
Danfoss:

Optimizing control procedure

in a mass-production line

C. Henriksen∗, P.G. Hjorth†, J. Starke ‡

M. Willatzen§, A. Sierakowski¶, H. Schultz ‖

Danfoss representative: P. Johannesen

∗Technical University of Denmark.
†Technical University of Denmark.
‡Technical University of Denmark.
§University of Southern Denmark.
¶University of Southern Denmark.
‖University of Southern Denmark.

1

1 Introduction: The Problem

Consider some units (for the purpose of this report taken to be bottles) that
are mass produced on a fully automated assembly line. A property Q of the
product (leak rate of He under high pressure) is checked for every unit by
a leak detector. Based on the Q-reading of the leak detector, a decision is
made to either ship the unit or to re-examine it. If the Q value of the bottle
is below a certain value, the bottle is shipped. If the Q-value of the bottle
is too high, the bottle fails and is rejected.

With the current control procedure, about 92% of units initially pass the
check and are shipped, whereas about 8% fail and are then sent back for
re-examination. This is because the Q measurement is noisy and may reject
good bottles (whereas it is not prone to accept bad bottles, see section 5.2).

AcceptLeak
Detector

Reject

Re- test

92%

8%

Of the 8% re-tested, almost all eventually pass the inspection; only about
.4% of the original bottles are ‘truly’ bad, i.e., have a ‘true’ Q value exceeding
specifications.

With about 2.5 million units produced annualy, the 8% initial rejection rate
and subsequent re-examination is costly, and presumably unnecessary.

The question for the study group is how to bring down this number of ‘false
negative’ decisions (good bottles rejected), without introducing many ‘false
positives’ (bad bottles accepted), and still maintain production line speed.
Only a few seconds of measuring time is granted each unit.

2

The decision to reject or accept is based on a comparison of the Q(t) to a
certain threshold value QT . If the highest registred Q-value Qmax is greater
than QT , the bottle is rejected (re-examined). If the If the highest registred
Q-value Qmax is smaller than QT , the bottle is accepted.

2 Sampling?

The Study Group first considered the question whether a revised sampling
procedure might be able to change the situation.

Any sampling algorithm however is based on the available data, i.e., the
assignment of a Q value to each unit. The assignment of Q values sets
up a probability distribution, which sampling algorithms can then probe in
various ways.

It is impossible for any sampling algorithm to circumvent an erroneous as-
signment of Q values. In other words, clever sampling may save effort in
establishing a given probability distribution; but a sampling cannot ‘repair’
en erroneous probability distribution.

The Study Group therefore decided to focus instead on a more sophisticated
processing of the signal Q(t) from the measuring device, aiming to create
(within the constraint of a rapid measuring procedure) a more correct as-
signment of Q-values to bottles.

We begin by modelling the physics of leak detection.

3 Leak Detection Model

Consider a pressure-driven system consisting of two chambers with pres-
sures P1 and P2 (denoted C1 and C2), respectively (see figure 1). The two
chambers are separated by a small hole allowing for particle (He) transport.
A pipe with radius R connected to C2 allows particle flow to the detector
where vacuum conditions are assumed to exist. The detector is located at a
distance L from C2.

The rate equation describing the build-up of helium atoms in C2 is:

dN2

dt
= Fin − Fout,

3

V V
21 2

NN
1 1

P P

P=0

2

A
in

A out

C C
1 2

Fig.1

L

Figure 1: Sketch of the vacuum chamber system with associated model
variables.

where N2, Fin, Fout, and t are the number of He atoms in C2, the par-
ticle flow from C1 to C2, the flow out of C2 into the detector, and time,
respectively.

The first question is now: how should we model the input particle flow val-
ues? A simple assumption would be to assume that the connection between
C1 and C2 is through a small hole of area Ain. The second question is
whether the transport is (a) fluid in nature (following a simple valve equa-
tion), or (b) following a kinetic-gas theory where the He atoms in C1 obeys a
perfect gas Maxwellian probability distribution. We will consider both cases
but the conclusion for He-particle build-up in C2 (and hence the whole dy-
namic process) will essentially be independent of this discussion, as we shall
see.

Consider first case (a). The valve equation reads:

Fin = cAin

√
P1 − P2,

where c is a constant. Since the time duration is rather small (and the
hole area Ain is very small) it is reasonably to consider all thermodynamical
parameters in C1 independent of time t. Moreover, the pressure in C2 is
then always much smaller than the (constant) pressure in C1. Hence,

Fin ≈ cAin

√
P1 ≈ constant.

4

Consider next case (b). A Maxwellian distribution of He atoms in C1 cor-
responds to the probability distribution:

dω =
(

m
2πkT1

)3/2
exp

[
−m

(
v2
x + v2

y + v2
z

)
/(2kT1)

]
,

where m is the mass of a He atom, k is Boltzmann’s constant, T1 is the
temperature in C1, and vx, vy, vz are the x, y, z particle velocities. This
distribution is normalized, so that∫

dωdvxdvydvz = 1.

