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Abstract. Using only fairly simple and elementary considera-
tions - essentially from first year undergraduate mathematics - we
show how the classical Stokes’ theorem for any given surface and
vector field in R3 follows from an application of Gauss’ divergence
theorem to a suitable modification of the vector field in a tubular
shell around the given surface. The two stated classical theorems
are (like the fundamental theorem of calculus) nothing but shad-
ows of the general version of Stokes’ theorem for differential forms
on manifolds. The main points in the present paper, however, is
firstly that this latter fact usually does not get within reach for
students in first year calculus courses and secondly that calculus
textbooks in general only just hint at the correspondence alluded
to above. Our proof that Stokes’ theorem follows from Gauss’ di-
vergence theorem goes via a well known and often used exercise,
which simply relates the concepts of divergence and curl on the
local differential level. The rest of the paper uses only integration
in 1, 2, and 3 variables together with a ’fattening’ technique for
surfaces and the inverse function theorem.

1. Introduction

One of the most elegant and useful results concerning vector fields
in R3, is the classical version of Stokes’ theorem. It is one of those
important results, which is so nicely molded from analysis, calculus,
geometry, and linear algebra that it forms a solid basis for and indeed
an integral part of the final fireworks and climax of first year under-
graduate mathematics education. At the same time Stokes’ theorem
points forward into a wealth of deep applications in electromagnetism,
in fluid dynamics, and in mathematics itself, to mention but a few of
the most significant fields of applications. Such results serve as indis-
pensable bootstraps for university students en masse - be they students
of engineering, of physics, of biology, of chemistry, of mathematics, etc.;
see e.g. [FLS], [She].
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It is the purpose of this paper to facilitate the presentation, i.e.
the undergraduate teaching, of Stokes’ theorem by suggesting and un-
folding a proof, which shows that it is a direct consequence of Gauss’
divergence theorem. In the process there are also a few other useful in-
sights and geometric observations to be (re)visited. The first pertinent
observation is the following quotation from [C] concerning the history
of Stokes’ theorem (see also [K] p. 790):

The history of Stokes’ Theorem is clear but very com-
plicated. It was first given by Stokes without proof -
as was necessary - since it was given as an examina-
tion question for the Smith’s Prize Examination of that
year [1854]! Among the candidates for the prize was
Maxwell, who later traced to Stokes the origin of the
theorem, which by 1870 was frequently used. On this
see George Gabriel Stokes, Mathematical and Physical
Papers, vol. V (Cambridge, England, 1905), 320–321.
See also the important historical footnote which indi-
cates that Kelvin in a letter of 1850 was the first who
actually stated the theorem, although others as Ampère
had employed ”the same kind of analysis ... in particular
cases.”

M. J. Crowe, [C] p. 147.

Gauss’ divergence theorem is of the same calibre as Stokes’ theorem.
They are both members of a family of results which are concerned with
’pushing the integration to the boundary’. The eldest member of this
family is the following:

Theorem 1.1 (Fundamental theorem of calculus). Let f be a conti-
nuous function on R. Then the function

A(x) =

∫ x

0

f(u) du

is differentiable with

(1.1) A′(x) = f(x) ,

and moreover, if F (x) is any (other) function satisfying F ′(x) = f(x),
then

(1.2)

∫ b

a

f(u) du = F (b)− F (a) .

The message of this theorem is that two fundamental problems - that
of finding a function whose derivative is a given function and that of
finding the average of a given function - have a common solution. It is
also the first result which displays - in equation (1.2) - the astounding
success of ’pushing the integration to the boundary’. Compare with
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the main ’actors’ of the present paper, Theorems 1.3 and 1.4 below.

The divergence theorem is not - conceptually speaking - ’far’ from
the fundamental theorem of calculus. Most textbook proofs of the
divergence theorem covers only the special setting of a domain whose
boundary consists of the graphs of two functions, each of two variables.
This enables in fact a direct proof in this special case via Theorem 1.1,
see [EP] pp. 1058–1059. Stokes’ theorem is a little harder to grasp,
even locally, but follows also in the corresponding setting (for graph
surfaces) from Gauss’ theorem for planar domains, see [EP] pp. 1065–
1066.

This approach suggests indirectly that the full classical Stokes’ theo-
rem (for general surfaces) should follow directly from Gauss’ divergence
theorem (for general domains). The main part of the present paper will
be devoted to a proof following this idea.

The most compact as well as the most general form of Stokes’ theo-
rem reads as follows (see e.g. [Mu] p. 353, [G], [doC] pp. 60 ff., [Spi]
p. 124):

Theorem 1.2 (Stokes’ theorem, general version). Let ω denote a dif-
ferential (k − 1)−form on a compact orientable manifold Ωk. Suppose
that Ω has a smooth and compact boundary ∂Ω with the induced orien-
tation, and let dω denote the differential of ω. Then

(1.3)

∫

Ω

dω =

∫

∂Ω

ω .

