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1 The problem

A progressive cavity pump (PCP) or a Moineau pump has twca patéting rel-

ative to each other and moving in an eccentric track reldoveach other. The
shapes in an axial cross section can be made of pieces ofyulpints connected
with epicycloids. Alternative it can be a curve with a comsi@istance to hypocy-
cloids.

In the axial direction the cross section is rotated aroumdztiaxis so the ex-
ternal part have at least one thread.

For n-teeth shape running inside an n+1 teeth shape thenahtpart have
(n+1)/n times the teeth of the external part.

The centre of the internal element is offset relative to #@ie of the external
element and moving in a circle with the radius e (eccenyicithe speed of dis-
placement of the centres is -n times the speed of the rotggiead of the internal
element if the external element is stationary.

A further feature can be achieved by making the pump conitadboth el-
ements have a larger cross section in one end the axial falicdetermine the
compression between the two elements. In that configuranerof the elements
can be free to move in axial direction and the pump pressurerea surface can
presses the two elements together. By adjusting the arde slirface where the
pressure compresses the two parts the closing force fouting gan be adjusted.
If the pump has to give a constant flow the cross section of élties has to be
constant (if thread height is constant) in the z directioreping the cross sec-
tion of the cavities constant (area between external seidacl internal surface)
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can be obtained by decreasing the eccentricity towardsitge end of the pump.
Eccentricity has to be increased linear if the parts arelrigi

e For n-teeth running inside n+1 teeth: make an expressiaasfarell internal
as well as external element with different eccentricities.

¢ If the pump were conical in z-direction what would be the eggion for the
elements if the cross section of the cavities and threachh#igead height
should be constant for a linear increasing eccentricithéz direction.

e Expression describing the flow for the pump above (Lengthpeesl v (Hz))

e The pump making a pressure P: What would be the axial forcarmer ior
external element as a function of the turning angle?

e What would be the radial forces as a function on turning ghgle

2 Introduction and notation

We have solely considered the geometry of pump and have rae anay effort to
calculate forces or mechanical properties of the diffedasigns.

We first consider motions where the axis of rotation has a filegttion, i.e.,
it moves on a general cylinder. The motion then preservaseglarthogonal to
the axis of rotation and is completely determined by the amin one of these
planes. Such a planar motion is given by a pair of curvesedalble curves
rolling on each other. In Theorem 1 we prove that the poleesihas to be circles
and hence that the axis of rotation sweeps out a circulanasti

For the other motion the axis of rotation goes through a fixedtpi.e., it
moves on a general cone. The motion now preserves spheres emapletely
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determined by the motion on one of these spheres. We arenuaaithat the
planar case generalises to this case so the motion is givarphyr of circles on
a sphere that rolls on each other. Thus the axis of rotati@ep# out a circular
cone.

We are now looking for a pair of curves, giving the inner andeoyart of
the pump. They should be designed such that they during themdo not
intersect but touches in a number of points and in this waggya number of
pump chambers. Furthermore, during the motion the chanttzer$o disappear
at certain times, i.e., the points of contact has to coinatdmertain times.

We first investigate the classical design consisting of hygroepicycloids,
see Figure 2 and 6. We show that they do work, i.e., they behsdescribed
above, and we calculate the area of the pump chambers as tioofun€ time,
see Theorem 2 and 3 and Figure 3 and 7. We also show thaihipisssibleto
offset the cycloids and thereby obtain a design without susge Figure 4 and 5.
Impossible means that the design does not work mathenmigtalct, in practice
the rubber sealing might make it work.

We then investigate a design consisting of alternating afdsypo and epi
cycloids, see Figure 8. This design works too, and we giveesgions for the the
area of the pump chambers as a function of time, see Theorerd Figure 10.
Even though the design is without cusps, there are pointsindinite curvature,
so it is once mor@mpossibleo offset the design.

In the next design the inner part is given as a general hyplodid, see Fig-
ure 11. We determine the outer part. Graphically it works, Bigure 14, but we
have not proved it and we can no longer find an analytical esgwae for the area
of the pump chambers. It is of course possible to do it nurallyicThis design
might have continuous and bounded curvature and then itdMoilpossible to
offset it and get a new design, but we have not pursued thatasp

In the last two designs mentioned the inner part is made bysegments
one with positive curvature and one with negative curvajireed at an inflexion
point. These two segments span the arigi¢n, the whole inner part is now
obtained by taking: copies rotated through the anglér/nfor¢ =0,...,n—1.
In Section 5 we represent the positively curved segmentssupport function.
The whole outer part can now be found as the envelope of tiggessegment. By
interchanging the role of the fixed and moving part the whioteer part can now
be found as the envelope of the outer part. It is also poswilfiad the area of the
inner and outer part of the design in terms of the supporttfoncsee (112) and
(113).

We finally consider spherical designs in Section 6. We aeallge spherical
analog of the hypo- and epi-cycloid design, but it turns bat it does not work.
By construction there is one point of contact, buttheusps of the inner hypocy-
cloid do no longer touch the outer hypocycloid. As in the cafseffsets of the
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planar design, the error is probably so small that the rubbaling can take care
of it.

Before we start the analysis we define two unit vectors in th@eand a
rotation matrix:

e(t) = {cost} ) = {—sint] . R@) = {cost —sint} R

sint cost sint cost

The vectors:(t), f(¢) form an orthonormal basis for ea¢ke R. We furthermore
have the following useful equations

R(t)e(¢) =e(o +1), (2)
R(t)f(¢) = (o +1), 3)
e(¢) - e(0) =e(¢ — ) - e(0) = cos(¢ — 0), 4)
e(¢) - £(0) = e(¢ — 0) - £(0) = sin(¢ — 0), (5)
f(¢) - e(0) =1f(¢ — 0) - (0) = —sin(¢ — 0), (6)
f(¢)-£(0) =1(¢ —0) - £(0) = cos(¢ — 0), (7
e(0 + ¢) = cos(¢p)e(d) + sin(¢)f(0). (8)
£(0 + ¢) = —sin(¢)e(0) + cos(¢)f(6). 9)

3 The possible cylindrical motion

We consider two different types of motions. In both casevéhecity field is from
a pure rotation, so we exclude rest, translation and scretiomdn the first case
the instantaneous axis of rotation moves on a cylinder atigdeiisecond case the
instantaneous axis of rotation moves on a cone. We call theeases cylindrical
motion and conical motion respectively. We shall later e the cylinder has to
be circular and we are convinced that the same proof alseesppl the conical
case, so the cone has to be circular too.

When the instantaneous axes of rotation moves on a cylirrdequvalently
are orthogonal to a fixed plane the motion is essentiallygslaRurthermore, as
the now planar motion we are considering always has a ro@t@omponent, it
can be realised as the rolling of one curve upon another.

We can think of the inner or outer part of the pump as planaiaes(orthog-
onal to the axis of rotation) stacked on top of each other. ddsgn is such that
each planar section is a fixed curve just rotated relativatt ether. Not only are
the two parts made this way but if we look at the motion of one ygdative to the
other in one planar section, then we see the same “moviel'thetectioons. The
only difference is that movies are rotated relative to edblermand that they have
a different time offset in the different sections. Consither situation in Figure 1.
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time offset= ¢; time offset= ¢,

Figure 1: The motion at different time offsets

We have two pictures at different times or rather two moviéh wifferent time
offsets. We now want to put these two movies on top of eachrahé as the
inner and outer parts are rigid objects it has to be done ih aweay that the two
moving planes (red stippled) moves together. That meanshagointP, = @

at timet; has to be on top the poirft, = (), at timet, and that the fixed pole
curve (black solid) and the moving pole curve (red stipple)put on top of each
other. But then the curvature & and P, on the fixed pole curve is the same.
Similar, the curvature ap; and@, on the moving pole curve is the same. As the
time offsetst; andt¢, was arbitrary we can conclude that both the fixed and the
moving pole curve has constant curvature. But then theyieckes and we have
proved the following result:

Theorem 1. The only possible cylindrical motion is given by circleslirgd on
circles, or equivalently it is given by

x — ¢ + ce(at + () + R(t)x.

The fixed pole curvE is a circle with centrec and radiusc(1 — «) and the rolling
pole curveR is a circle with centred and radiusca:

F(t) =c+c(l —a)e(at + ), and R(t) = —cae(at + ().
Proof. We only need to determine the pole curves. The velocity feld i
v(x) = caf(at + ) + R/ (t)x = caf(at + 5) + R (t + g) X.
and we see that = 0 if and only if
x=R (—t - g) (—caf(at + B)) = —cae((a — 1)t + f),

which is the rolling pole curve. The fixed pole curve is nowridby finding the
corresponding point in the fixed plane, i.e.,

y=c+celat+ )+ R(t)x =c+c(l —a)e(at + F). O
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4 Geometric pump constructions

Starting with the original construction by Moineau usingpbgycloids and epicy-
cloids we give some geometric constructions of possiblegpdesigns.