We then calculate the net number of He atoms escaping into C2 through the
hole per unit time ν as

ν =
∫∞
−∞ dvx

∫∞
−∞ dvy

∫∞
0 dvzvzAin

N1
V1

dω,

assuming the normal to the wall to be along the z direction and N1, V1 are
the number of He atoms in C1 and the volume of C1, respectively. Notice
that only particles with a positive z velocity will reach the wall per unit
time, thus the integration over vz starts from 0. The above integral can be
easily carried out to give:

ν = AinP1√
2πmkT1

.

Again, we have neglected the very small transport of He atoms back into C1

from C2 in the derivation of ν.

The important conclusion from the resulting expression in Equation (1) [case
(b)] is that Fin is independent of time similar to the result found in case
(a).

Let us next model the flow of He atoms out of C2 moving towards the He
detector. We shall do this assuming that the pipe connecting C2 with the
detector is a cylinder of length L and radius R. The dynamic viscosity of
the He gas is denoted µ. Then, for a small radius and relatively slow rate
of He leakage it is appropriate to consider transport laminar in nature such
that Poiseuille flow conditions apply, i.e., the particle escape per unit time
F2 reads

F2 = ρ2NA
4

πR2

32µL∆P,

∆P = P2 − Pdetector ≈ P2,

5

where ρ2, NA are the mass density of He atoms in C2 and Avogadros’ num-
ber, respectively, and Pdetector ≈ 0 due to vacuum conditions at the detector.
The value of 4 in the denominator of the first factor stems from the fact that
a He atom has a mass of 4 atomic mass units. Since the dynamic viscosity is
usually constant with pressure at a given temperature while the kinematic
viscosity η = µ/ρ is proportional to the inverse pressure ([2]), we find that F2

is proportional to N2
2 instead of N2 (the latter would apply if the kinematic

viscosity is independent of pressure)! This comes about as the perfect gas
law states that particle number N2 is proportional to pressure in C2:

N2 = P2V2
kT2

,

where V2 is the volume of C2 since temperature T2 in C2 is assumed constant
in time.

Hence, the expressions for F1 and F2 found above corresponds to the simple
nonlinear differential equation:

dN

dt
= a− bN2,

with a and b constants (easily found from the expressions above!). Supple-
menting Equation (1) with the initial condition:

N(t = 0) = 0,

immediately gives

N(t) =
√

a
b

exp(2
√

abt)−1

exp(2
√

abt)+1
,

In Figure 2, we plot the function N(t) for different combinations of constants
a and b.

Finally, the present model also allows an estimate of the delay in receiving
a response at the He detector. Due to the separation L between C2 and the
He detector, a time delay τ exists equal to:

τ = L
Qout/Aout

= Aout32µL2

πR2P2
,

which – using the above conclusions on viscosity dependencies with pressure
– shows that the time delay is inversely proportional to the particle number
N2 in C2 and not a constant as assumed by Danfoss! However, if L is small

6

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

time [sec]

pa
rti

cl
e

nu
m

be
r

Figure 2: Time plots of the He particle number in C2 (being a measure of the
leakage) for three sets of parameters a and b computed using Equation (1). The
solid, dash-dotted, and dashed curves correspond to: a = 1, b = 1; a = 2, b = 1;
and a = 1, b = 2, respectively.

enough this delay time is close to zero. How can the observed time delay
then be understood? A possible explanation is that the best model allows
for a piping section connecting C1 and C2, i.e., a hole is not a sufficient
description. Such a piping section will lead to a time delay which depends
only on parameters in C1 (again following a Poiseuille assumption). Since
the C1 parameters all are constants in time a constant time delay will result
(in agreement with what is apparently observed!) Evidently, and intuitively
trivial, such a piping section must have a length reflecting the geometry
of the device in consideration and the leakage path, i.e., the time delay is
strongly dependent on the actual device and the actual leakage path. An
important additional conclusion is also that the parameter a depends on the
leakage type (varying from product to product on the product line) while b
depends on the measurement setup (geometry of the chamber C2 and the
pipe from C2 to the He detector) but not the leakage type!

4 The Q(t) Signal

We now summarize the model developed of the Q(t) signal. During the
time τ , when the signal travels to the detector, the measured Q-value is
zero. Afterwards Q(t) rises as in figure (2) towards an asymptotic value

7

Q∞, with time dependence given by the function N(t) of section 3.

t

Q(t)

Q(∞)
Q

T

τ0 t

Q(t)

Q(∞)
Q

T

τ0

(a) (b)

Figure 3: The ideal (noiseless) measurement in two situations: (a): The leak is
small and Q∞ < QT , (b): The leak is large and Q∞ > QT .

Combining the pieces into a single expression, we have then:

Q(t) = Q∞(1− exp(−δ(t− τ))H(t− τ), (1)

where H is the Heaviside function (see, e.g.,[1]).