This statement contains as corollaries both Gauss’ divergence theo-
rem for domains in R3, and Stokes’ theorem for surfaces in R3. See e.g.
[Mu] pp. 319–320. As mentioned above it is these latter theorems - not
the general version of Stokes’ theorem - that will be the main concern
in this paper. Here are the statements:

Theorem 1.3 (Gauss’ divergence theorem). Let Ω denote a compact
domain in R3 with piecewise smooth boundary ∂Ω and outward pointing
unit normal vector field n∂Ω on ∂Ω. Let V be a vector field in R3.
Then

(1.4)

∫

Ω

div(V) dµ =

∫

∂Ω

V · n∂Ω dν .

Theorem 1.4 (Stokes’ theorem, classical version). Let F denote a
compact, orientable, regular and smooth surface with piecewise smooth
boundary ∂F and unit normal vector field nF . Let V be a vector field
in R3. Then

(1.5)

∫

F

curl(V) · nF dµ =

∫

∂F

V · e∂F dσ .
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When calculating the right hand side, i.e. the tangential curve integral
(the circulation of V) along the boundary ∂F , the orientation e∂F of
the boundary must be chosen so that the cross product e∂F × nF at the
boundary points away from the surface.

Outline of paper . In section 2 we recall the connection between curl
and divergence which was alluded to in the abstract. In the following
sections we then set up the notation and the results needed in order
to make this presentation reasonably self contained on the level of first
year undergraduate mathematics. The main goal is to relate integration
over the shell extension of a given surface with the integration along
the boundary surfaces of this extension. The proof of Stokes’ theorem
is finally completed in section 8.

2. A bridge between divergence and curl

We begin by stating a connection between divergence and curl.

Observation 2.1 (Exercise). Let V(x, y, z) and W(x, y, z) denote
two smooth vector fields in R3. Then the following identity holds true:

(2.1) div(V ×W) = curl(V) ·W + V · curl(W) .

In particular, if W is a gradient field for some smooth function ψ(x, y, z)
in R3, i.e. W = grad(ψ) , we get from curl(grad(ψ)) = 0 :

(2.2) div(V × grad(ψ)) = curl(V) · grad(ψ) .

Using Gauss’ divergence theorem we ’lift’ this connection to the in-
tegral level as follows:

Theorem 2.2. Let ψ(x, y, z) denote a smooth function in R3 and let
V(x, y, z) be a vector field. Let Ω denote a compact domain in R3

with piecewise smooth boundary ∂Ω and outward pointing unit normal
vector field n∂Ω on ∂Ω. Then we have the following

(2.3)

∫

Ω

div(V × grad(ψ)) dµ =

∫

∂Ω

(V × grad(ψ)) · n∂Ω dν .

Using equation (2.2) we therefore also have

(2.4)

∫

Ω

curl(V) · grad(ψ) dµ =

∫

∂Ω

(n∂Ω ×V) · grad(ψ) dν ,

In particular we get the total rotation vector (the so-called total
’vorticity vector’ of fluid dynamics) of the vector field V in Ω :

Corollary 2.3.
∫

Ω

curl(V) dµ =

∫

∂Ω

n∂Ω ×V dν .
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Proof. This follows directly from equation (2.4) by choosing, in turn,
ψ(x, y, z) = x, ψ(x, y, z) = y, and ψ(x, y, z) = z, so that grad(ψ)
is successively one of the respective constant vectors (1, 0, 0), (0, 1, 0),
and (0, 0, 1).

¤

3. The surface, the boundary, and the normal field

We parametrize a given surface F by a smooth regular map r from
a compact domain D (with boundary ∂D) in the (u, v)−plane into R3:

F : r(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 , (u, v) ∈ D ⊂ R2 ,

where x(u, v), y(u, v), and z(u, v) are smooth functions of the parame-
ters u and v.

Figure 1. Costa’s minimal surface.

Example 3.1. The Costa surface in Figure 1 is obtained by a highly
non-trivial parametric deformation of a disk D from which 4 smaller
disks have been removed in the (u, v)−plane R2. Two of the 5 boundary
components are identified by the map, so that the surface has the
topology of a thrice punctured torus. Details on the construction of
Costa’s minimal surface can be found in e.g. [FGM].

The connected components of the boundary ∂D are either pairwise
identified by r or mapped onto the components of ∂F , respectively. We
assume, that r is everywhere bijective except at those components of
∂D which are identified by the map. In cases like Costa’s surface - as
shown in Figure 1 - we have several boundary components. They con-
tribute additively and individually to the circulation integral on the
right hand side of Stokes’ theorem. Those boundary components of
∂D which are identified by r do not contribute to ∂F . They do not
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contribute to the Stokes circulation integral either because the relevant
integrals cancel each other away. For ease of presentation and without
lack of generality we therefore assume, that D is simply connected with
only one connected boundary component ∂D which is mapped onto ∂F
via the map r.