4.1 The classical hypocycloids and epicycloids

Figure 2: To the left the parametrisation of a hypocycloid. tfie right the left
picture is rolled inside a circle with radius+ 1 such that the three thick circle
segments all have length

Theorem 2. The hypocycloid obtained by rolling a circle of radius 1 uhsia
circle of radiusn can be parametrised as

Xnn () = (n — 1)e (?) te <(1 - ")¢) , tel0,2n7],  (10)

n n

whereg¢ is the distance the small circle has rolled, see Figure 2.

If it is moved by the motion obtained by rolling a circle of nasln inside a
circle of radiusn + 1 in such a way that the point of contact between the two
circles has speed, then at time the pointx;, ,,(¢) touches the hypocycloid, ,, 1
in the pointxy, ,,+1(t). Furthermore, the: cusps on the moving hypocycloid ,,
have contact with the fixed hypocycleigl,,.; at the points

Xhnt1 <2k(n +Dm - t) , k=1...n (12)

n

Then + 1 contact points give. + 1 chambers which fot € [0, 27| have areas



given by

(n—1)t sint n* . [t
Ay = — — 12
0 n +n(n+1) nt1o\n ) (12)
-1 i 2 o' —
A = n (2m —t) — sinf___n sin [ X ! , (13)
n nn+1) n+1 n
andfork =2,...,n

n—1)r 2 ™ — - — T
Ak:2( nl) _nT—Lkl(Sin(an t)+sin<$))j (14)

see Figure 3. The situation at another titme R is given by symmetry. The total
area is

Atotal = ZAk = 2(” - 1)7T> (15)
k=0
and the area of the inner part, of the outer part, and of thewmscribed circle is
Ainner == (n — 1)(n — 2)7T, (16)
Aouter = n(n - 1)7T> (17)
Acircumcircle = (n + 1)271'- (18)

Proof. Consider Figure 2. When a circle with raditidas rolled the distance
¢ inside a circle with radius the centre is ata — b)e(¢/a), and it has rotated
through the angléb — a)¢/(ab). So if a point has coordinatés, y) with respect

to a coordinate system with origin in the centre of the mowingle, then it has

moved to

x(¢) = (a — ble @) + ze ((b ;ba)¢) +yf <(b _ab“)¢) . Q9)

Lettinga = n, b =1, and(z, y) = (1, 0) shows (10).

Then cusps have coordinates(2kw/n), k = 1...n, and moving by letting
the circle with radius: roll inside a circle of radius. + 1, (19) shows that they
trace the curves

xi(t) = e (nil)
(et e () )
- <nil) e <2iﬂ B n(nt+ 1)>
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~e (1) te (Fie )

lettingt = 2k(n + 1) — n¢, we get

:e<2k7r— mbk)%—ne( O ):ne< Ok )+e<_n¢k)
n+1 n+1 n+1 n+1

= Xpnt1(Pk) = Xnnt1 <2k(n + D = t) -

n

Clearly, at timet the pointxy,,(t) on the moving hypocycloid and the point
xo(t) = xnn11(t) On the fixed hypocycloid coincide. Furthermore, as the line
through the instantaneous centre of rotation (the pole}lamgoint on the traced
curve is the normal to the curve, we see that the tangent&divi hypocycloids
coincide too. Thus, the hypocycloig, ..+, is an envelope.

Alternatively, we can argue as in the case of a general hgplatid, see Sec-
tion 4.3. Indeed, if we let = r = 1 in (52) then we have that the point of contact
is determined by the equation

sin (%) + sin (qb — %) —sing =0,
(1 — cos¢)sin (?) = (1 — COS (%)) sin ¢.

We recognise the solutions= t + 2nkm and¢ = 2kw. Otherwise we have

or

sing ~ sin (%)
1—cos¢ 1—cos (¢_t)

n

and as the derivative of% 5 1s —1/(1 — cos ¢) which is strictly negative for

0 < ¢ < 27, the equation is satisfied if and only if

¢ = AL VSN ¢ = Zknm — ¢
n n—1
This solution gives the inner envelope. So the two hypoagsle;, ,, andx, .1
have only the contact points stated in the theorem.
Now e only need to find the area of the chambers during the mobae to
the symmetry it is enough to investigate the designtfer [0, 2x]. For such &
the contact points are on the inner part given by the parameteest and 2k,
wherek = 1,...,n. The corresponding points on the outer part are given by the



parameter valuesand (2k(n + 1)m — t)/n, wherek = 1,...,n. In both cases

k = 0 gives the same point d&s= n + 1. The parametrisation of the inner part
and its derivative is at timegiven by

A Y

X(0) =R (-7 ) Xial0),

and the planar product, or determinantxpfandx; is

[x:(0), x1(0)]

(540) e )]

(2 e(E) ()

o ()5

~ (n—1)cos (f —“_T")@b) + cos (G_an_ i) —1)
_ ”;1 ((n—2)(1—cos¢)+cos <$) ~ cos (%))

The outer part is simply;, ,,+1(¢) and the planar product with its derivative is

[Xh,n—i-l (¢)7 X/h,n—i-l (¢)}

=) ve () et (55) -0 (75

n+tl) n+tl \ n+l
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- n—El ("f <nﬁ1> +f<_nrfl)> ' (%nil) _f<_nnf1))

B ¢ ne neo o)
T ht1 ("_"C°S<n+1+n+1)+COS(_n+1_n+1) _1)

n n(n —1)

=i (n—ncos¢p+cosp—1) = 1 (1 —cos o).
Now
-1
[ 1) 0)] 0 = "= [0 - cos g0
=D o)

and

[ o) xi(o) do

:n;1/((n—2)(1—cos¢)+cos(¢;t) o (%)) a

- ("_1)75"_2>(¢—sm¢)+(n—1)sm <¢_t) — sin (w)

n n

Using this and Maple we find that the area of the first chamber is

1 t . 1 t
A= [ Bnes(0):X,0a(@)] 46 = 5 [ [x0n(0). ;,0)] o
_t 0
_(n—1)t N sint  n? [t
n nn+1) n+1 YA
the area of the second chamber is
1 27r+2ﬂ;;t 1 27
A= [ B0 %@ 4= 5 [ (). %;,,0)] o
t t
—(n-1) _t\  sint —I—l' i +n(n—1), t—2m
— " - n(n+1) ) 2(n+1) S n ’
and the areal,, . . ., A, of the remaining chambers is given by

1 [2kmt 2t
Ay = —/2 [Xh,n+1<¢)7x;z,n+l(¢)] do

2 (k_l)ﬂ+2(k—”ll)7r—t
1

2k
- n , ! n d
3, Boun@),0)] 4o

_ 2(n;1)7r - nf 1 (Sm (%1_ t) . (t - 2(12_ m)) |
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Figure 3: The areas of the chambers in the hypocycloid desitire case:, = 3,
Agisred, A, is green,A; is blue, andA; is magenta.

Finally, the area enclosed by a hypocycloid obtained byngk circle with radius
1 inside a circle with radius is

1 1(n—1)(n—2)

5/0 " [Xh,n(@;X;W((?)} do = 3 " 2nr = (n—1)(n —2)r. O

We now want to offset these two hypocycloids, but we have alpro at the
cusps. If we offset the distandehen we get a singularity (normally a cusp) when
the radius of curvature = 1/~ equalsd. We have

‘. n—lf(?) +1—nf<(1—n)¢)7
Xl = VBT 030,
W et WY 2 Bl (LT
] = ) (( 2¢) e (“(W)) )
(e(2) + - ve (=12

(n—1)2

= (1+(n—1)cos¢p —cos¢— (n—1))
- (n - 1);3(71— 2) (cosp — 1),
K= (n = 1);§n_2)(cos¢— 1) <(n; 1)\/5\/1 —cosgb,)_
(n—2)

(n —1)2v/2y/T —cos @’
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Figure 4: To the left the offset of a hypocycloid with halfaes added at the
cusps — “the classical design”?. The green curve is the @dle., the locus of
the centre of curvature. To the right we have zoomed in onrémesition from the
hypocycloid offset to the half circle. Observe the diffdrscalings on the axes.