5 Leak tests and simulations

In what follows we will simulate data from Helium leak tests and compare
various tests with respect to effectiveness and robustness. Since we have very
limited knowledge of how e.g. Q∞ vary in the production we are forced to
make assumptions that is not supported by real world data and assign values
to parameters in an almost arbitrary fashion. The result obtained from the
simulations should therefore not be taken as quantitatively correct. What
we will conclude nevertheless, is that there is a potential for solving Danfoss’
problem by choosing a good test method.

We model the mesurement process as a process with stocastic deviations
from the model developed in the previous section. Once we have a model
of the process move on to simulating it and this allows to experiment with
different tests and describe the test that performs best when fed with the
simulated data.

8

5.1 Simulating the measurement process

We model the flow as a function of time is given by

Q(t) = Q∞(1− exp(−δ(t− τ))H(t− τ), (2)

where H is the Heaviside function.

When taking a mesurement it is most often the case that the measured
value is not exactly equal to the physical value, but rather deviate by a
small amount ε. In our case, we obtain the values qi = Q(ti) + εi, for the
flow measurements. The measurement error ε varies from mesurement to
measurement and it is resonable to assume that it is a random variable, and
that with a good aproximation it is normally distributed. Since there is no
reason to expect that the measuring device be biased, we suppose the the
mean value of ε is 0.

We assume that the standard deviation of ε is of the form σε = c
√

V where
V is the total amount that has flow through the device during the sample
time δt. To see why this is reasonable suppose that the device was set to
sample n times as often, and the flow is constant. Then we would obtain n
mesurements V/n + ε1, V/n + ε2, . . . V/n + εn, where εi is the measurement
error of these more frequent measurements. Adding the amounts up we get
a total amount flowing through of V + ε1 + · · · + εn in the time δt. Hence
ε = ε1 + · · ·+ εn. If we furthermore suppose that the εi are independent and
normally distributed with mean 0 and standard variance σ′, it follows that
ε is normally distributed with the same mean, and with standard deviation
σ =

√
nσ′. So the standard deviation of the error of the measurent of the

amount V is
√

n times the standard deviation of the amount V/n.

Due to presence of ambient Helium the mass spectrometer is calibrated to
report zero flow at a certain level Qref . So when the device shows a level
of Q(t) + ε the flow through the device is actually Qref + Q(t). There-
fore the standard deviation of the measurement error is σ(Q(t), Qref) =
c
√

Qref + Q(t).

Finally we assume that the different εi in one measurement series are inde-
pendent. This assumption simplifies things greatly, but it might be wrong,
especially if the hardware of the mass spectrometer does some filtering on
the data.

We need to say something on how Q∞, Qref , δ, and τ varies inside the pop-
ulation of measurements. In the absence of real world data, we make the

9

simplest assumptions that agrees with the facts we do know. We assume
that log(Q∞) ∈ N (Qµ, Q2

σ, that is that log(Q) is normally distributed with
mean µQ∞ and variance σQ2

∞
. We suppose log(Qref) ∈ N (µQref

, σ2
Qref

). We
also suppose τ ∈ N (µτ , σ

2
τ) and that δ is a constant. Finally we assume that

all the mentioned random variables are independent.

To run a simulation, we need to assign values to the parameters. We have
chosen the following

Parameter Value
µQ∞ − log(10−6)

σQinfty 0.28
µQref

− log(10−6.5)
σQref

0.25
µτ 2
στ 0.25
δ 1
c 1.7× 10−4

The parameters are chosen so that approximately 0.4 percent of the products
are defective.

5.2 The Maximum Test

The Maximum Test is the one currently employed by Danfoss. It considers
the measurements qi = Q(ti) obtained during the approximately 4 seconds
the products is in the mass spectrometer. If one of these exceeds a tresh-
old level QT the products is rejected. It means that the set where prod-
ucts are considered defective, the so called critical region, is of the form
{(qi) | maxi(qi) ≥ QT }, and this is why the test is called the Maximum
Test. If there were no variation is τ and δ and no measurement errors
the test would work perfectly for a certain threshold Q∗

T , in the sense that
all good products would pass the test and all defective products would be
rejected.

However, when we incoporate measurement errors, taking the maximum
gives higher values for noisy data than for exact data on the average, and
therefore using the Maximum test with the treshold set to Q∗

T we expect
that many good products are labelled as defective. This is confirmed by
what we see when we simulate. When we use Q∗

T as treshold, around 8% of
the good products are labeled defective. On the other hand, only very few

10

defective products are labelled good (around 2 or 3 out 10, 000), so the test
at this threshold is very conservative.

If we increase QT then the number good products that are rejected decreases,
whereas the number of bad products that are accepted increases. To be able
to compare the Maximum test to other test, we choose the value QT so that
1% of the defective products are accepted. With this choice 2.6% of the
good products are flagged as defective which is a considerable improvement.
In the next subsection we see we can improve even further.

5.3 The Average Test

We expect that there is considerable variance in the function maxi{qi}. This
is because the maximum is realized by some qi∗ and changing it by a little
is reflected by the same change in the maximum. On a small time interval,
the function h does not vary much. If we take the average of the last values
of the measured qi we get a random variable with less variance (than the
maximum) to base our decision on, and this is the idea of the Average
test.