A given single boundary component ∂D is parametrized as follows
in the (u, v)−plane:

∂D : d(θ) = (u(θ), v(θ)) ∈ ∂D ⊂ R2 , θ ∈ I ⊂ R ,

where u(θ) and v(θ) are piecewise smooth functions of θ. The boundary
of F is then

∂F : b(θ) = r(d(θ)) = r(u(θ), v(θ)) ∈ R3 .

The Jacobians of the maps r and b are, respectively:

(3.1) Jacobir(u, v) = ‖r′u × r′v‖ , and

(3.2) Jacobib(θ) = ‖b′θ‖ .

The regularity of r is expressed by

Jacobir(u, v) > 0 for all (u, v) ∈ D .

This implies in particular, that there is a well defined unit normal
vector nF = n(u, v) at each point of F :

(3.3) n(u, v) =
r′u × r′v
‖r′u × r′v‖

for all (u, v) ∈ D .

4. The shell fattening and a nice gradient

We define the tubular shell fattening of F (of thickness t) as the
following parametrized domain in R3:

(4.1) Ωt : R(u, v, w) = r(u, v)+w n(u, v) , (u, v) ∈ D , w ∈ [0, t] .

In particular, the surface F is then the base surface of the shell and is
obtained by restricting R to D (where w = 0):

F0 = F : r(u, v) = R(u, v, 0) , (u, v) ∈ D ,

Similarly for w = t we get the top surface Ft of the shell. It is para-
metrized by R(u, v, t), for (u, v) ∈ D.

The Jacobian of the map R is

(4.2)
JacobiR(u, v, w) = | (R′

u ×R′
v) ·R′

w|
= | ((r′u + w n′u)× (r′v + w n′v)) · nF | ,
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Figure 2. Two shell fattenings.

so that, since nF is a unit vector field parallel to r′u × r′v along F , we
get in particular (for w = 0):

(4.3)

JacobiR(u, v, 0) = | (r′u × r′v) · nF |
= ‖r′u × r′v‖
= Jacobir(u, v) > 0 .

The map R is regular and bijective on D × [0, t] - provided t is suf-
ficiently small. Indeed, since JacobiR(u, v, 0) > 0, this claim follows
from the continuity of JacobiR(u, v, w) and the compactness of D.

The value of w considered as a function in Ωt ⊂ R3 is a smooth
function of the coordinates (x, y, z) . However intuitively reasonable
this claim may seem, the precise argument goes via the inverse function
theorem, which we state here for completeness - in its global form,
without proof:

Theorem 4.1. Let Q denote an open set in Rn and let f : Q → Rn de-
note a smooth bijective map with Jacobif (x) > 0 for all x ∈ Q. Then
the inverse map f−1 : f(Q) → Q is also smooth with Jacobif−1(y) > 0
for all y ∈ f(Q).

Hence, when t is sufficiently small, w is a smooth function of (x, y, z);
let us call it h(x, y, z), (x, y, z) ∈ Ωt. This function then has a non-
vanishing gradient, grad(h)(x, y, z), which is orthogonal to the level
surfaces of h. In particular, grad(h) is orthogonal to the top surface
Ft of the shell Ωt, where h = t and it is orthogonal to the base surface
F0 = F , where h = 0.

In fact, at the base surface, the field grad(h) is precisely equal to
the unit normal vector field nF . To see this we only need to show that
it has unit length: Let (u0, v0) denote a given point in D and consider
the restriction of h to the straight line r(u0, v0) + w n(u0, v0), where
w ∈ [0, t]. Let us denote r0 = r(u0, v0) and n0 = n(u0, v0). The chain
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rule then gives

(4.4)

1 = | d

dw
h(r0 + w n0) |

= |n0 · grad(h)(r0 + w n0) |
= ‖grad(h)(r0 + w n0) ‖ ,

so that, at the surface F , for w = 0, we have ‖grad(h)(r0)‖ = 1 and
therefore in total, as claimed above:

(4.5) grad(h)|F = nF ,

Remark 4.2. The function h(x, y, z) is in fact the Euclidean distance
from the point (x, y, z) in Ωt to the surface F .

5. Integration in the shell

For any given smooth function f(x, y, z) defined in Ωt the integral of
f over that domain is:

(5.1)

∫

Ωt

f dµ

=

∫ t

0

(∫

D

f(R(u, v, w)) JacobiR(u, v, w) du dv

)
dw .

The derivative of this integral with respect to the thickness t of the
shell Ωt is, at t = 0, the surface integral over F :

Lemma 5.1.