1 (n—=1)2v2y/T—cosé
P ™" n—2 ’

Sop? = d? if and only if
(n—2)°d> _8(n—1)>—(n—2)°d

cose =1 TE - 8(n— 1) (20)
If d < |p| then the offset in distancéof a curvex(¢) is given by
ya(¢) = x(¢) + dn(¢), (21)
wheren is the normal. We want to offset on the outside so we consldeoffsets
Yhnd(®) = Xnn(p) — dn(9), d>0. (22)

In Figure 4 we have plotted the offset, or rather the curve,(@fla hypocycloid
and added a half circle at the cusps. From a first glance degyseems fine but
a closer look reveals a cusp where the offset intersectsuiiate. It is of course
possible to use the true offset, but the true offset of a niadgcpair of inner and
outer curves (pump design) will not match up. The inner cwiiebe slightly too
large and the outer slightly too small near the cusps, andtileconsequently no
longer touch but intersect during the motion, see Figurehtis &rror is in practise
compensated for by the rubber. If we try to remedy the sibmaby removing the
overlap then we will produce gaps, i.e., leakage, at otheegiduring the motion.

Even though an offset has cusps it might still be interedtinighow, or rather
to estimate, the area. We divide the area enclosed by thet @rft® three areas.
The first is the area of region enclosed by the hypocycloel sécond is the area
between the hypocycloid and the offset (22) and the thirdesarea enclosed by
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Figure 5: To the left the classical design at a critical tirfie.the right we have
zoomed in on the problematic area. Observe the differetingsaon the axes.

the halfcircles added at the cusps. The only unknown ardeeisg¢cond. If we let
the offset grows from zero to the final valdethen it sweeps out the second area
and it can be found by integrating the length of the offsetfero tod. If not for
the cusp this would be true. But if we look at the right handypie in Figure 4
then we realise that the area above the part of the offsebltieecurve, before
the cusp is covered twice and a third time by the half circleckely, as we shall
see below it is very easy to let the length of the offset uhgl¢usp to be counted
negative, and then if in this way calculate the area with sigm the problematic
area is covered only once. There is still a problem with thg genall “triangular
shaped” area between the offset and the half circle whicbvsred twice, but we
neglect this. Differentiation of (22) yields

Vona(B) = X (6) — dn'(8) = X (8) + dit(6) = (14 di)ch (9.

, (4 d(n —2) n—1 S
Winal) = (1= e ) B T

—1 d(n —2
= ‘_n V2+y/1 — cos ¢ — 7@2 ) :
n n

We clearly see thaﬁ—\/_ 2T = cos ¢ — 4=2 jg negative for € [0, ¢.] and also

for ¢ € 2m — ¢, 27r] whereg, is the parameter value where the offset has the
cusp. It is exactly these parts of the curve we want to be eaLn¢gative so the
“signed” length of one of the segments of the offset is

\/— T cosd _7)) o — 8(n - 1)_(n—2)7rd.

n
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So the signed area swept out by one segment of the offsetan Qi

/dL(t)dt: 8(n—1)d (n—2)7rd2‘

n 2n

So the signed area swept ot by theegments of the offset together with the area
of then half circles and the area enclosed by the hypocycloid giltés all

(n —2)rd* nmd?

(n—1)(n—2)7+8(n—1)d— 5 + 5 = (n—1)(n—2)7+8(n—1)d+md>.

Thus for the offset design we have the following areas

Agouter=n(n — 1)m + 8nd + wd?, (23)
Ad7chamber: 2(n — 1)7T _'_ 8d (25)

Similarly, for epicycloids we obtain the following

Theorem 3. The epicycloid obtained by rolling a circle of radius 1 odtsi circle
of radiusn can be parametrised as

&m@y:m+¢m<?)—e<@iiﬁ), te (0,207,  (26)

n n

whereg¢ is the distance the small circle has rolled, see Figure 6.

If it is moved by the motion obtained by rolling a circle of nasln inside a
circle of radiusn + 1 in such a way that the point of contact between the two
circles has speed, then at time the pointx, ,,(¢) touches the epicycloif, ,,;;
in the pointx, ,,.+1(t). Furthermore, the: + 1 cusps on the fixed epicyclai] ,,
has contact with, ,, at the points

ok
xm<7m+t), k=1...n 27)
’ n-+1

Then + 2 contact points give. + 2 chambers which fot € [0, 27| have areas
given by

_ (n+2)t sin ¢ (n+1)? . t

T 41 +n(n+1)_ n Sln<n+1> (28)
_ (n+2)2r —t) sin ¢ (n+1)? . [2mr—t

A= n+1 T an+1) n sm( n ) (29)
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Figure 6: To the left the parametrisation of an epicycloia. tie right the left
picture is rolled inside a circle with radius+ 1 such that the three thick circle
segments all have length

andfork=2,...,n+1

A — 2(n+2)m N (n+1)? (Sin (t — 2k7r) + sin (m)) (30)

n+1 n n-+1 n+1

see Figure 7. The situation at another titme R is given by symmetry. The total

area is
n+1

Atotal = Z Ay = 2(” + 2)7T7 (31)
k=0

and the area of the inner part, of the outer part, and of thewmscribed circle is

Ajnner = (n + 1)(” =+ 2)77 (32)
Aouter = (n + 2)(” + 3)77 (33)
Acircumcircle = (n + 3)27T. (34)

Proof. Consider Figure 6. When a circle with radib$as rolled the distancg
outside a circle with radiua the centre is afta + b)e(¢/a), and it has rotated
through the angléa + b)¢/(ab). So if a point has coordinatés, y) with respect
to a coordinate system with origin in the centre of the mowirgle, then it is
moved to

x(¢) = (a+b)e <?) + ze <%) +yf <W) . (35)

a

15



Lettinga = n, b =1, and(z, y) = (—1,0) shows (26).

Just as before we now subject the epicycleid, to the motion obtained by
letting the circle with radiug roll inside a circle of radius + 1. Clearly, at time
t the pointx. ,(¢) on the moving epicycloid and the poirt(t) = x. ,41(t) on
the fixed epicycloid coincide, see Figure 6. Just as for hygloads the tangents
of the two epicycloids coincide too. Thus, the epicyclrid,; is an envelope.

If we switch the role of the moving and fixed plane then the ombf the
point with coordinatesz, y) in the original fixed plane, is given by

o= () ) o)

Then+ 1 cusps on the epicycloil. ,,.; have coordinate&: + 1)e(2knw/(n+1)),
k =1...n+ 1. Inserting this above shows that they traces the curves

R
o (27) (k)
~—e (i)~ e ()

lettingt = (n + 1)¢y — 2knm we get

e () o (L)

— (n+1e (@> e (w)
= e (4) = X (M) |

n+1

In a manner similar to case of the hypocycloids it can be shinahwe have
found all contact points.

Now we only need to find the area of the chambers during theamobue to
the symmetry it is enough to investigate the designtfer [0, 2x]. For such &
the contact points are on the outer part given by the parameheest and 2k,
wherek = 1,...,n + 1. The corresponding points on the inner part are given
by the parameter valuesand (2knm +t)/(n + 1), wherek = 1,...,n+ 1. In
both cases = 0 gives the same point &= n + 1. The rest is again a simple
integration which we omit. 0
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Figure 7: The areas of the chambers in the epicycloid desighe case: = 3,
Agisred, A, is green,A; is blue, A3 is magenta, and, is cyan.

Just as in the case of the hypocycloids the cusps of the dpidgqrevent
smooth offsets. We have not calculated the areas of thet affsstruction, but it
could be done just as in the case of hypocycloids.

4.2 Composition of alternating hypocycloids and epicyclais

Recall thatx; ,, parameterises the hypocycloid obtained by letting a cigth
radiusl roll inside a circle with radius and thatk. ,, parameterises the epicycloid
obtained by letting a circle with radiuisroll outside a circle with radius. By
mimicking the proofs of Theorem 2 and Theorem 3 we can show

Lemma 4. If the hypocycloidx;, 5, undergoes the motion obtained by letting a
circle of radius2n roll inside a circle with radius2n + 2 in such a way that
the point of contact between the two circles has speed 1,a&hemet the point
Xp.2n(t) touches the hypocycloi, o, in the pointxy, 2,12 (%).

Likewise, if the epicycloid, »,, undergoes the same motion, then at tintiee
pointx. »,(t) touches the epicycloisl. 5, - in the pointx, 2,2 (t).

It can also be shown that the two hypocycloids, or epicydpahly touch in
the point given in Lemma 4. Furthermore, the moving cyclaidssists of2n
arcs and the fixed consists &f + 2 arcs and if a point of contact lies on an even
arc on one cycloid then so does it on the other. We can now tekedd arcs on
the epicycloids and the even arcs on the hypocycloids ararotite situation in
Figure 8. Looking at that figure it seems there are more copi@iats than the
one given in Lemma 4. It is furthermore seen that the extraambipoints are on
the epicycloid arcs on the inner part and on the hypocyclaigl an the outer part.
At a point of tangential contact the tangents of the two parésparallel and also
parallel to the velocity field at the contact point.