In the average test we take the average of the last measurements and accept
the products if the value is below some threshold Qav and otherwise reject it.
Choosing the threshold so that 1% of the defective products are accepted,
the Average test rejects approximately 1.4% of the good products.

5.4 The Regression Test

The Regression test works by considering the line segment that best approx-
imates the last part of the data, in the sense of least squares. See Figure 4.

Calling the height of the rightmost point on the line segments for QR, the
products is accepted if QR < QT and otherwise rejected. If we calibrate the
test so that 1% of the defective products pass the test, then around 1% of
the good products are flagged as defective for the simulated data.

11

0 50 100 150 200 250 300 350 400
!4

!2

0

2

4

6

8

10

12

14
x 10!7

q i

Figure 4: The curve shows an example of the flow for a product. The points
around the curve forms the measured data; they are not lying on the curve
because of measurement errors. The drawn line segment is the one that
best approximates the last part of the measured data in the sense of least
squares. The right end point of the curve is used by the Regresion test to
decide whether to accept or reject the product.

12

5.5 The Frequency Test

The final test is an approximation of the best (or most powerful) test for
the problem. Let f(q1, ..., qn) denote the distribution of measured flows
in a mesurement, f(q1, ..., qn; 0) the distribution of measured flows in the
population of good products and f(q1, ..., qn; 1) the distribution of measured
flows in the population of defective products. Define the region Cλ by

Cλ = {(q1, ..., qn) | f(q1, ..., qn; 1) ≥ f(q1, ..., qn; 2)}.

We call the test that flag a product as defective if and only if the measure
(q1, ..., qn) lies in the critical set Cλ for the Frequency test. This test is
optimal in the sense that any test that labels an equal percentage of good
products as defective, will label a higher or equal percentage of defective
products as good. This results follows from the Fundamental Lemma of
Neyman and Pearson (see [3] chapter 3, page 166).

To implement the test, we need to calculate the two distributions. For com-
pactness of notation, write p = (Q∞, Qref , δ, τ) for the parameters that vary
between measurements of different products. Writing g(p, 0) for the distri-
bution of the parameters for the population of good products and g(p, 1)
for the distributions of parameters for the population of defective products.
Let no(x) = 1√

2π
ex2/2 denote the normal distribution and set

φp(q1, ..., qn) =
∏

i

no
(

Q(ti)− qi

σi

)
,

with σi = c
√

h(ti), and where Q = Qp is the function defined by equation
2. Then φp(q1, ..., qn) denote the conditional distribution of a measurement
series q1, ..., qn conditional to to the parameters are equal to p. There-
fore

f(q1, ..., qn; i) =
∫
p∈R4

g(p)φp(q1, ..., qn)dp,

i = 0, 1.

Since it seems difficult to evaluate the integral analytically, we proceed to
find an approximation. Instead of integrating over Qref we set it to a typical
value Qref

∗ = log(µQref
) and we suppose that δ is a constant (this is the case

for the simulated data). The quadruble integral then reduces to a double
integral,

f(q1, ..., qn; 0) ≈
∫ QA

Q∞=−∞

∫ +∞

τ=−∞
g(Q,Qref

∗, τ, δ)φp(q1, ..., qn)dτdQ∞,

13

and

f(q1, ..., qn; 1) ≈
∫ +∞

Q=QA

∫ +∞

τ=−∞
g(Q,Qref

∗, τ, δ)φp(q1, ..., qn)dτdQ∞.

Finally, we make variable substitutions to change the intervals of integrations
to the unit interval and implement the test by carrying out the integrations
numerically using Gauss-Legendre quadrature. Calibrating the test (which
amounts to choosing the right value of λ) so that 1% of the defective products
pass the test, we get that approximately 0.2% of the good products are
labelled as defective.

5.6 Comparison of the Tests

We have run a simulation where (simulated) time series from 10, 000 good
and 10, 000 defective products were fed to the tests. The following table
summarises the test results.

Max Test Av. Test Reg. Test Fre. Test
Good rejected 266 164 108 19
Defective accepted 100 100 100 100
Rel. good rej. 2.7% 1.6% 1.1% 0.2%
Rel. defective rej. 1.0% 1.0% 1.0% 1.0%

We have also run a simulation where we choose ratio of defective products
accepted to 0.02%. This very conservative ratio correspond to the the uncal-
ibrated Maximum test. Because of the small amounts involved the numbers
from the simulation should be regarded as quite rough approximations of
the true expected values.

Max Test Av. Test Reg. Test Fre. Test
Good rejected 694 430 230 137
Defective accepted 2 2 2 2
Rel. good rej. 7% 4% 2% 1%
Rel. defective rej. 0.02% 0.02% 0.02% 0.02%

We see that with increasingly sophisticated methods we get increasingly
better results. The three first methods have the advantage that they are easy
to implement. Also, they assume little about how the time series should look
if there were no noise, and they are in this sense robust. In the simulation
we have assumed that τ and Q∞ are independent.

