 1966;
Stokes, 1974; Pearson, 1982; Velinsky, 1987).

In searching for higher performance, springs with large
variations from traditional geometries have been manufac-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
Mecuanicat ENGINEERS for presentation at the Joint ASCE/ASME Applied
Mechanics, Biomechanics, and Fluids Engineering Conference, San Diego, CA,
July 910 12, 1989.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the paper
itself in the JOURNAL OF APPLIED MECHANICS, Manuscript received by ASME
Applied Mechanics Division, January 1, 1988; final revision, April 29, 1988.

Paper No. 89-APM-17.

Journal of Applied Mechanics

tured and tested (Fig. 1). However, there is no accurate
mathematical description of this new type of spring in the
open literature. The purpose of this paper is to utilize differen-
tial geometry to derive more accurate and more general for-
mulae for curvature, torsion, and spring force and apply these
to the helical spring. The errors introduced using old or
simplified formulae are discussed and compared both to the
formulae derived herein and to experimental data. It is hoped
this paper can contribute an analytical tool to the study of
helical spring dynamics, and offer some constructive ideas for
a new class of designs of helical springs.

Description of the General Helical Spring
It is a common assumption (Fig. 2), that the helical spring

i 5

Fig. 1 Helical springs with large variations in radius and pitch angle
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Fig. 2 Circular helix and local-global coordinate systems

can be described to sufficient accuracy by a circular helix
(Eisenhart, 1940), which can be considered the trace of a
curve, X, in R? space, such that:

X:I—R? 3
where a parametrization of X is such:
X(t)=(r cos at, r sin at, bt) )

where the parameter fef, 7 is a subset of R,and r, a, and b are
constants.

For the idealized helix treated in general textbooks (Dar-
boux, 1887; Vaisman, 1984), this description is clear and sim-
ple. However, even if a commonly used helical spring (where
end effects are small due to design) is described in this fashion,
the error in predicted spring force for a given, imposed spring
displacement can be as much as 5 percent in simple static com-
pression (Lin and Pisano, 1987). An even greater error is in-
troduced when the pitch angle is assumed to be constant
throughout the spring in the analysis, but the physical im-
plementation of the spring includes not only closed coils at
each end, but a deljberately varying pitch angle in the body of
the spring. Since spring technology has been moving toward
variable pitch angle designs, an accurate description of pitch
angle is both useful and necessary, A precise definition of
pitch angle follows:

Definition: PITCH ANGLE, D, is the complement angle
of the angle between tangent T and the Z axis. Alternatively,
pitch angle p is the angie between the recti fying plane of the in-
trinsic coordinate and X-Y plane of the global coordinate
system.

The tangent plane (Fig. 2) is the plane spanned by the T and
B axes, the rectifying plane is the plane spanned by the T and
N axes, and the intrinsic coordinate is the Frenet Triad (Do
Carmo, 1976).

It is easy to show that the pitch angle for the circular helix is
constant (Do Carmo, 1976). However, springs in practical ap-
plications have a small, nearly zero pitch angle at each end. In
addition, a varying helix radius may help improve spring
dynamic performance by de-tuning the spring resonance. We
use the term general helix to describe the varying pitch angle
and varying radius helix.

Definition: GENERAL HELIX is the trace of a curve
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Fig. 3 Describing a general helix

a(s):/~R%, such that « can be embedded on a surface of
revolution, with pitch angle a non-negative function of the
parameter, s.