We start by finding the points on the outer hypocycloid anditiner epicy-
cloid where the tangent is parallel to the velocity field cnigglently is orthogonal
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Figure 8: Top left the hypocycloig,, 5, and top right the epicycloiet, 5, both
following a circle with radiugn rolling inside a circle with radiugn + 2. In the

depicted case = 3. Below the composition of the odd arcs from the epicycloids
and the even arcs from the hypocycloids.

to the line to the pole. At timethe pole has coordinatd = (2n + 2)e (5:55)
in the fixed plane. The fixed hypocycloid is given by

Xpom2(@) = (2n + 1)e <2nq—5k 2) te <_(227:17j:—12)¢) ’

the derivative is

, _2n+1 ) (2n +1)¢
Xnans2() = 2n + 2 (f <2n—l—2) f <_ 2n + 2 )) '

The line from the pole to a point of contact is orthogonal te thngent, i.e., we
have the equation

(Xn,20+2(8) — P) - X}, 0,40(8) = 0. (36)
Substituting the expressions above we obtain

2n + 2
M(Xhﬂn—ﬂ((b) —P) X 9,10(0) =

((2n+ l)e <2ngi 2) +e <—(2227112)¢) — (2n+2)e <2nt+ 2))
() o (55)
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L (2n +1)¢ ¢ . t ¢
_Sm<_ o + 2 _2n+2)_(2n+2)sm<2 —|—2_2n—|—2>

_(2n+1)sin( ¢ +(2n+1)¢) L nt)s ( 2n+1)¢)

Mm+2 ' 2m+2 T2
— sin(—¢)—(2n-+2) sin (%) (2n+1) sin 6-+(2n+2) sin (’f + 2<2”++21>0>)

= (2n +2) (—singb—sin (%) + sin (2n+¢2 —i—(b))
t
2

= (2n+2)<—sin¢—sin< t=¢
—l—cos( — )sin¢+cos<bsin <2tn_+¢2)>
-9

2n + 2
([t t—¢ .
= (2n + 2) ((cosgb— 1) sin <2n+2) + (cos <2n—l—2> — 1) smgb) .

Hence (36) is equivalent to

[ t—0 t—¢ o
(1 — cos @) sin (m) + (1 — cos (m)) sing =0

—¢
2

or

sin ¢ _ sin ( 2(17);:2) (37)
T cond - cos ()

As the derivative ofin ¢/(1 —cos ¢) is —1/(1 — cos ¢), which is strictly negative,
we have exactlgn + 1 distinct solutions to (37):

(2n +2)2km —t  2km —t

O = o+ 1 T on+1

Y 9%kn, k=0,1,...,2n.  (38)

Whent = 2kr we see that thé™" solution is the cusp,, = 2k.

Lemma5. If t € 2mm, 2(m + 1)x], form =0, ..., 2n, then the solutions satisfy

or € 2(k — V)7, 2kw], k=0,...,m,
o € 2km,2(k+ D7), k=m+1,...,2n,

i.e., the arc given by € [2mm, 2(m + 1)x] is without contact points.
If t € [(4n + 2)7, (4n + 4)x] then the solutions satisfy

¢o € [—4m, —27],
o € 2(k— V)7, 2kn], k=1,...,2n,

i.e., the arc given by € [—27, 0] is without contact points.
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Proof. If we lett = 2(m + 7)7 wherer € [0, 1] then

2k —m — k—m —
gy = 2k —m TM%W:(HL)%,

2n +1 2n+1
and we havey,, € [2(k — 1)m, 2kn| if and only if

k—m-—rT1
—1<— <0 <= k=0,....m—1.
2n + 1

Likewise, ¢ € [2km,2(k + 1)x] if and only if

E—m —
0<Z "7 0] = k=m,...,2n
2n+1

Finally, if t = 2(2n + 1 + 7)7 wherer € [0, 1], then

¢k:2k7r—2(2n+1+7‘)7r+2kw: (k—1+ k_7)27r.

2n+1 2n+1
We see thad, € [—4mr, —27] and¢y, € [2(k — 1)m, 2kn]fork =1,...,2n. O

In the moving plane the pole has coordina@s= 2ne (ﬁ) The moving
epicycloid is given by

Xeon(0) = (20 + 1)e (%) e <W> |

the derivative is

-2 1(3) +(252)

The line from the pole to a point of contact is orthogonal te thngent, i.e., we
have the equation

(Xe,2n(0) — Q) - Xg 2, (0) = 0. (39)
Substituting the expressions above we obtain

o+ 1(X672n(9> - Q) ‘X;,zn(9>

- ((2n +1)e <%) —e (W) e <%>)
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2n 2n n 2n

s i (- Y g (£ 2e0)

= —sinf — 2nsin (152—9) — (2n + 1) sin(—0) + 2n sin (2— — 9)

n
=2n (sin@ — sin (ﬂ) + sin (ﬂ — 9))
2n 2n
=2n (sin@ — sin (ﬂ) 4 cos @ sin (ﬂ) — oS (ﬂ) sin 9)
2n 2n 2n
=2n <<1 — cos <ﬂ)) sinf — (1 — cosf) sin <ﬂ)) :
2n 2n

Hence (39) is equivalent to

t—0 , . (t—10
<1 — cos (W)) sinf = (1 — cosf) sin (W)

sinf  sin (%)
1—cosf 1— cos (%)
Just as before we ignore the solutighs- 2k7 that correspond to the cusps and
are left with2n + 1 distinct solutions

or
(40)

_t+4nk:7r_t—2k:7r

_ _ %r k=0... .. on. 41
e T T W 0,.-s2n (41)

We have again that when= 2k7 then thek™ solution is the cusp, = 2kr.

Lemma 6. If t € 2mm,2(m + 1)x], form =0, ..., 2n, then the solutions satisfy

Or € 2km,2(k+ )], k=0,...,m,
O € 2(k — 1), 2kw], k=m+1,...,2n,

i.e., on the arc given by € [2mr, 2(m + 1)x| there are two contact points.
If t € [(4n + 2)7, (4n + 4)x] then the solutions satisfy

by € [2m, 47],
O € 2km,2(k+ 7], k=1,...,2n,

i.e., the on the arc given iy [0, 27| there are two contact points.
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Proof. If we lett = 2(m + 7)7 wherer € [0, 1] then

2(r+m —k)m m—k+T
B o1 T <k+ on + 1 ) ™

and we havé,, € [2kn,2(k + 1)x| if and only if
0<— " <1 < k=0,...,m.

Likewisety, € [2(k — 1), 2k~] if and only if
<M R T e kel o
2n+1
If we lett = 2(2n + 1 + 7)7 wherer € [0, 1] then
22n+ 1+ 7)) — 2km
2n+1

and we can see théf € [27, 47| anddy, € [2k7,2(k+1)r|fork =1,...,2n. O

0, =

vk = (k14 25 on,
2n+1

What is left to show is that the poin. -, () on the inner part at time
coincide with the poink, »,,+2(¢;) on the outer part. The difference between the
two points is at time

2e <2nt+ 2) +R (Wil)) Xean(Ok) = Xn.2nt2(Pk)
= 2e <2nt+ 2) IR (Wil)) <(2n+ De (29_2) e <(2n ;nl)ek))

() -+ (22)

_ 9% t +(2n+1)e t+ dnkm B t
B 2n + 2 2n(2n +1)  2n(n+1)

(2n + 1)(t + 4nkm) t
—© ( m(Zn+1)  2n(n+ 1))
—t+ (2n + 2)2k~w t—(2n+ 2)2km
_(2n+1)e<(2n+1)(2n+2))_ ( 2n + 2 )

= 2e o + (2n+1)e —t + 2km
B 2n + 2 2n+1)(n+1) 2n+1
t
—e<2n+2+2k7r)

—t 2k t
—(@n+1e ((2n+1)(2n—|—2) - 2n—|—1) —° <2n—l—2 _21“”) =0

22




Figure 9: After rolling the distancér the configuration is up to a rotation by
—2_ the same as the initial configuration.

We now give a complete description of the design whearies. we need only
considert € [0, 47].

Theorem 7. Consider the design of alternating epi and hypocycloidsreliee
inner part hasn teeth and the outet + 1 teeth. The inner part is given by

x(0) = Xeon(0), 60 €[0,2n]U [dm, 67| U---U[(4n — 4)m, (4n — 2)7],
| xpon(8), 0 € [2m, 4x) U [6m,87]U--- U [(4n — 2)m, 4nx],
and the outer by

(6) = Xeont2(9), ¢ €0,2n] U [dm, 67| U--- U [dnm, (4n + 2)7],
Y= Xpont2(®), ¢ € [2m, 4n] U [6m, 87| U--- U [(4n + 2)m, (4n + 47].