(5.2)

(
d

dt

)

|t=0

∫

Ωt

f dµ =

∫

F

f dν .

Proof. This follows directly from the fundamental theorem of calculus,
Theorem 1.1, equation (1.1):

(5.3)

(
d

dt

)

|t=0

∫

Ωt

f dµ

=

(
d

dt

)

|t=0

∫ t

0

(∫

D

f(R(u, v, w)) JacobiR(u, v, w) du dv

)
dw

=

∫

D

f(R(u, v, 0)) JacobiR(u, v, 0) du dv

=

∫

D

f(r(u, v)) Jacobir(u, v) du dv

=

∫

F

f dν .

¤
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6. The wall

The shell Ωt has a boundary ∂Ωt which consists of the top level
surface Ft, the base level surface F = F0 and a ’cylindrical wall’ surface
Wt of height t. See Figure 2. This latter component of the boundary
is simply obtained by restricting the map R to ∂D × [0, t] as follows:

Wt : B(θ, w) = R(u(θ), v(θ), w)

= r(u(θ), v(θ)) + w n(u(θ), v(θ))

= b(θ) + w n(d(θ)) , θ ∈ I , w ∈ [0, t] .

The Jacobian of this map is thus

(6.1)
JacobiB(θ, w) = ‖B′

θ ×B′
w‖

= ‖(b′θ + w (n ◦ d)′θ)× nF‖ ,

so that, since nF is a unit normal to the surface F and hence also to
the boundary ∂F (parametrized by b), we get in particular:

(6.2) JacobiB(θ, 0) = ‖b′θ × nF‖ = ‖b′θ‖ = Jacobib(θ) .

7. Integration along the wall

For any given smooth function g(x, y, z) defined on Wt the integral
of g over that surface is

(7.1)

∫

Wt

g dν =

∫ t

0

(∫

I

g(B(θ, w)) JacobiB(θ, w) dθ

)
dw .

The derivative of this integral with respect to the height t of the wall
Wt is, at t = 0, the line integral over ∂F :

Lemma 7.1.

(7.2)

(
d

dt

)

|t=0

∫

Wt

g dν =

∫

∂F

g dσ .

Proof. This follows again from the fundamental theorem of calculus,
Theorem 1.1, equation (1.1):

(7.3)

(
d

dt

)

|t=0

∫

Wt

g dν

=

(
d

dt

)

|t=0

∫ t

0

(∫

I

g(B(θ, w)) JacobiB(θ, w) dθ

)
dw

=

∫

I

g(B(θ, 0)) JacobiB(θ, 0) dθ

=

∫

I

g(b(θ)) Jacobib(θ) dθ

=

∫

∂F

g dσ .

¤
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Figure 3. A piece of a sphere and the curl vector field
curl(V) of the field V(x, y, z) = (z2 x, x2 y, y2 z) . The
field V itself is not shown.

8. Proof of Stokes’ theorem for surfaces

We are now ready to prove Theorem 1.4.

Proof. Using the function h(x, y, z) from the previous section 4 in place
of the function ψ(x, y, z) in Theorem 2.2, equation (2.4) for the domain
Ω = Ωt we get:

(8.1)

∫

Ωt

curl(V) · grad(h) dµ

=

∫

∂Ωt

(n∂Ωt ×V) · grad(h) dν

=

∫

Ft

(nFt ×V) · grad(h) dν

−
∫

F0

(nF0 ×V) · grad(h) dν

+

∫

Wt

(nWt ×V) · grad(h) dν .

But in equation (8.1) we have

(8.2)

∫

Ft

(nFt ×V) · grad(h) dν = 0 and

∫

F0

(nF0 ×V) · grad(h) dν = 0 ,

because grad(h) is orthogonal to both of the surfaces Ft and F0 so that
grad(h) is proportional to nFt and nF0 at the respective surfaces.

We observe, that at ∂F ⊂ Wt we have nWt = e∂F × nF and hence
e∂F = nF × nWt according to the rule in Theorem 1.4, which defines
the orientation of ∂F . Taking derivatives in equation (8.1) with respect
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Figure 4. According to Stokes’ theorem the flux
through the surface shown in Figure 3 is equal to the cir-
culation of the vector field V along the boundary curve of
the surface. The field V is shown here along that bound-
ary.

to t at t = 0 then gives:

(8.3)

(
d

dt

)

|t=0

∫

Ωt

curl(V) · grad(h) dµ

=

(
d

dt

)

|t=0

∫

Wt

(nWt ×V) · grad(h) dν ,

so that - by the virtues of equations (5.2) and (7.2) - we finally get

(8.4)

∫

F

curl(V) · nF dν

=

∫

∂F

(nWt ×V) · nF dσ

=

∫

∂F

V · (nF × nWt) dσ

=

∫

∂F

V · e∂F dσ ,

which finishes the proof of the theorem. ¤
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