Compared with the circular helix, equation (4), a
parametrization of a general helix can be:

X(s)=(r(s)cos 8(s), r(s)sin 8(s), h(s)) (5)

The surface of revolution mentioned in the above definition
can be parametrized as:

Y{(u,0) = (f(v)cos u, f(v)sin u, g(v)) (6)

where f, g are known functions of v, a parameter preferably
taken as the arc length, 5, because the arc length of a regular
curve is an invariant with respect to transformations of the
parameter used to define the curve (Stoker, 1969). This is
reasonable since in practice spring wire can usually be assumed
to be inextensible. A curve, shown in Fig. 3, on Y(x, v) can be
determined by either of the following relations:

u=u(t), v=uv(t) (7a)

or

u=u(v) (75)

If equation (7a) is chosen and ¢ is the arc length parameter,
then the general helix is described by equation (5). If equation
(7b) is chosen, then the curve has the parametrization:

X (v) = (f(v)cos u(v), f(v)sin(v), g(v)) @)

Although equation (5) and equation (8) have similar forms,
parameters v and s have different meanings. Intuitively, it is
seen that v is arc length of the helix on the Y-Z plane, and s is
the actual wire length (Fig. 3). They can be related by:

ds? =[E(u})? + G)dv? (9

where E and G are coefficients of first fundamental form (Do
Carmo, 1976) of the surface Y(u,v). Using the first fundamen-
tal form here enables us to measure arc length in terms of sur-
face coordinates without referring back to the ambient R?
space where the surface lies (Do Carmo, 1976). In the discus-
sion to follow, the general helix will be represented by equa-
tion (5) for convenience.

New Formulae for Curvature and Torsion

Many researchers and engineers have been using the for-
mulae for curvature, x, and torsion, 7, from the Treatise on
Natural Philosophy (Lord Kelvin and Tait, 1883). The for-
mulae state:

cosip
r

(1)

and
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Fig. 4 Measuring radii on a mllling machine

, sin p cos p @
r

where p is the pitch angle, and r the radius, of the helix. These
formulae were derived intuitively (Thomson and Tait, 1883).
Many researchers use the above formulae for a constant
radius helix spring even though they realize the pitch angle is a
function of helix length. Note that even if the radius is still
constant, varying pitch has made the helix not a circular helix
in the strict sense of Eisenhart (1940). In addition, if a
dynamic spring deflection is under consideration, the helix
radius and pitch angle will not be constant in time even for a
circular helix spring. We therefore derive these formulae for
the curvature and torsion of the general, as opposed to cir-

cular, helix.

Derivation: Let a general helix parametrized by arc length

be:
X(s)=(rcos 8, rsiné, k) (10)
where helix radius, r, polar angle, 8, and local helix height, #,

are functions of arc length, s. Then derivatives with respect to
arc length, s, are:
X' {5)=T(s)

=(r' cos0—8'rsind, r'sin 8+6’ rcos @, 2’} {11}
where T(s) is unit tangent vector of X(s), since s is the arc
length parameter.

X7 (s)=T'(s)
=(r" cos-20'r" sin @—r 6”sin §—r 0’2 cos 8,
rosin 84+28°r' cos 0—8'2rsin0+r@”7cos 6, A")  (12)

From Frenet-Serret formulae (Eisenhart, 1940), the curvature
is the magnitude of T'(s):

T’(s) = xN(s) (13)

and since N(s) is a unit vector, taking inner product of T'(s),
we obtain the full expression for curvature:

#2=(X", X"
=P 4 Ar 9 L P20 = 2P0 400" +r" 2+ "2
(14)
Note that in contrast, the common analysis of analytical
geometry gives:
r24rg
X2
r'? 4 g0

cos’p =
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Fig. 5 Description of sample spring “P"
and then from Kelvin’s curvature formula,
( coszp) z
r

ret+2r2e i+

K2

4

(16)

It is seen from equation (14) that « is a function of r” and A*
in general, and that this is not true in Kelvin’s formula equa-
tion (16). In some special cases, for example, the circular helix
{equation (4)) with constant radius (r'=0), linear height
(h” =0), and linear polar angle (¢ * =0), the new curvature ex-
pression is identical to the old formula.

Example: In Fig. 5, measured and smoothed data for a
particular helical spring is shown. The spring has constant
radius, and in the middle portion the pitch angle is constant,
therefore it is locally a circular helix. It is seen from the
numerical results shown in Table A (Case 1) that the Kelvin
curvature formula and the complete curvature formula give
the same result. For the same spring, at one end (Case 2,
s=46.35 mm) where pitch angle is varying, the curvature
calculated by the Kelvin formula has an error of four parts in
one hundred thousand.