14

A high value of Q∞ and a high value of τ could give the same flow at the
end of a measurement as a low value of Q∞ coupled with a low value of τ .
Since the three first methods all work by estimating the last point of the time
series, they could reject a good product if τ is large and accept a bad product
if τ is small. In the simulation τ and Q∞ are independent. We have seen
(in section 3) that we could expect τ and Q∞ to be negatively correlated,
and if this is the case we can expect the methods to work better.

We can qualitativly sum our findings up in the following table.

Max Test Av. Test Reg. Test Fre. Test
Power * ** ** ***
Speed *** ** ** *
Robustness *** *** *** *

Here power refers to the efficiency of the test, i.e. a more powerful test
rejects fewer good bottle than a less powerful test at a given level of accepting
defective bottles. A test scores high in speed if it only requires few and simple
calculations to carry out. A test is robust if it only makes few assumptions
about the underlying probability distributions and is not very sensitive to
changes in the parameters of these distributions.

At this point we don’t have enough real world data to come with specific
recommendation. But we can conclude on the basis of the simulation, that
if we get information on the distributions of the parameters describing the
products and the measurement errors, then a well chosen test on the basis
of the time series of flow measurement can give significantly fewer good
products labelled as defective, without letting more defective products pass
the test.

6 Summary/ Conclusion

We have developed a three improved procedures for signal processing in a
leak detection procedure.

Simulation results indicate that these new procedures, the number of false
negatives will be significantly reduced, relative to the present situation. The
price is introduction of a small number of false negatives. The more sophis-
ticated (and therefore time consuming) the data processing is, the better
the performance of the procedure.

15

——– o O o ——–

A Matlab code

In the course of the work with the problem we did several simulations, and
they were carried out in Matlab. The script sim.m is the main program. It
calls the functions GenGood.m, GenBad.m, Q time.m, and Addnoise.m to
simulate time obtained by a mass spectrometer. Then it calls the functions
MaxTest.m, RegTest.m, and GaussTest.m to simulate the different test

methods.

A.1 sim

% This script simulates data from He leak tests
% and compares different measurement methods

close all
clear all
format compact;

% INITIALIZATION

Q_A = 2e-6; % The maximal permitted flow

N_good = 1e4; % no of ’good’ products generated
N_bad = 1e4; % no of ’bad’ products generated

% Variables describing the distribution of products

Q_mean = log(1e-6) % mean of log(Q)
Q_sigma = 0.28 % standard deviation of log(Q)
delta_mean = 1
delta_sigma = 0
tau_mean = 2
tau_sigma = 0.25
Qref_mean = log(10^-6.5) % mean of log(Qref)
Qref_sigma = 0.25 % spread of log(Qref)

16

% Variables describing measurement of one product

% The standard deviation of the measurement error
% is determined by the constant c where
c = 1.7e-4;
measure_time = 4; % a measurement spans this many seconds
N_sample = 400; % no of flow measurements for one product

% Variables defining the various tests

Err2target = 0.01; % tests calibrated so they commit this ratio of error2

avsample = floor(N_sample/15);
% this many points are used for computing moving averages
% for the movavsample procedure

regsample = floor(N_sample/4);
% how many points are used for the regression test

% SIMULATION

% measurements are taken at times
T = measure_time/N_sample * (1:N_sample);
% We simulate time series
q_good = zeros(N_good, N_sample);
q_bad = zeros(N_bad, N_sample);
q_noisegood = zeros(N_good, N_sample);
q_noisebad = zeros(N_bad, N_sample);

fprintf(’\nWe start generating data...\n’);

[Qgood, taugood, deltagood, Qrefgood] = GenGood(...
Q_mean, Q_sigma, tau_mean, tau_sigma, delta_mean, delta_sigma, ...
Qref_mean, Qref_sigma, Q_A, N_good);

[Qbad, taubad, deltabad, Qrefbad] = GenBad(...
Q_mean, Q_sigma, tau_mean, tau_sigma, delta_mean, delta_sigma, ...
Qref_mean, Qref_sigma, Q_A, N_bad);

for i = 1:N_good
q_good(i, :) = Q_time(Qgood(i), taugood(i), deltagood(i), T);

17

q_noisegood(i, :) = Addnoise(q_good(i, :), Qrefgood(i), c);
end;

for i = 1:N_bad
q_bad(i, :) = Q_time(Qbad(i), taubad(i), deltabad(i), T);
q_noisebad(i, :) = Addnoise(q_bad(i, :), Qrefbad(i), c);

end;

% TESTS

% the Maximum test
display(’Simulating the Maximum test’);
[MaxError1, MaxError2] = MaxTest(q_noisegood, q_noisebad, Err2target);
% Error1 number of good products deemed bad
% Error2 number of bad products deemed good
MaxE1rel = 100*MaxError1 / N_good;
MaxE2rel = 100*MaxError2 / N_bad;

% the Average test
display(’Simulating the Average test’);
[AError1, AError2] = ...