The inner part now undergoes the motion generated by le#tingcle of radius
2n roll inside a circle of radius2n + 2. Due to the symmetry we only need to
investigate the casec [0, 4r]. If we let

2k — ¢ 2km — ¢
and = 2k
2 + 1 Or = 20T+ 5T

Gk = 2]{771' - (42)

and ift € [0, 2] then we have: + 2 contact points with parameter values

(0o, do), (t,1), (61, 01), (O3, 03), - . ., (Bon—1, P2n—1), (43)

on the inner and outer part respectively and i [27, 47] we haven + 1 contact
points with parameter values

(0o, do), (t,1), (O3, P3), (05, 05), - . ., (O2n—1, P2n—1)- (44)

The area of the chamber between the contact pdifatssy) and (¢, t) is

23



Figure 10: The areas of the chambers in the composed desiba tase: = 3,
Agisred, A, is green,A; is blue, A3 is magenta, and, is cyan.
t

sin ¢ (2n +1)?

Ay =2t — . tel0,4n], 45
T A D) 2O <2n—|—1) 0, 4] (45)
the area of the chamber between the contact pdints and (6, ¢1) is
sin 2n+1)2 . T—
A = 2(27T - t) - 2n(n—i€1)  2n(ntD) S (22n+§) , L€ [0’ 27T]’ (46)
0, t € [2m,4n],
the area of the chamber before the contact poit ¢3) is
(2TL+1)3 . T— . TT—
— 8 + 2n(n+1) (Sln (22n+§) — Sl (gn+§)) ) S [O’ 27T]’ (47)
T 2w o2 it Oy (S5t e [2r, 4]
Q 2t  2n(ntD W \211) > T, *T,

and the area of the chamber between the contact peiats;, ¢o,—3) and(6ap_1, P2r—1)
isforc=3,....n+1

3 _ _ _ _
Ay — 87 4 (@2n+1)° (o (22037 -t (22— Dr—t\)
2n(n+1) 2n+1 2n+1
(48)
The total area is .
Atal = Y _ Ay =4(2n + 1), (49)

£=0

Proof. We have already seen most of the theorem. We only need to pone
tions (45) — (49). This is a tedious exercise in integratidnoly we omit. The
total area is easy to find. We have

9

2 >_e(

n

(2n+1)¢

Xeon(®) = (2n+ 1)e < 5
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e2n

2n

e2n(6): Xen(9)] = 2”+1(< >(2£) f((2n2—1:1)¢))

(1) o (757)
271_'_1((2 +1)—(2n+1)cos¢ —cosp + 1)
_ (2n—|— 1)(2n + 2)(1 — cos @)

_2n—|—1 i) 2n—|—1 <2n—l—1)¢)
n Y

2n ’
and
2n—1 on—1.((1-2
X/h2’n<¢) = n2n f (%) — n2n f <( 2n”)¢) ’

() a6 — 2n2; 1 (m e < ¢ ) Lt ((1 ;in)cb))

2n

)-(2)
= 2n2; ! (2n—1)—(2n —1)cos¢p —cos¢p — 1)
_ (2n—1)(2n —2)(1 — cosgb).

2n

The area of the inner part is

2m 2m
A= [ Bean(@): Ko (@464 5 [ 002n(0). X, (0)] 00

C(2n+1D@2n+2)r (2n—1)2n - 2)7
B 2 - 2

= (4n® + 2)7.
The area of the outer part is obviously

Aouter = (4(n + 1)* + 2)T,
and the total area is

Atotal = Aouter — Ainner = (4(n + 1)2 - 4712)7'( = 4(2n + 1)71'.
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4.3 Hypotrochoids and epitrochoids

Consider once more the motion generated by a circle of rddialing inside a
circle of radiusa. If we follow the motion of a point not on the perimeter of the
rolling circle, then the orbit is a so called hypotrochoided-igure 11. I = n

Figure 11: To the left two hypotrochoids (= 1/4,7/4) and the hypocycloid
(r = 1). To the right two hypotrochoids: (= 3/4, 5/4).

andb = 1 and the point we follow has coordinates0), with » < 1, then the
hypotrochoid is parametrised by

Xpnr(@) = (n—1)e (é) +re (M) , (50)

n n

where¢ is the distance the small circle has rolled. If it is moved g motion
generated by letting a circle with radius roll inside a circle of radiug(n + 1)
then we obtain the following one-parameter family

o) o) (o2 (52

= ce (%) +(n—1e (g - n(;/j 1)) e (<1 _nn>¢ N n(i/j 1)) 7

or by changing the speed,

x(¢,t) = ce (n i 1)+(n—1)e (% — n(ni 1))+re <(1 _nn)¢ — n(nt+(15)1)) .

g—; — (f (g B n(nt—l— 1)) -t <(1 _nn)(b B n(nt—i- 1)))
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37

—37

0 3m 67 97 127 ¢t
Figure 12: The solution to (56) in the case- r = 3/4,n = 3.

7 =it (1)~ (- )
CER I <(1 _nn)¢ B n(nt—l— 1)) '

The point Whereg%; andaa—’t‘ are parallel are determined by the equation

o) ()
(Cf (nil) e (% B n(nt—l— 1)) -t <(1 _nn)¢ B n(ntJr 1)))

= csin (E) + crsin (%) —rsing. (52)

n

If ¢ = r then it is easily seen that = 2nkm — t/(n — 1) is a solution for each
k € Z and thatp = nkm — t/(n — 1) is a solution forn odd andk € Z, see
Figure 12. But there are other solutions. We definay

o () (551)).
i e (+(2) e (252).

and then we can rewrite (52) as

c\/1—2rcos¢+r2cos<¢+£>—rsin<j>:O, (55)
n
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=101
I

g

Figure 13: The solutions (57). To the left(¢) and to the right~(¢). The colours
corresponds to the colours in Figure 12.

or
t rsin ¢

coS + -] = . 56

<¢ n) c\/1—2rcos<b+r2 (56)

The derivative of the right hand side vanishes if and onkoif¢ = r in which

case the value igr/c. That might indicate that it is a good idea to put 7.

Doing this we have the solutions

sin ¢
t£ = —na) £ narccos , 57
v <\/1—2rcos¢+r2> 57)

see Figure 13. The solutions= 2n(n — 1)kr — (n — 1)¢ are found to be

+ _ _(n - 1)¢a ¢ € [_¢07 ¢0]7 58
£ (9) {2n(n—1)7r—(n—1)<b, ¢ € [2m — o, 27 + ¢, ©9

()= {—2n<n —Dr—(n—1)¢, € [~27+ do, —0),
—(n —1)¢, ¢ € [¢o, 2m — o),

The other parts of the solution can now be found by symmetdythe result can
be seen in Figure 12. By substituting= ¢(t) or in this case = t(¢) in (51) we
can find the envelope. The different parts of the curves inféid 2 gives different
parts of the envelope, see Figure 14. In order to prove tleatahstruction forms
a number of chambers we need to prove that the magenta andcayass in
Figure 14 are the same, but this has not been done. We shealdtack that the
construction is without singularities.

/ (59)
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Figure 14: To the left the two inner envelopes obtained bynigty = —¢/2 and
¢ = 3w —t/2 respectively, i.e. by following two neighbouring red anéen lines
in Figure 12. The red and blue part of the hypotrochoid gegasithe red and green
parts of the envelope, respectively. In the middle the epabbtained by follow-
ing a horizontal sequence of cyan and green curves in Figurel'the envelope
is generated by the blue part of the hypotrochoid. To thet tiggh outer envelope
obtained by following a sequence of red and magenta curvegyure 12. The
envelope is generated by the red part of the envelope.

From (58) and (59) we find that

arccos sin ¢ _ _nT_1¢+¢a ¢ € [—¢o, do),
\/1—2rcos¢_|_r2 nT—lgé_w’ & € [0, 2T — o).

and hence

= _(n - 1)¢7 ¢ € [_¢07 ¢0]7
(n—=1)¢ = 2mp, ¢ € [¢o, 2T — o],
= (n - 1)¢ - 27’L’l7b, ¢ € [_¢07 ¢0]7
—(n—1)9, ¢ € [¢o, 2T — ¢ol.
That is, we have the two solutiors(n — 1)¢ and(n — 1)¢ — 2ne). Substituting

t = —(n — 1)¢ in (51) gives the following expression for one of the red paift
the envelope, see Figure 14,

o) =2re (U200) o ne (20), ocl-mal (60
Substitutingg = (n — 1)¢ — 2ny in (51) yields
(n?+n—2)¢ — 2ny (n—1)¢p —2¢

n(n+ 1) ) ”e< 1 )

+(n—1e <%) , ¢ € [¢o, 21 — ¢o]. (61)

y2(¢) =re <—
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The area from the part of the envelope giveryhys

n+1 [% ,
a="00 [ o)yiieas
—¢o
=2(n—1) <(n —1=2r%)py — (n — 3)rv1 — T2>
The area from the part of the envelope giverybys

n+1

Ay = 5

2m—do
t/ ¥2(6), ¥5(6)] A,

but we could not find an analytical expression for this inakgiThe area of the
outer part is4quer = A1 + A, and the area of the inner part is

n

2w
Aumar= 3 [ 800(0) %30, (9146 = (0= D = 1= 1)

The total area of the chambersAg iy = Aouter — Ainner- IN the case ofi = 3 and
r =3/4wefindA; = Tarccos(3/4), Ay = 32.26, Aouter = 37.32, Ainner = 237/4,
and Aiota = 14.20.