The above example shows if the spring has only a small
variation in pitch angle p, but no variation in radius r, the cur-
vatures calculated from the complete formula and from the
old formula are very close. However, sometimes this dif-
ference can be considerable, as shown later in this section.

Example: One of the helical springs shown in Fig. 1 has
been measured for pitch angle, radius, and height as shown in
Fig. 6. The measurement of variable radius is done on a mill-
ing machine as shown in Fig. 5. Note these results have been
parametrized by arc length, s. At s=30.05 mm (Case 3), cur-
vature calculated from the Kelvin formula has an error of
+0.153 percent with respect to experimental data.

The derivation of the torsion formula for the general helix is
lengthy, and an outline of this derivation is given in the Ap-
pendix. It can be seen from the derivation that the Kelvin for-
mula of 7 depends on r, 4, and @ only up to first derivatives
with respect to arc length. In general, however, 7 will also de-
pend on second and third derivatives of r, A, and €. Unless all
these higher order derivatives vanish, a calculation of 7 from
the Kelvin formula will contain errors. The magnitude of the
error depends on the magnitude of higher derivatives of r, A,
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Table A: Comparison of curvature and torsion using different formuiae

Case l:spr.P 2:spr.P 3:spr.F 4:5pr.F
s(mm) 120.66 46.35 30.05 114,76
kg (1/mm) 0.067245 0.067378 0.061595 0.057748
Kpew{l/mm) 0.067245 0.067381 0.061501 0.057808
error(%) 0.000 = 0.004 0.153 —0.104
Toa (1/mm) 0.007253 0.006612 0.003811 0.006770
Trew(1l/mm) 0.007253 0.006485 0.004011 0.003657
error(%e) 0.000 1.961 -4.984 84.638
e(deg.) 0.000 0.479 -0.799 - 1.045
a0, 125 z
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Fig. 7 Force and moment diagram for spring element
Fig.6 Description of sample spring “F”
and @ of the specific helix. For more examples comparing T'@E) =«N .
results computed from old and new formulae, please refer to = (r7cosf~26'r'sind—8'2r cosd,
Table A. To minimize the effect of measurement error, the r”sind +2r'8°cosd—6'2r sinf, k") (19)
numerical results presented in Table A are calculated from T
third-order polynomial approximations of measured spring NG} = ——
curve, The coefficients of these polynomials are obtained by IT” |
least square curve fit. Note these cases are intended only to T
give some approximation of possible differences and they do =
not represent the largest possible differences. Nevertheless, in SRR T T AW I P T I Py
Case 4, the error in 7 has calculated to be as great as +84.6 T
percent. = 20)
K

Change in the Direction of Normal Vector N

In an earlier paper (Lin and Pisano, 1987), and other work
{Wahl, 1963), the normal, N, of the intrinsic coordinate
system has always been considered parallel to X-Y plane of the
global coordinate, for the purpose of calculating spring force
and moment (Fig. 7). When a force, P, is applied to one end of
the spring, at any point, 4¢, amoment,

M,=—-rFxpP amn
is produced. M, will have to be balanced by resultant
moments due to the stress in the spring material at point g. M,
can be decomposed into M, and m,, as shown in Fig. 7, which
must be balanced by changes in curvature, «, and torsion, .
This kind of analysis has assumed that the normal, N, is
parallel to the X-Y plane. It can be shown that the normal, N,
is not parallel to the X-Y plane for the general helix.

Derivation: Let a parametrization of a general helix be:
X(s)=(r cost, r siné, k) (18)
where r.0,h are functions of arc length, s. Then,
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N would be parallel to the X-Y plane, if and only if h” =0,
i.e., the z coordinate function, h(s), of the helix were a linear
function of arc length 5. Otherwise N is not parallel to the X-Y
plane.