AvrTest(q_noisegood, q_noisebad, avsample, Err2target);
% MAError1 number of good products deemed bad
% MAError2 number of bad products deemed good
AE1rel = 100*AError1 / N_good;
AE2rel = 100*AError2 / N_bad;

% the Regression test
display(’Simulating the Regression test’);
[RegError1, RegError2] = ...

RegTest(q_noisegood, q_noisebad, regsample, Err2target);
% RegError1 number of good products deemed bad
% RegError2 number of bad products deemed good
RegE1rel = 100*RegError1 / N_good;
RegE2rel = 100*RegError2 / N_bad;

% the Frequency test / Gauss test
display(’Simulating the Frequency test’);
[FreError1, FreError2] = GaussTest(q_noisegood, q_noisebad, ...

Q_mean, Q_sigma, Q_A, tau_mean, tau_sigma, ...

18

Qref_mean, Qref_sigma, delta_mean, c, T, Err2target);
% Error1 number of good products deemed bad
% Error2 number of bad products deemed good
FreE1rel = 100*FreError1 / N_good;
FreE2rel = 100*FreError2 / N_bad;

% OUTPUT

% finally we out put the results

fprintf(’\nThe generated data is formed by %i good products’, N_good);
fprintf(’ and %i bad products.\n’, N_bad);
fprintf(’\nResults of tests\n’);
display(’ Max test Avr Test Reg Test Fre Test’);
fprintf(’Good rejected %5i %5i %5i %5i\n’, ...

MaxError1, AError1, RegError1, FreError1);
fprintf(’Bad accepted %5i %5i %5i %5i\n’, ...

MaxError2, AError2, RegError2, FreError2);
fprintf(’Good rej %% %5.2f%% %5.2f%% %5.2f%% %5.2f%%\n’, ...

MaxE1rel, AE1rel, RegE1rel, FreE1rel);
fprintf(’Bad accpt %% %5.2f%% %5.2f%% %5.2f%% %5.2f%%’, ...

MaxE2rel, AE2rel, RegE2rel, FreE2rel);
fprintf(’\n\n’);

A.2 GenGood

function [Q, tau, delta, Qref] = GenGood(...
Q_mean, Q_sigma, tau_mean, tau_sigma, delta_mean, delta_sigma, ...
Qref_mean, Qref_sigma, Q_A, F_sample)

% computes Q, tau, delta, Qref vectors
% Q, tau, delta, Qref are independent
% Q is picked so that log(Q) is normal distr. with mean Q_mean
% and spread Q_sigma. Q is picked from the population with Q < Q_A
% tau is normally distributed according to tau_mean and tau_sigma
% delta is normally distributed according to delta_mean and delta_sigma
% log(Qref) is normally distr. accroding to Qref_mean and Qref_sigma
% F_sample is the number of samples generated.

delta = randn(F_sample, 1)*delta_sigma + delta_mean;

19

tau = randn(F_sample, 1)*tau_sigma + tau_mean;
Qref = exp(randn(F_sample, 1)*Qref_sigma+Qref_mean);

i = 1;
while i <= F_sample

Q(i, 1) = exp(randn()*Q_sigma + Q_mean);
if Q(i, 1) < Q_A

i = i + 1;
end;

end;

A.3 GenBad

function [Q, tau, delta, Qref] = GenBad(...
Q_mean, Q_sigma, tau_mean, tau_sigma, delta_mean, delta_sigma, ...
Qref_mean, Qref_sigma, Q_A, F_sample)

% computes Q, tau, delta, Qref vectors
% Q, tau, delta, Qref are independent
% Q is picked so that log(Q) is normal distr. with mean Q_mean
% and spread Q_sigma. Q is picked from the population with Q > Q_A
% tau is normally distributed according to tau_mean and tau_sigma
% delta is normally distributed according to delta_mean and delta_sigma
% log(Qref) is normally distr. accroding to Qref_mean and Qref_sigma
% F_sample is the number of samples generated.

delta = randn(F_sample, 1)*delta_sigma + delta_mean;
tau = randn(F_sample, 1)*tau_sigma + tau_mean;
Qref = exp(randn(F_sample, 1)*Qref_sigma+Qref_mean);

S = rand(F_sample, 1);
P = zeros(F_sample, 1);
P_cut = (log(Q_A) - Q_mean) / Q_sigma;
opts = optimset(’display’, ’off’);
for i = 1 : F_sample

F = @(x) ...
(erf(x/sqrt(2))-erf(P_cut/sqrt(2)))/(1 - erf(P_cut/sqrt(2))) ...
- S(i);

P(i ,1) = fsolve(F, P_cut, opts);
end;

20

Q = exp(P*Q_sigma + Q_mean);

A.4 Q time

function q = Q_time(Q, tau, delta, T)
% Generate a time series
% q(t) = Q(1-exp(-delta*(t-tau))*H(t - tau), for t in T.
q = Q*(1 - exp(-delta*(T-tau))).*(1 + sign(T - tau)) / 2;