It might be of interest to know the curvature of the hypotmdh This is a
straight forward calculation:

dth,,n_n—lf o\ n—lf (I1—-n)op
dp  n n i n ’
dxp, n.r - n—1 5

P V1412 —2rcos ¢,

d%xp p.r -1 (o —1)2 1—n)o
e () (05)
|idXh’n dZXh’n} _ (n — 1)2

dg ' dg?
1= (n—=1)r*+ (n—2)rcos¢
" (n—1)(1+7r2—2rcos$)3?’
1 (n—=1)(1+7r*—2rcos¢)’?

=™ I1—(n—1r2+(n—2)rcos¢

(1 —(n—1)r*+ (n—2)rcos¢),

5 The support function

Let h be a real function, and define the vector-valued function
x(¢) = h(p)e(o) + 1 (o)f (), (62)
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X'(¢) = h'(d)e(¢) + h(¢)E(¢) + 1" ()E(9) — h'(d)e(e) (63)
= (M) + 1" (9))E(9), (64)

we can see thdf(¢) is the tangent and that¢) is the normal. We calb for
the normal direction The speed, curvature, radius of curvature, and curvature
variation is

ds

P h(¢) + h"(9), (65)
_do 1
"7 ds T () +h(9) .
p= = h(o) + H'(6), (67)
de _dedg _ H(¢)+n"(¢) (68)
ds dods  (h(¢) +h"(9))?
Rotate and translate the curxe
X(9,t) = R(t)x(¢) + ce(at) (69)
= h(p)e(p +1t) + N (d)f(d+1t) + ce(at), (70)
S5 = () + 1O +1) @
O HOEG+ 1)~ H(O)elo+1) + caf(at), (72
The partial derivative8X /0¢ andoX /ot are parallel if and only if
P elo 1) =0, (73)
l.e., if and only if
—h(¢) + casin(¢ + (1 — a)t) =0,
or /
sin(¢ + (1 —a)t) = hc(j). (74)
This happens if and only if
¢+ (1 — a)t = 2kw + arcsin (h/c((f)) , (75)
or
¢+ (1 —a)t =(2k+ 1)m — arcsin <h/c(;b)> : (76)
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i.e., we can solve with respectt@nd obtain two sets of solutions

o 2k + 1 (arcsin (h,(¢)> — gb) ) (77)
l—-a 1—« co
t~ = (2]1{:_'__;)7? —3 ia <arcsin <h/c(oib)> + <b) . (78)

Observe that

cos(é+ (1 — a)tt) = cos (arcsin (h/<¢))) ~Ji- (’W))Q (79)

cx cx

cos(+ (1 — a)t™) = cos (7r _ arcsin (h/@’))) . (h'(¢))2 (80)

cx cx

By differentiation of (74) we find that the derivative bf(¢) is

= ()
d¢_1— / 2
’ co 1—<M>

cx

1. (81)

An envelope can be written 3s= X (¢, t) wheret is given by (77) or (78).
The normal ofy is the normal ok(¢) rotated through the angtei.e., itise(¢+t).
So the normal direction gf* is

¢t =g +t* (82)
and the support functioh® of the envelopg ™ is given by

o (¢) =y (¢7) - e(¢p™) = X(p,17) - e(p + tT)

= h(p) + ccos(¢p + (1 — a)t*) = h(¢) £ cy/1 — <h,(¢)) . (83)

cx

The first derivative is

E = W (¢= —t%) <1 - E) — csin(¢™ — at™) <1 — QE)

do+ do= do+
o (-5) 21
= S 0) (8
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We can now write the envelope as

v = (h(@ic - (M) )e<¢+ti>+‘:1h’<¢>f<¢+t*>, @)

wheret® is given by (77) or (78). We have

de* det\ ' det . deE\ 7t et
ag* <d¢) a5 (*@) [ry

So the second derivatlve of is

d2h* _a-—1 1 _ dt*
do*? do*
+
(1 ")
-1
a— 1)2 1 1
_ ( - (86)
a W(0) N
CX
and the radius of curvature is
N N d2h:|:
po=h"+ 10%2 (87)

If we interchange the moving and fixed part of the design anerse the time
then the outer pagt* moves like

Y5 (¢, 1) = —ce((1 — a)t) + R()y ™ (¢7), (88)
i.e., we havec, o) — (—c, 1 — «). The contact points are given by the equation
hﬂ:/ + h
sin(¢™ + at) = —c(l(qi ;) = c(cib)' (89)
and we obtain four sets of solutions
5 = 26 — 4+ — ! (arcsin (h/(@) gbi) (90)
« CQx
= 2m + 1 (arcsin (h/(@) — ¢ — ti) , (91)
« « CQx
T = M 1 <arcsin <M> + gﬁi) (92)
« « [6/6%
= @+ lr 1 <arcsin <h/(¢)> +¢+ ti) : (93)
« « [6/6%
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Using (77) and (78) we find

= 2(6%(_1 i)a_) k) _ - ia arcsin (h;(j)) 1 g_ﬁa, (94)
= 200 _5()1__(3 +)m a(21__aa) arcsin (h/(¢)) 1 f , (95)
SN (RS L VSN (70
(2t 1az1a_) ;)(21{: ) 1 i i (h’c(;b)) . is y
(97)
The normal directions are
¢++:¢+t++t++:¢+27%ﬂ, (98)
bt =t Lt T =g+ i arCSH;<h$)) + (Qm; Dlg (99)
G =g+t =g Qarcsn;wj)) + (Qm; b (100)
¢——=¢+t—+t":¢+2%ﬁ, (101)
wherem = ¢ — k. The support functions are
W k() 7 o \/1 3 <—Z§¢—i)a>)2
S o1 (10) gah- (MAY o
ie.,
W = h = h(9), (103)
W = () + 2cy |1 — <h;(a¢))2, (104)
h=t = h(g) — 2c4 1 — (h;f))Q. (105)
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If h+ A" > 0 soh gives the positively curved segment of the inner part@and)
then it ish~* that gives the missing negatively curved segment of theripas.
The first derivative is

drh*t  (1-a)—1dh* —-a a-1
dotf 1—a d0F 1—-a «

h(¢) = 1'(¢). (106)

The second derivative is

ChEE (1)~ 1) L !
v G e Ly
N

:i: 2
W (¢)
d P\t ( co )
-1
- h”tsb) N Fl+1 | -
ca?y[1— (M>

CcY
When the outer part is moving the envelope is parametrised as
X=X = h(ge <¢ + 2—7T) +h(9) <¢ + Qm—w) : (108)
x "= (h(éb) —2c — ) o) + — arcsin <h/c(j)> + (Qm; 1)7T)

+ ' (o)f (<b + — arcsm (j (2m = 1m ) , (109)
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L (h<¢>+2c - (h(j))) o (- 2 anoin (119 L)

+ 1 (o)f (gb - %arcsin <h/c(j)> + (2m + l)w) . (110)

«
If a curvex(¢) is parameterised by normal direction then
(x,x'] = [he + W'f, (h + B")f] = h(h + R"). (111)

So if the inner part has positively curved segments given by a support function
h: [—¢o, do] — R then the area is

/_ - (h—+ + h—+”) 7 s @12)

n b0 ) n
Ainner=§/ h(h+h") do+ = N 1

—¢0 2
The outer part then has+ 1 pair of segments and the area is
n+1 [% do*
Aouter = 9 /_¢>0 h <h+ + h+”) % dCb

+ 2 ; ! /_i h™ (h— - h‘") % dg. (113)

5.1 A simple example

Now we consider a segment with endpoiet§<™) where the normals are as-
sumed to bekg,, whereg, = (% + 5). The support function is then a function
h: [—¢o, do] — R and as

e <:I:%) =cosde(E£py) Fsindf (Lay),

we haveh (£¢y) = cosd andh’ (£¢y) = Fsind. One simple function that
satisfies these equations is

B 2¢0 T\ .
h(¢) = cosd + — - Cos <2750> sin 6, (114)
that has the derivative
h'(¢) = —sin (%) sin 0. (115)
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Using the parametrisation (62) we can easily plot the segnss=e Figure 16
wheren = 3 andd = «/4. If « = —n then we have the motion generated by
a circle of radiusn rolling inside a circle of radiug(n + 1) and ifc = 522 then
(77) and (78) reads

o 2km (2¢0 — )¢ - 2k+1D)m  (2¢0 + )9
n+1l 2n+1)¢ n+1 2(n+1)¢o

We have plotted the solutions in Figure 15. The envelopesave found by

NN
AR

Figure 15: Inredt™, ¢) and in greer{t—, ¢), withk = 0,..., 3.

substitutingt = t* in (69) or by using (85), see Figure 16 where the curves
y© =X(¢,tT)withk =0, ..., 3 are plotted in red and the curves = X(¢,t7)

with £ =0, ..., 3 are plotted in green. Observe, that even though we do not have
the full inner part the outer part is now completely determin

Figure 16: To the left the segment with support function j11We have also
plotted two copies rotated through the andgleg3 and4x /3. In the middle the
envelope, in red and green the envelopes using the solutiarsl:~ respectively.
To the right a blowup that reveals the cusp on one of the epesloNotice the
different scalings on the axis.