We can conclude from the above proof, that when 4” =0
the calculated values of M, and M, must be corrected by the
cosine of the angle, ¢, where ¢ is found from:

e=sin"( @

hll

VT 48 T g g 5 L g2 )
and a new component of torque, M,, in the direction of N will
have to be balanced by additional stress in the spring helix. In
a previous paper (Lin and Pisano, 1987}, this balancing torque
is called the bending moment in the T-B plane. To have a
quantitative sense about the corrective angle, ¢, consider two
examples.

Example: An automotive valve spring has measured and
smoothed initial pitch angle distribution data as shown in Fig.
5. Assume at 5 mm compression it has constant radius
r=0.0147m. Since the measurement is made on nodes evenly
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distributed around a circle,
represented by:

X(0) = (r cos8, r sind, h(6))

However, it is more convenient in a later computation to
reparametrize the spring by arc length:

X(5) = (r cos 8(s), rsind(s), h(B(s)))
with @ and s related by the mapping:

the spring is conveniently

]
() SO X" ()| db

]
So NP+ h2de

At arc [ength equal to 46.35 mm of the spring (Case 2 in Table
A),

e=0.5°

Example: In Table A, Case 3, the spring has variable pitch
angle and radius (shown in Fig. 6), and at arc length, s, equal
to 114.76 mm, e= - 1.045 deg.

New Formulae for Calculating Spring Forces

As a result of new formulae for calculating curvature, «,
torsion, 7, and the inclusion of a new strain energy term, a new
spring force computation formula has been derived that dif-
fers from common formulae (Wahl, 1963) currently in use.
Referring to Fig. 7, when a force P in the negative Z direction
is applied, the internal force at any cross-section of the spring
produced by strain can be decomposed into a force, F, in the
positive Z direction, passing through the center of the spring
wire, and into a moment, M, about Z axis, described below as:

GJ i
p= G182y B j"' P ((ancos e
+ (Az")sin €} (22)
M=GJ sin p{A7)+ EI cos p((Ax)cos e+ (Az”)sin €) (23)

If an accurate evaluation of the spring force is desired, the
above formula is recommended. It should be noted that
although the above formulae are analytical and exact, it turns
out to be difficult to obtain exact values for changes in cur-
vature and torsion, ¢ither numerically or experimentally. For
the case where the spring has a constant helix radius and vary-
ing pitch angle, an experimentally-verified, simplified for-
mula, which is repeated here for completeness, can be used to
obtain very good results (Lin and Pisano, 1987):

Ap = constant with respect to arc length (24)

where Ap is the change of pitch angle corresponding to
specified spring deflection. After Ap is solved, changes in cur-
vature and torsion are calculated from Kelvin formulae using
new pitch angle distribution.

Example: If static spring force for spring ““P’’, which is
described in Table A and Fig. 5, is computed by simple for-
mula (Shigley, 1983), maximum error between computed force
and experimentally measured force is about 40 Newton (5 per-
cent). This large error is resulted from a considerably large
varying pitch angle. If approximate formula, equation 24, is
applied to calculate change of curvature, A7, and only first
term in equation 22 is utilized to calculate the spring force,
maximum error is about 9 Newton (1 percent). The third term
in equation 22 has no significant contibution, because in this
case Az” and ¢ are almost zero along the helix.

Conclusions

The more general and accurate mathematical model of a

Journal of Applied Mechanics

helical spring is general helix rather than circular helix. The
most significant differences between the general and the cir-
cular helices are varying pitch angle and varying radius, and
consequently the historically used curvature and torsion for-
mulae have been shown to introduce errors that vary depen-
ding on application and specific configuration. A word of cau-
tion is that for realistic helical spring models, especially when
spring dynamics is concerned, no helical spring is an exact cir-
cular helix. New formulae for curvature, torsion, and spring
force have been derived to handle this case and are recom-
mended where accuracy is more important than computa-
tional effort. With the availability of accurate helix models, it
is now possible to take advantage of the complex shape of
general helix in spring design, so as to obtain higher and
variable natural frequencies and subsequently longer fatigue
life.
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