A.5 Addnoise

function qnoise = Addnoise(q, Qref, c)
% Adds a normally distributed random variable of expected value 0
% and standard deviation c*sqrt(q(i) + Qref) to each element q(i)
% of q.
sigma = c * sqrt(q + Qref);
noise = sigma.*randn(1, length(q));
qnoise = q + noise;

A.6 MaxTest

function [e1, e2] = MaxTest(Qgood, Qbad, Err2target)

[Nbad, N] = size(Qbad);
[Ngood, N] = size(Qgood);

% First we calibrate the test so that
% the fraction Errr2target of the bad are tested ’good’
M = max(Qbad’);
M = sort(M);
i = floor(Err2target * Nbad);
if i < 1

i = 1;
end;
Q_T = 0.5 * (M(i) + M(i+1)); % the treshold

% Then we count the number of errors commited

21

Error1 = 0; % Error1 fraction of good products deemed bad
Error2 = 0; % Error2 fraction of bad products deemed good

M = max(Qgood’);
for i = 1:Ngood

if M(i) >= Q_T
Error1 = Error1 + 1;

end;
end;

M = max(Qbad’);
for i = 1:Nbad

if M(i) < Q_T
Error2 = Error2 + 1;

end;
end;

e1 = Error1;
e2 = Error2;

A.7 RegTest

function [e1, e2] = RegTest(qgood, qbad, regsample, Err2target)
% The regression test. Uses linear regresion on the last avsample points
% to determine to accept or reject
[Nbad, N] = size(qbad);
[Ngood, N] = size(qgood);

% First we calibrate the test so that
% the fraction Errr2target of the bad are tested ’good’
A = ones(regsample, 2);
for i = 1 : regsample

A(i, 2) = i;
end;
w = [1 regsample] * (A’ * A)^(-1) * A’;
Qestbad = qbad(:, N - regsample +1 : N) * w’;
Qestbad = sort(Qestbad);
i = floor(Err2target * Nbad);
if i < 1

22

i = 1;
end;
Q_T = 0.5 * (Qestbad(i) + Qestbad(i+1)); % the treshold

% Then we count the number of errors commited

Error1 = 0; % Error1 fraction of good products deemed bad
Error2 = 0; % Error2 fraction of bad products deemed good

Qestgood = qgood(:, N - regsample +1 : N) * w’;
for i = 1:Ngood

if Qestgood(i) >= Q_T
Error1 = Error1 + 1;

end;
end;

for i = 1:Nbad
if Qestbad(i) < Q_T

Error2 = Error2 + 1;
end;

end;

e1 = Error1;
e2 = Error2;

A.8 GaussTest

function [e1, e2] = GaussTest(qgood, qbad, Q_mean, Q_sigma, Q_A, ...
tau_mean, tau_sigma, Qref_mean, Qref_sigma, delta, c, T, Err2target)

% Simplified frequency test.
% A likelihood ratio test that uses Gauss-Legendre quadrature
% to aproxmiate the ratio.

% We find the number of ’bad’ samples
[Nbad, N] = size(qbad);
% and good samples
[Ngood, N] = size(qgood);
% and the typical deviation of measurement error along a timeseries of

23

% flow rates
sigma_typ = c*sqrt(exp(Q_mean) + ...

Q_time(exp(Q_mean), tau_mean, delta, T))’;

% Then we set up the Gauss-Legendre quadrature of order
M = 21;
% for integrating between 0 and 1. The abscissas are given by
x = [0.0031239146898052498698789820310295354034; ...

0.0163865807168468528416888925461524192876; ...
0.0399503329247995856049064331425155529204; ...
0.0733183177083413581763746807062161648620; ...
0.1157800182621610456920610743468859825895; ...
0.1664305979012938403470166650048304187015; ...
0.2241905820563900964704906016378433566890; ...
0.2878289398962806082131655557281059739518; ...
0.3559893415987994516996037419676998400455; ...
0.4272190729195524545314845088306568349418; ...
0.5000000000000000000000000000000000000000; ...
0.5727809270804475454685154911693431650582; ...
0.6440106584012005483003962580323001599545; ...
0.7121710601037193917868344442718940260482; ...
0.7758094179436099035295093983621566433110; ...
0.8335694020987061596529833349951695812985; ...
0.8842199817378389543079389256531140174105; ...
0.9266816822916586418236253192937838351380; ...
0.9600496670752004143950935668574844470796; ...
0.9836134192831531471583111074538475807124; ...
0.9968760853101947501301210179689704645966];

% and the weights are
w = [0.008008614128887166662112308429235508133924; ...

0.01847689488542624689997533414966483635729; ...
0.02856721271342860414181791323622398097488; ...
0.03805005681418965100852582665009158023242; ...
0.04672221172801693077664487055696604109659; ...
0.05439864958357418883173728903505282170669; ...
0.06091570802686426709768358856286679903582; ...
0.06613446931666873089052628724838780222205; ...
0.06994369739553657736106671193379155545011; ...
0.07226220199498502953191358327687627180509; ...
0.07304056682484521359599257384168559412240; ...