By moving the outer part instead of the inner we can now olitaerfull inner
part as the envelope of the moving outer part and we can determe missing
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segments of the inner part. Consider the part of the envejimea byy—. Equa-
tion (95) becomes

— (n+2)m+2n¢g)p (20(n+1) —2k+ 1)x

2n(n+ 1)¢o n(n+1)

The missing inner parts are now found by substituting ¢~ in (88) or by
using (109), see Figure 18, where the curxes = Y (0,t~~) form = 0,1,2
are plotted in blue and the curves™ = Y (6,¢~*) for m = 0,1, 2 are plotted
in cyan. In figure 17 we have plotted the support functibna™, »—, andh~"

Figure 17: Top left, ', " andp = h + h” in red, green, blue, and cyan respec-
tively, top righth*, bottom lefth—, and bottom righty .

together with the first two derivatives and the radius of atuive.

As can be seen from the cyan graphs in Figure 17, this paaticoinstruction
has a cusp on both the outer and inner part so it does not waidt.eK we let
0 = m/2 then the cusp on the green segments moves to the endpoirthebat
appears new cusps at the endpoint of the red, blue, and cgaresés.
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Figure 18: The envelope when the outer part is moving. In tileeld segments,
corresponding to the solutian. In cyan the missing segments, corresponding to
the solutiort ™.

In order to obtain a working construction we have to finduch that the first
segment is without cusps, i.e, such that »” # 0. We furthermore want the
envelopes to be without cusps, i.e, we waft+ h*" #£ 0 for all segments on
the envelope. Finally, the envelope when the outer part dmgdas to be with-
out cusps too. Besides the problem with cusp, the exampheeatmes not have
continuous curvature. It has a jump at the inflexion point,ibicontrast to the
composed construction in Section 4.2 the jump is finite.

If we want a curvature continuous design then we need a zetbda@urvature
and that means the radius of curvatyre h + h” has a singularity. If the normal
direction of the inflexion point i, then the leading term qgf is proportional
to (¢ — ¢o)~'/2, see [2], so the support functidnhas a term proportional to

(¢ — d0)*/2.

6 Epi- and Hypo-cycloids on hemispheres

On a sphere of radiuB we consider the circl€’,, that forms an angle af radians
with the z-axis.

sin w cos s
Cw(s) =R |sinwsins | , 0<s<27m
COS W

Furthermore, we need matrices for rotation around,tagis and the:-axis
cosv 0 sinw

Rw)=1] 0 1 0

—sinv 0 cosw
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cost —sint 0
R.(t) = |sint cost 0
0 0 1

Thinking of the parameteras time, the compositioR. (at)C,,(s) rotates the
pointsC,(s) on the circleC,, with a speed given by, such that the image of
the full circle is preserved. The compositidd)(v) R, (at)Cy(s) tilts the rotating
circle (around theg-axis) to rotate about an axis with angléo thez-axes. Finally
f(s,t,a,v,w,R) = R,(t)R,(v)R.(at)C,(s) rotates the axis of the first rotation
around the: axis on a circle with angle to thez-axis. See Figure 19.

Figure 19: A composition of rotations on a sphere.

The Euclidean radius of the circtg, is R sin w, giving C,, the circumference
2Rwsinw. This circle should role inside a circle with a circumferertbat isn
times bigger. It then has an Euclidean radius:&fsin w. This outer circle thus
makes the anglarcsin(n sinw) with the z-axis. The centre of the tilted axes
makes thus the angle

v = arcsin(nsinw) — w

with the z-axis. See Figure 20.

| .: .
nsinw  sinw

Figure 20: On top, the small circl€, and parallel with this the:-double cir-
cumference circle. The tilt angles of the axis of rotatiorbwth the epi- and
hypocycloid cases are illustrated.
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Forw < arcsin(1/n), the spherical version of a hypocycloid is given by

£(0,t, —n, arcsin(nsinw) — w, w, R)
sin(w) cos(t) cos(v) cos(nt) + sin(w) sin(t) sin(nt) + cos(t) sin(v) cos(w))
= R | sin(w) sin(¢) cos(v) cos(nt) — sin(w) cos(t) sin(nt) + sin(t) sin(v) cos(w) | ,
cos(w) cos(w) — sin(v) cos(nt) sin(w)

wherev = arcsin(n sinw) — w. Here the fixed point on the circlé,, is chosen
by settings = 0. The tilt of the axispy = arcsin(nsinw) — w is explained on
Figure 20. Finally the ratio between the two rotation speeds—n as the small
inner circle rotates in the opposite direction as its pointantact with then-
times larger outer circle. Similarly, fav < arcsin(1/n), the spherical version of
an epicycloid is given by

£(0,t,n,arcsin(nsinw) + w, w, R).

Figure 21: Over a hemisphere is shown: The largest possyipledycloid with 4
cusps and an epi-/hypo-pair with 5 cusps and almost the s@ameter circle.

In the case where = arcsin(1/n) the outer circle is the equator and the epi-
and hypocycloids are identical. Hence, restricted to a bph@re we may talk
about epi- and hypocycloids, but on the sphere they belongesame family,
which then should be referred to simply as cycloids.

6.1 The motion of a spherical Moineau 'pump’ (with one cham-
ber)

To get a circle with Euclidean radiussin w to touch a circle with Euclidean
radius(n + 1) sin w tangentially, the tilt has to be

u = arcsin ((n + 1) sinw) — arcsin (n sinw).
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/ )

Figure 22: On top, the small circlé, and parallel with this th8- and4-double
circumference circles. In red ttiedouble circumference circle is tilted by the
angleu andC,, is shown at the opposite side where it is to small to seal the ga

The opening angle at the opposite side is themwhich is greater than than the
angle2w covered by the small circle. See Figure 22. The construdsitinus not
sealed. The gap in Figure 22 is

2

n(n—l—l)(?m —|—3n—|—1)w5+‘”>
4

Forn = 3 andw = 7/180 (one degree) the opening is less tliati’ of w, which

seems small. Alternatively, instead of having a slippdkero) on one side and

2u — 2w at the other side, there apparently is space for choosititgoé tiot «, but

w giving a slip varying around — w. See Figure 23

2u — 2w~ R(n(n + 1)w3 +

Figure 23: Left: The blue curve is a constant set off of thepatirve by the angle
u — w in the direction of the north pole. In green, the motion of iteer part is

shown in the case where the tilt of the axis of rotation is w. Right: The same
as to the left hand side, but shown from another angle.

To create the motion of a-hypocycloid inside gn + 1)-hypocycloid, one
needs to rotate the-hypocycloid at speed-(n + 1)/n, tilt the axis byu =
arcsin((n + 1) sinw)— arcsin(n sinw) and rotate the tilted axis reversely (speed
—1). Using the parameteras time in this motion and usingto parameterise the
movingn-hypocycloid, which then is given by

£(0,s, —n, arcsin(nsinw) — w, w, R),
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n+1
n

t)£(0, s, —n, arcsin(nsinw) — w, w, R).

By construction there is one point of contact, which is samib the moving con-
tact point in the planar case, but thecontact points on the cusps of the inner
n-hypocycloid are missing. Another analog to the planae ¢aso exchange the
outern+ 1-hypocycloid with the curve that thecusps of the innet-hypocycloid
trace out during the motion. This is shown on Figure 24. Therocurve is the
motion of one fixed point on the inner rolling circle given g, 0, n, w, R) for

t € [0,n2x]. The inner curve is constructed similarly, but foone smaller. On
the left of this figure, note that the great circle segmentftbe cusp in the front
to the centre of th&-cusp curve goes outside the outer curve. It seems that the
curvature of the sphere forces the inner part of the pump thibeer; in fact so
thin that, in the case that the outer curve has a cusp, thennbepart has to have
a 'negative’ thickness. To the right hand side of this figuris ishown that the
cusps of a large hypocycloid do not even trace out a singheecur

Figure 24: Left: The outer green curve is given by the motibthe cusps of an
inner curve, that is by the motion of a fixed point on a radigircle rolling on
a radiusik circle. Right: As to the left, but for the large circle clo$etequator.

