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12.15.1 Selected solutions
Exercise 10.8: (i) Direct calculation based on Corollary 10.1.4 yields that
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Thus the condition is satisfied with
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(i) Hy is 1-periodic because the exponential function e~2™(") is 1-periodic.

Exercise 10.11:(i)
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Letting £ := 1 + k, this yields that
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By (i), we know that G(vy + k) = G(v), which is independent of k. Thus,
Y +RP = Z|N (v + k)P
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(iii) By the result in Exercise 10.8(ii), there exists a 1-periodic function Hy
such that

—

Nin(27) = Ho(7)Nim (7).
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Thus

)

P(2y) =

Thus, the function

satisfies that

P(27) = Mo(7)@(7)-

The functions G and Hy are 1-periodic, so it follows that also My is 1-
periodic: in fact,
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(iv) We check the conditions in Theorem 8.2.11. Condition (i) follows from
the fact that N,, is a continuous function with N\m(O) = 1, together with
0 < A < G(y) < B. Condition (ii) is verified above, and condition (iii) is a
consequence of what we proved in (i) - see Theorem 8.2.12.