24

0.07226220199498502953191358327687627180509; ...
0.06994369739553657736106671193379155545011; ...
0.06613446931666873089052628724838780222205; ...
0.06091570802686426709768358856286679903582; ...
0.05439864958357418883173728903505282170669; ...
0.04672221172801693077664487055696604109659; ...
0.03805005681418965100852582665009158023242; ...
0.02856721271342860414181791323622398097488; ...
0.01847689488542624689997533414966483635729; ...
0.008008614128887166662112308429235508133924];

% the abscissas for the tau integration
opts = optimset(’display’, ’off’);
for i = 1 : M

er = @(t) 1/2*(1 + erf(t/sqrt(2))) - x(i);
s(i) = fsolve(er, 0, opts);

end;
Tau = tau_mean + tau_sigma * s;

% The relative number of ’good’ products is
gam = 1/2 * (1 + erf((log (Q_A) - Q_mean) / (sqrt(2)*Q_sigma)));
% we compute the abscissas, Q2, for the good likelihood
for i = 1 : M

er = @(t) 1/2*(1 + erf(t/sqrt(2))) - gam*x(i);
s(i) = fsolve(er, 0, opts);

end;
Q2 = exp(Q_mean + Q_sigma * s);
% and for the bad likelihood they are
for i = 1 : M

er = @(t) 1/2*(1 + erf(t/sqrt(2))) - (gam + (1-gam)*x(i));
s(i) = fsolve(er, 0, opts);

end;
Q1 = exp(Q_mean + Q_sigma*s);
% At the abscissas the time series for Q are q1t and q2t:
for i = 1 : M

for j = 1 : M
q1t(:, i, j) = Q_time(Q1(i), Tau(j), delta, T);
sigma1t(:, i, j) = c * sqrt(q1t(:, i, j) + exp(Qref_mean));
q2t(:, i, j) = Q_time(Q2(i), Tau(j), delta, T);

25

sigma2t(:, i, j) = c * sqrt(q2t(:, i, j) + exp(Qref_mean));
end;

end;

% We calculate the likelihood ratio for the ’bad’ data to calibrate
% the method

for k = 1 : Nbad
T = 0; N = 0;
for i = 1 : M

for j = 1 : M
T = T + w(i)*w(j)* ...
prod(sigma_typ./sigma1t(:,i,j)) * ...
exp(-sum((qbad(k, :)’-q1t(:, i, j)).^2 ./ ...
(2*sigma1t(:,i,j).^2)));

N = N + w(i)*w(j)* ...
prod(sigma_typ./sigma2t(:,i,j)) * ...
exp(-sum((qbad(k, :)’-q2t(:, i, j)).^2 ./ ...
(2*sigma2t(:,i,j).^2)));

end;
end;
% log of the likihood ratio is Alpha where
if N > 0

Alpha_bad(k) = log(T) - log(N);
else

Alpha_bad(k) = 1e3; % +infinity
end;

end;
Alpha_sort = sort(Alpha_bad);
i = floor(Err2target * Nbad);
if i < 1

i = 1;
end;
Alpha_T = 0.5 * (Alpha_sort(i) + Alpha_sort(i+1)); % the treshold

% We calculate log of the likelihood ratio for the ’good’ data
for k = 1 : Ngood

T = 0; N = 0;
for i = 1 : M

for j = 1 : M

26

T = T + w(i)*w(j)* ...
prod(sigma_typ./sigma1t(:,i,j)) * ...
exp(-sum((qgood(k, :)’-q1t(:, i, j)).^2 ./ ...
(2*sigma1t(:,i,j).^2)));

N = N + w(i)*w(j)* ...
prod(sigma_typ./sigma2t(:,i,j)) * ...
exp(-sum((qgood(k, :)’-q2t(:, i, j)).^2 ./ ...
(2*sigma2t(:,i,j).^2)));

end;
end;
if T > 0

Alpha_good(k) = log(T) - log(N);
else

Alpha_good(k) = -1e3; % - infinity
end;

end;

Error1 = 0; % Error1 fraction of good products deemed bad
Error2 = 0; % Error2 fraction of bad products deemed good

for i = 1 : Ngood
if Alpha_good(i) >= Alpha_T

Error1 = Error1 + 1;
end;

end;

for i = 1:Nbad
if Alpha_bad(i) < Alpha_T

Error2 = Error2 + 1;
end;

end;

e1 = Error1;
e2 = Error2;

27

References

[1] A.C. Fowler: Mathematical Models in the Applied Sciences, Cambridge
Texts in Applied Mathematics (1995).

[2] Landau and Lifshiz: Fluid Mechanics, 2. ed., Pergamon Press (1993).

[3] L. Schmetterer: Introduction to Mathematical Statistics, Springer Ver-
lag, Berlin Heidelberg (1974).

28