In partial conclusion, the spherical analogue to cycloitem by rolling a
radiusn circle inside a radius + 1 circle gives then cusp contact points, but
requires an 'negative thickness’ of the inner part of the pu@n the other hand
the analogue given by rolling an radiugircle on radiin andn + 1 circles gives
the single 'envelope’ contact point but does not seal attbesp points. However
a spherical pump given by a small angle- sin w is close to being sealed.
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6.2 The area of the spherical pump chambers

In this section we set the radius of the sphere to one. Onag&Hphere the areas
simply get multiplied byR2?. On the unit-sphere the Gauss-Bonnet’s Theorem for
a simple curve states

KdA+/ Kqods + € = 2w,
QCs? N ! Z

exterior angles

where(? is the set left of its boundary cuni?, the Gauss curvatur& = 1 is
one at the unit sphere ang is the geodesic curvature of the boundary curve. As
K = 1 the first integral equals the area of the set left of the cuiSenilarly
to the planar case, the geodesic curvature diverges at #ps @nd the geodesic
curvature is thus hard to integrate numerically to a higltigien. Furthermore,
when then-hypocycloid is very small Gauss-Bonnet's Theorem givesrantila
of the form27 — 27 which is bad for the precision of the calculation. Luckilygw
can calculate the area directly, and return to Gauss-B@nhle¢orem to find the
integral of the geodesic curvature.

To calculate the area enclosed by-aypocycloid

r(t) = f(0, ¢, arcsin(nsinw) — w, w, 1), 0<t<2m,
lete, = (0,0, 1) denote the north pole and let
h(6,t) = cosfe, + sin Or(t)

trace out the desired area wher 6 < 7/2 and0 < t < 27. By differentiation,
we find

oh ,

5g = o e, + cosbr(t)
h

aa—t = sin 6r'(¢)

Using thath(6,t) = (z,y, z) is a normal to the unit sphere at the pditt, ¢) we
get the area form as

oh 0Oh
dA = —h- (55 x 5 )doat
= —|cosfe, +sinfr(t) —sinfe, + cosbr(t) sinfr’(t)|dodt

= — <‘COS fe, cosbr (t) sin Or’ (t) ‘
+ }sin fr(t) —sinfe, sinbr'(t) } )d@dt
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= — <c052 0 sin }ez r(t) r’ (t) } +sin?fsind ‘ez r(t) r’ (t) } )d@dt

dédt

~ . ~

0 T
= —sinf |0 Y
1 z

IS

= sinf(2'y — y'x)dOdt.

Hence,

5 27
A, = / sin 8d9/ (2'y — y'z)dt
6=0 =0

2T
:/ (2'y — y'z)dt
¢

=0

= 7(cosw — 1)(cosw + 1) (—6 cos* (w)n?
1
+ 6n cos®(w) (1 — n® +n?cos® w)* — 3cos® w + 3n* cosw — 1 + n2>,

where the last equality is found using computer algebra.

To calculate the area of the offset, we next assume to hgparameterised
by arc length, denoteel Herebyr'(s) is always orthogonal te(s) and we may
use the positively oriented, orthogonal and normal basi&*afiven byr, r’, and
r xr'. We findr” = —r + k,r x r’ wherex,, the geodesic curvature, is the part of
r” lying in the unit sphere’s tangent planeratAn offset of© radians to the right
hand side of the curveis given by

off (6, s) = cosfr(s) + sin r'(s) x r(s).

Differentiation gives:

0;% = —sinfr(s) + cosOr'(s) x r(s)
ag—f = cos 0r'(s) + sin Or”(s) x r(s)

Similarly to above we get,

dA = |off 2T 2| dhds

= }cos Or +sinfr’ xr —sinfr + cosfr’ xr cosOr' + sinOr” x r‘ déds

:(cos?)ﬁ‘r r xr r"+cos2ﬁsin9‘r rxr r”xr‘

—sinzﬁcosﬁ‘r’xr r r"—singﬁ‘r’xr r r”xr})d@ds
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Sincer, r/, andr x r’ form an orthogonal and positively oriented basis,
‘r r xr r":—‘r r’ r’xr‘zl.
Using that identity and that

‘r r' Xr r”xr‘:‘r r xXr (—r+/-$gr><r’)><r‘
=|r r'xr Kg(I'XI‘/)XI'}:FLg‘I' ' xr (rxr)xr|

=kKy|r T xr T| =k,
we get
dA = <C083 6’(1) + cos? fsin §(k,) — sin® § cos §(—1) — sin® 9(—/£g)> dédt
= (cos(f) + sin(#)k,(s)) dods.

Denoting the length of the-cusp hypocycloid by, integration gives

e L
Ao = /0:0 /:0 (cos(#) + sin(f)k,(s)) dods
B L

e
:L/ cos(é’)d9+/ sin(é’)/ Kg(s)ds
=0 =0 s=0
L
= Lsin© + (1 — cos @)/ Kg(s)ds.
s=0

Gauss-Bonnet's Theorem implies thét + [ k,ds + nm = 27 or

/Hgds =m(2—n)—A,.
The offset area may thus be written as
Ao (n,w) = R* (L(n,w)sin® + (1 — cos©)(7(2 —n) — A,)),

where the lengttL (n, w) of then-cusp hypocycloid for each relevamtas to be
found as a function o# by numerical integration.

The offset will form swallowtails near the cusps. The argg is calculated
with sign, such that a if a point is covered, say 3 times by tiigeq 2 times
positively and ones negatively, in total is counted as ometpdthe offset. Finally
the area of eventual caps placed on the cusps in the offsett iscluded inAyg.
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7 Conclusion and future work

We have analysed the classical hypocycloid and epicyctmdituctions of Moineau
pumps. We give closed formulae for the area of the pump cheswasea function
of time. We also show that offsets leads to designs with caspisthat they are
not mathematically exact. The errors are small and will plibypbe compensated
for by the rubber sealing.

We have also analysed two generalisations suggested bydféauinThe first
consists of alternating arcs of hypo- and epicycloids arré ae prove that we
have a mathematical exact fit of the outer and inner partseofiéisign. We also
give a closed formula for the area of the pump chambers asdidanof time.
Even though this design has continuous tangent there anéspeith infinite cur-
vature, so it might be difficult to machine it. In the secondgestion the inner
part is a general hypotrochoid and we determined the outeppthe design, but
we have not proved that the parts fits mathematically exatttzat the outer part
has bounded curvature. Again, an error might be compengatéy the rubber
sealing. We have not found a closed expression for the amangh chambers, but
it can be computed numerically. If the design is exact ant attunded curvature
then the parts would be easier to machine than the composeghde

We then make an analysis of a general design given by the gujppaotion.
Assume that the inner part is given by one positively curvegisent and one
negatively curved segment both repeatdones. Then it seems that the positively
curved part alone determines the whole outer part, which ithéurn determines
the missing segments of the inner part. One has to take caxn®id cusps in the
construction and if we want a curvature continuous constmudhen we need a
square-root singularity in the second derivative of thegpsupfunction. The areas
of the pump chambers are given as integrals of relativelyplrexpressions in
the support functions.

We have also considered the generalisation of the hypodyctmstruction to
the sphere. It turns out that the inner and outer part doefitmoathematically
exact. The chambers are not closed but the gaps are smallightie sealed by
the rubber sealing. We have also calculated the area of tihg phambers.

As future work we suggest the following

¢ Finish the analysis of the hypotrochoid construction. Deoghrts fit exactly
and has the outer part bounded curvature?

e The general approach using support functions should beiedrs

— The motion is given by a circle rolling in a circle and the raafithe
circles arecn andc(n + 1) respectively, but what can be said about
when the support functioh for the positively curved part is given?
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We have assumed that the image:b§hould be—cn, cn], but is that
necessary?

— How hard is it to avoid cusps?

— Can we find a class of support functiolshat admits many working
designs so an optimisation procedure is feasible?

— The support function for the general hypotrochoid shouldibter-
mined. This would make it easy to check if that design is eaadtif
it does then it could be a starting point for further designs.

e Another important problem is the spherical design. The ganeanar ap-
proach where the positively curved segment of the inner igatesigned
first and the rest follows from that can probably be transfito the sphere.
But can the calculation be performed in closed form or is ttassary to
resort to numerical calculations?
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